INSTITUTE OF MATHEMATICS m

of the
Polish Academy of Sciences
y P AN
ul. Sniadeckich 8, P.O.B. 21, 00-956 Warszawa 10, Poland http://www.impan.gov.pl

IM PAN Preprint 678 (2007)

Stanistaw Janeczko, Zbigniew Jelonek

Diffeomorphisms that are Symplectomorphisms

Published as manuscript

Received 15 March 2007



DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS

STANISLAW JANECZKO & ZBIGNIEW JELONEK

ABSTRACT. Let (X,wx) and (Y,wy) be compact symplectic manifolds of dimension 2n > 2. Let
us fix a number k with 0 < k < n and assume that a diffeomorphism ® : X — Y transforms all
2k-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then ® is a
conformal symplectomorphism, i.e., there is a constant ¢ # 0 such that ®*wy = cwx.

1. INTRODUCTION.

Let (X,wp) be a standard symplectic affine space over R of dimension 2n, i.e., X = R?" and
wo = Y, dx; A dy; is the standard non-degenerate skew-symmetric form on X. Linear symplecto-
morphisms of (X,wg) are characterized (cf. [3]) as linear automorphisms of X preserving some
minimal, complete data defined by wy on systems of linear subspaces. In this way the linear sym-
plectic group Sp(X) may be characterized geometrically together with its natural conformal and

anti-symplectic extensions.

The purpose of this paper is to put the linear considerations of symplectic invariants into a more
general context. Let (X,wx) and (Y,wy) be compact symplectic manifolds of dimension 2n (all
manifolds in this paper are assumed to be connected). We say that a diffeomorphism F: X — Y
is a conformal symplectomorphism if there is a non-zero constant ¢ € R such that F*wy = cwx.
Recall that a submanifold Z C X is a symplectic submanifold of X if it is closed and the pair

(Z,wx|rz) is itself a symplectic manifold. Our main result is:

Theorem. Let (X,wx) and (Y,wy) be compact symplectic manifolds of dimension 2n > 2. Fix
a number 0 < s < n. Assume that ® : X — Y is a diffeomorphism which transforms all 2s-
dimensional symplectic (closed) submanifolds of X onto symplectic (closed) submanifolds of Y.

Then ® is a conformal symplectomorphism.

In other words, for any fixed s as above, the conformal symplectic structure on X is uniquely

determined by the family of all 2s-dimensional (closed) symplectic submanifolds of X.
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2 STANISLAW JANECZKO & ZBIGNIEW JELONEK

2. GENERATORS OF THE GROUP Sp(2n)

Here we recall some basic facts about the linear symplectic group. Let (X,w) be a symplectic

vector space. There exists a basis of X, called a symplectic basis, u1, ..., Uy, v1,-..,Vn, such that
w(ui,uj) :W(vi7vj) :0, w(ui,vj) :51]

Let (X,wx) and (Y, wy ) be symplectic vector spaces. We say that a linear isomorphism F : X —
Y is a symplectomorphism (or is symplectic on X) if F*wy = wx, i.e., wx(z,y) = wy (F(z), F(y))
for every z,y € X. The group of automorphisms of (X, w) is called the symplectic group and is
denoted by Sp(X,w). Via a symplectic basis, X can be identified with the standard symplectic
space (R?",wp) and Sp(X,w) can be identified with the group of 2n x 2n real matrices A which

satisfy AT JyA = Jy, where Jy is the 2n x 2n matrix of wy (in the standard basis), i.e.,

0 0 -1 0
0 0 0 -1

Jo= | 0 0 0
|0 1 0 0 |

We have the following basic result:

Theorem 2.1. Let X = (R?", wy) be the standard symplectic vector space. Then the group Sp(X)

is generated by the following family of elementary symplectomorphisms:
{Li(c), Li;(c), Ri(c), Rij(c) : 0<i<j<nandceR}
Proof. We reason by induction. For n = 1 we have Sp(R?) = SL(2) and the result is well known

from linear algebra. Assume n > 1.

Let S : R?™ — R?" be a linear symplectomorphism. Denote coordinates by 1,41, ...., Zn, ¥n

(where wy = ), dz; A dy; ). We have
S(T1,Y15 s Tny Yn) = (Z ayit; + Z b1,Y55-- - ZGQn,i-Ti + Zan,jyj)~
i j i j

Observe how the rows of the matrix of S are transformed under composition S o L with an el-
ementary symplectomorphism L (for simplicity we consider only the first row and we take the

coordinates X1, ..., Tn, Y1, ..., Yn). After composition



DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS 3

with L;(¢) we have:

1) (@11, ey Q1n, b1y ooy D1n) — (@11, ooy @15 + D14y ooy A1y D11y ooy D10 )

with L;;(c) we have:

2) (a11, -y Q1n, 011, ooy b1n) = (@11, o, @14 + €b1j, oy @1 + D14y ooy Gy b11y o, D1n)s
with R;(c) we have:

3) (a11y . @1y U115 ooy b1n) — (@11, ooy G1ny U115 o0, b1 + gy ooy b1n),

with R;;(c) we have:

4) (a117 ceey Aln, b117 soey bln) - (a117 vy Alnm, bllv eeey bli + Ca1j7 sy blj + CQlgy .-y bln)

Transformations 1) - 4) will be called elementary operations. Now we show that using only elemen-
tary operations we can transform the first row of S to (1,0, ..., 0) and the second to (0, ...,0,1,0,...,0)

(here the unit corresponds to biy,).

Indeed, consider the first row. Of course it has a non-zero element, say bys. Using Ls(c) we
can assume that also a1 # 0. Now using L;s(c) and R;4(d) for sufficiently general ¢ and d we
can assume that all elements of the first row are non-zero. Again applying R;(c) for i > 1 we can
now transform the first row to (a11,...,a1p,1,0,...,0). Using L;;(c) we can transform this row to
(1,0,...,0,1,0,...,0) and finally using R;(—1) we obtain (1,0, ....,0). Now consider the second row
(after these transformations): (az1, ..., a2n,b21, ..., ba,). We can apply our method to the subrow
(a22, ..., aap, boa, ..., bay,) (if it is non-zero) and obtain finally the row (a2, 1,0, ....,0,b21,0,...,0) (or
(a21,0,....,0,b21,0,...,0)). Since the value of wy on these two rows is 1 we conclude that by = 1.
Now (in the first case) we can use Li2(—1) to obtain a row of the form (as1,0,...,0,1,0,...,0).

Finally applying Lq(—ai2) we get (0,...,0,1,0,...,0).

Thus under all these compositions the matrix of S in the coordinates x1,¥y1, ..., Tn, Y, has the

form
1.0 0 ... 0 ]
0 1 0 ... 0
* x azz ... bgn
* X% Q43 e b4n
| * % ap3 ... bp1 |

Let r; denote the i*" row of the matrix of S. For j > 2 we have wy(r1,r;) = 0 and wy(ra, ;) = 0.

We can easily conclude that all the * in the matrix of S are 0. Since

ass ... b3n
43 e b4n
an3 ... bnl

is a symplectic matrix we can apply the induction hypothesis. 0
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We conclude this section by recalling (and extending) some result from [3].

Definition 2.2. Let A4; 2, C G(I,2n) denote the set of all I-dimensional linear subspaces of X on

which the form w has rank < 2r.

Of course A; 2r C Ajopyo if 2r +2 < [. We have the following (see [3], Theorem 6.2):

Proposition 2.3. Let (X,w) be a symplectic vector space of dimension 2n and let FF: X — X
be a linear automorphism. Let 0 < 2r < 2n. Assume F transforms Agy or_2 into Agyor_2. Then

there is a non-zero constant ¢ such that F*w = cw.

From Proposition 2.3 we can deduce the following interesting fact:

Proposition 2.4. Let (X,wx) and (Y,wy) be symplectic vector spaces of dimension 2n and let
F: X —Y bealinear isomorphism. Fiz a number s: 0 < s < n and assume that F' transforms all
2s-dimensional symplectic subspaces of X onto symplectic subspaces of Y. Then there is a non-zero

constant ¢ such that F*wy = cwx.

Proof. Via a symplectic basis we can assume that (X,wx) = (R?",wp) = (Y, wy ). By assumption
the mapping F* induced by F' transforms the set A = Ag, a5 \ Ags,2s—2 into the same set A. Of
course F* : A — A is an injection. Since A is a smooth algebraic variety and F* is regular, the
Borel Theorem (see [1]) implies that F™* is a bijection. This means that F' transforms Asgs 25— into

the same set, and we conclude the proof by applying Proposition 2.3. O
We end this section by:

Proposition 2.5. Let X be a vector space of dimension 2n and let wy, wo be two symplectic forms

on X. If Sp(X,w1) C Sp(X,w2), then there exists a non-zero constant ¢ such that we = cws.

Proof. If n = 1, then theorem is obvious. Assume that n > 1. Let 4; (Az2) be a set of all wy
(w2) symplectic 2 dimensional subspaces of X. These sets are open and dense in the Grassmannian
G(2,2n). Hence A1 N Az # 0. Take H € A1 NAy. We have A; = Sp(X,w1)H C Sp(X,ws)H = As.
Now apply Proposition 2.4 to X = (X,w1), Y = (X,ws) and F = identity. O

3. TECHNICAL RESULTS

Let X = (R?",wy) be the standard symplectic vector space. In X we consider the norm
(a1, ..., a2,)| = max??|a;|. Take a smooth function H : X x R 3 (2,¢) — R and consider a

system of differential equations

&' (t,x) = Jo(V.H)(p(t),t), ¢(0,2) = z.
Assume that this system has a solution ¢(t,z) for every = and every ¢ (this is satisfied, e.g., if
supports of all functions H;, ¢t € R are contained in a compact set). Then we can define the

diffeomorphism
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(3.1) P(x) = (1, )
It is not difficult to check that ® is a symplectomorphism.

Definition 3.1. Let ® : X — X be a symplectomorphism. We say that ® is a hamiltonian
symplectomorphism if it is given by the formula (3.1) for some smooth function H. We also say

that H is a Hamiltonian of .
Lemma 3.2. All elementary linear symplectomorphisms are hamiltonian symplectomorphisms.

Proof. Indeed, we have:

1) Li(c) is given by the Hamiltonian H(z,y) = (c¢/2)x?,

2) L;;(c) is given by the Hamiltonian H(z,y) = cx;x;,

3) R;(c) is given by the Hamiltonian H(z,y) = —(c/2)y2,

4) R;;(c) is given by the Hamiltonian H(z,y) = —cy;y;. O

Now we show how to compute a Hamiltonian of a linear symplectomorphism:

Theorem 3.3. Let L : R>® — R?" be a linear symplectomorphism. Then L has a polynomial

Hamiltonian
2n

(32) HL(Z,t> = Z a@j(t)zizj,
ij=1

where a; j(t) € R[t] are polynomials of one variable t. Moreover, we can compute Hy, effectively.

Proof. Let L = L, o---0 Ly where the L; are elementary symplectomorphisms. We proceed by
induction with respect to m. If m = 1 then we can use Lemma 3.2. In this case the flow L;(¢)
depends linearly on t.

Now consider L' = L,,_1 o --- o Ly. By the induction hypothesis L'(t) = Ly, _1(t) o --- o Ly (¢)
is given by the Hamiltonian H’ of the form 3.2. Let H” be the Hamiltonian of L,, (as in Lemma
3.2). Now the flow L(t) = L,,(t) o L'(t) is given by the Hamiltonian

H(z,t) = H"(2) + H (L, (t)""(2),1).

Of course it has also the form 3.2. Since we can decompose L into the product L = L,,, o---0 Ly

effectively (see the proof of Theorem 2.1), we can also compute H in effective way. O

Proposition 3.4. Let L : R>® — R2" be a hamiltonian symplectomorphism given by the flow
x — ¢(t,z); t € R. Assume that ¢(t,0) =0 for t € [0,1]. For every nn > 0 there is an € > 0 and a

hamiltonian symplectomorphism ® : R2® — R?" such that
1) ®(x) = L(z) for all x with ||z| <,

2) ®(x) = x for all x with ||z|| > 7.
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Proof. We know that L(xz) = ¢(1,x), where ¢(¢, ) is the solution of some differential equation

¢'(t) = Jo(V-H)(¢(t),1); $(0) = .

Since ¢(t,0) = 0 for every ¢ € [0, 1], we can find € > 0 so small, that all trajectories {¢(¢,z), 0 <
t < 1}, which start from the ball B(0,¢) are contained in the ball B(0,7/2). Let o : R*® — R be

a smooth function such that

1 if [|z] < /2
o(z) = if l2]] < /2,
0 if [[2] = n.

Take S = 0 H. The hamiltonian symplectomorphism ® given by the differential equation

¢'(t) = Jo(V-9)(o(t),1), 6(0) ==,

is well defined on the whole of R2™ and

9(z) = {L(m) if fla] <.

r i o] 2.

Now Theorem 3.3 easily yields the following important:

Corollary 3.5. Let L : R?® — R2" be a linear symplectomorphism. For every n > 0 there is an

e > 0 and a hamiltonian symplectomorphism ® : R?® — R?" such that
1) ®(x) = L(z) for all x with ||z| <,

2) ®(x) = x for all x with ||z|| > 7.

Before we formulate our next result we need the following:

Lemma 3.6. Let X = (R?",wy) be the standard symplectic vector space.

a,b € B(0,n). Then there exists a symplectomorphism ® : X — X such that

®(a) =b and @(x)==x for |z| > 2n.

Proof. Let ¢ = (c1,...,c2,) = b — a. Define a sequence of points as follows:
1) ag = a,
2) a; = Qj—1 —|—(O,...,O,CZ‘,O,...,O).

Of course a; € B(0,7n) and as, = b. Now consider the translation

T; :R?" 5 (z,9) — (z,y) +(0,...,0,¢;,0,...,0) € R*",

We have T;(a;—1) = a; fori=1,...,2n.

Fizn > 0 and let

The translation 7; is a hamiltonian symplectomorphism given by the Hamiltonian

Hiz,y) —cy; if 1 <n,
i\ 7T, = e .
Y CiTi—p i1 >n.
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Let V; be the symplectic vector field which is determined by the Hamiltonian H;. Since the ball
B(0,r) is a convex set, all trajectories ¢(t), 0 < ¢t < 1, of the symplectic vector fields V;, which
begin at a; lie in the ball B(0,7). Let ¢ : R?* — R be a smooth function such that
1 <
CCR
Now let F; : R?® — R2" be the hamiltonian symplectomorphism given by the Hamiltonian G; =
ocH;. Then
Gi(a;—1) = a; and G,(z) = z if ||z]| > 27.

Now it is enough to take ® = G5, 0 G100 Gy. O
We apply Proposition 3.5 to the general case:

Theorem 3.7. Let (X,w) be a symplectic manifold. Let ay,...,am and by, ..., b, be two families
of points of X. For every i =1,...,n choose a linear symplectomorphism L; : T;,, X — T, X. Then
there is a symplectomorphism ® : X — X such that

1) ®(a;) = by,

2)d,,® =L,

Proof. By the Darboux Theorem every point + € X has an open neighborhood V,, which is symplec-
tically isomorphic to the ball B(0,r,) in the standard vector space (R?",wp). Denote by U, C V,
the open set which corresponds to the ball B(0,r;/3).

Since dim X > 2 the manifold X \ {ag, ..., an} is also connected. Hence there exists a smooth
path v : I — X such that v(0) = a1, (1) = by and {as, ...,an} Ny(I) = 0. Additionally we can
assume that the sets V, which cover (I) are also disjoint from {as, ..., am }.

Let € be a Lebesgue number for the function v : I — X with respect to the cover {U,}.cx and
choose an integer N with 1/N < e. If I}, := [k/N, (k + 1) /N], then y(I}y) is contained in some {U, };
denote it by Uy, the set V, by Vi, and r,, by 7. Let Ay := v(k/N), in particular Ag = a1, Ay = b;.

Since Vi = B(0,7y) and Ay, Ag+1 € B(0,7r,/3) we can apply Lemma 3.6 to obtain a symplec-
tomorphism @ : B(0,ry) — B(0, ) such that

O(Ay) = Agy1 and O(x) =z for ||z]| > (2/3)rk.
We can extend ® to the whole of X (we glue it with the identity); denote this extension by ®y.
Put
UV=>qyody 100D
Then ¥(ay) = by and ¥(a;) = a; for i > 1. Repeating this process, we finally arrive at a symplec-

tomorphism ¥ : X — X such that ¥(a;) = b; for i =1,...,m. In a similar way using Proposition

3.5 we can construct a symplectomorphism IT : X — X such that

1) TI(b;) = by,
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2) deH =L;o0 (daiE)‘l.

Now it is enough to take ® = Il o . U

Now we need the following result which is due to S.K. Donaldson (see [2]):

Theorem 3.8. Let (X,wx) be a compact symplectic manifold of dimension 2n > 2. Fiz a number

0 < s < mn. There exists a closed 2s—dimensional symplectic submanifold Z C X.

Using Theorem 3.7 we can restate this result as follows:

Proposition 3.9. Let (X,w) be a compact symplectic manifold of dimension 2n > 2. Let ay, ..., ap,
be a family of points of X. Take 0 < s < n. For every i = 1,...,m choose a linear 2s-dimensional
symplectic subspace H; C T,,X. Then there is a closed symplectic 2s-dimensional submanifold

Y C X such that
1) a; €Y,
2)T,Y = H,.
Proof. Let Z C X be as in Theorem 3.8. Take points by,...,b,, € Z. Let S; = Ty, Z. There

are linear symplectomorphisms L; : Ty, X — T,,X such that L;(S;) = H; for i = 1,...,m. By
Theorem 3.7 there is a symplectomorphism ® : X — X such that

1) (I)(bl) = aj,
2) dy,® = L.
Now it is enough to take Y = ®(Z). O

4. MAIN RESULT

Finally we show that a symplectomorphism can be described as a diffeomorphism which pre-

serves symplectic submanifolds.

Theorem 4.1. Let (X,wx) and (Y,wy) be compact symplectic manifolds of dimension 2n > 2.
Fiz a number 0 < s < n. Assume that ® : X — Y s a diffeomorphism which transforms all
2s-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then ® is a

conformal symplectomorphism, i.e., there exists a non-zero number ¢ € R such that

P*wy = cwy.

Proof. Fix x € X and let H C T,, X be a 2s-dimensional symplectic subspace of T, X. By Propo-
sition 3.9 (applied for m = 1, a; = = and H; = H) there exists a 2s-dimensional symplectic
submanifold M of X such that x € M and T,,M = H.

Let ®(M) = M', 2’ = ®(z). By assumption the submanifold M’ C Y is symplectic. This means
that the space d,®(H) = T,» M’ is symplectic. Hence the mapping d,® transforms all linear 2s-

dimensional symplectic subspaces of T, X onto subspaces of the same type. By Proposition 2.4
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this implies that d,® is a conformal symplectomorphism, i.e.,
(de®) wy = AMz)wx,
where A(z) # 0. This means that there is a smooth function A : X — R* (= R\ {0}) such that
d*wy = \wyx.

But since the form wx is closed, so is ®*wy. Since n > 1 this implies that the derivative dA

vanishes, i.e., the function A is constant. O

Corollary 4.2. Let X be a compact manifold of dimension 2n > 2. Let wi and ws be two symplectic
forms on X. Fiz a number 0 < k < n. Assume that the family of all 2k-dimensional w1 -symplectic
submanifolds of X is contained in the family of all 2k-dimensional ws-symplectic submanifolds of

X. Then there exists a non-zero number ¢ € R such that

w1 = CW2.
Proof. Tt is enough to apply Theorem 4.1 to X = (X,w1), Y = (X,w2) and ® = identity. O

Corollary 4.3. Let (X,w) be a compact symplectic manifold of dimension 2n > 2. Fix a number
0 < s < n. Assume that ® : X — X is a diffeomorphism which transforms all 2s-dimensional
symplectic submanifolds of X onto symplectic submanifolds. Then ® is a symplectomorphism or
antisimplectomorphism, i.e., ®*w = tw. If ® preserves an orientation and n is odd, then ® is a

symplectomorphism. Moreover, if n is even, then ® has to preserve the orientation.

Proof. Indeed, we have ®*w = cw. We have

(4.1) vol(X) :/ w" ::I:/ D" ::I:c"/ w"
X X X

hence ¢ = £1. Moreover, if ® preserves an orientation and n is odd, then we get that ¢ = 1. If n

is even then (—w)™ = w™ and ® has to preserve the orientation. O

Example 4.4. We show that in the general case ® do not need be a symplectomorphism. Let
Y = (5% w) (where w is a standard volume form on the sphere) and let (X, ,w,) =[]/, Y be a
standard symplectic product. Further let o : S? > (2,9,2) — (z,y, —z) € S? be a miror symmetry.
Of course o*w = —w. More general if ¥ = H?Zla : X, —» X, then Y*w,, = —w,,. Hence it is

possible that ® from Corollary 4.3 is an antisimplectomorphism.

However, in any case either ® or ® o ® is a symplectomorphism.

Now let (X,w) be a symplectic manifold and let us denote by Symp(X,w) the group of symplec-
tomorphisms of X. At the end of this note we show that this group also determine a conformal

symplectic structure on X:
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Theorem 4.5. Let X be a smooth manifold of dimension 2n > 2 and let w1, wy be two symplectic
forms on X. If Symp(X,w1) C Symp(X,ws), then there exists a non-zero constant ¢ such that

Wy = CW1.

Proof. Take x € X and consider symplectic vector spaces Vi = (T, X,w1) and V5 = (T, X, w2). By
Theorem 3.7 we have that for every linear symplectomorphism S of Vi, there is a symplectomor-

phism &g € Symp(X,w;), such that
a) Pg(z) = =z,
b) d,Ps = S.

Since Symp(X,w;) C Symp(X,ws) we easily obtain that Sp(V;) C Sp(Vz). Consequently by
Proposition 2.5 there exist a non-zero number A(z) such that ws(z) = A(z)wi(z). Now we finish

the proof as in the proof of Theorem 4.1. O
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