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DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS

STANIS LAW JANECZKO & ZBIGNIEW JELONEK

Abstract. Let (X, ωX) and (Y, ωY ) be compact symplectic manifolds of dimension 2n > 2. Let
us fix a number k with 0 < k < n and assume that a diffeomorphism Φ : X → Y transforms all
2k-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y . Then Φ is a
conformal symplectomorphism, i.e., there is a constant c 6= 0 such that Φ∗ωY = cωX .

1. Introduction.

Let (X, ω0) be a standard symplectic affine space over R of dimension 2n, i.e., X ∼= R2n and

ω0 =
∑

i dxi ∧ dyi is the standard non-degenerate skew-symmetric form on X. Linear symplecto-

morphisms of (X, ω0) are characterized (cf. [3]) as linear automorphisms of X preserving some

minimal, complete data defined by ω0 on systems of linear subspaces. In this way the linear sym-

plectic group Sp(X) may be characterized geometrically together with its natural conformal and

anti-symplectic extensions.

The purpose of this paper is to put the linear considerations of symplectic invariants into a more

general context. Let (X, ωX) and (Y, ωY ) be compact symplectic manifolds of dimension 2n (all

manifolds in this paper are assumed to be connected). We say that a diffeomorphism F : X → Y

is a conformal symplectomorphism if there is a non-zero constant c ∈ R such that F ∗ωY = cωX .

Recall that a submanifold Z ⊂ X is a symplectic submanifold of X if it is closed and the pair

(Z, ωX |TZ) is itself a symplectic manifold. Our main result is:

Theorem. Let (X, ωX) and (Y, ωY ) be compact symplectic manifolds of dimension 2n > 2. Fix

a number 0 < s < n. Assume that Φ : X → Y is a diffeomorphism which transforms all 2s-

dimensional symplectic (closed) submanifolds of X onto symplectic (closed) submanifolds of Y.

Then Φ is a conformal symplectomorphism.

In other words, for any fixed s as above, the conformal symplectic structure on X is uniquely

determined by the family of all 2s-dimensional (closed) symplectic submanifolds of X.
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2 STANIS LAW JANECZKO & ZBIGNIEW JELONEK

2. Generators of the group Sp(2n)

Here we recall some basic facts about the linear symplectic group. Let (X, ω) be a symplectic

vector space. There exists a basis of X, called a symplectic basis, u1, . . . , un, v1, . . . , vn, such that

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij .

Let (X, ωX) and (Y, ωY ) be symplectic vector spaces. We say that a linear isomorphism F : X →
Y is a symplectomorphism (or is symplectic on X) if F ∗ωY = ωX , i.e., ωX(x, y) = ωY (F (x), F (y))

for every x, y ∈ X. The group of automorphisms of (X, ω) is called the symplectic group and is

denoted by Sp(X, ω). Via a symplectic basis, X can be identified with the standard symplectic

space (R2n, ω0) and Sp(X, ω) can be identified with the group of 2n × 2n real matrices A which

satisfy AT J0A = J0, where J0 is the 2n× 2n matrix of ω0 (in the standard basis), i.e.,

J0 =



0 . . . 0 −1 . . . 0
...

...
...

...
0 . . . 0 0 . . . −1
1 . . . 0 0 . . . 0
...

...
...

...
0 . . . 1 0 . . . 0


.

Let c ∈ R and i < j. We can define following ”elementary” symplectomorphisms:

1) Li(c)(x1, ..., xn, y1, ..., yn) = (x1, ..., xn, y1, ..., yi−1, yi + cxi, yi+1, ..., yn),

2) Lij(c)(x1, ..., xn, y1, ..., yn) = (x1, ..., xn, y1, ..., yi−1, yi+cxj , yi+1, ..., yj−1, yj+cxi, yj+1, ..., yn),

3) Ri(c)(x1, ..., xn, y1, ..., yn) = (x1, ..., xi−1, xi + cyi, xi+1, ..., xn, y1, ..., yn),

4) Rij(c)(x1, ..., xn, y1, ..., yn) = (x1, ..., xi−1, xi+cyj , xi+1, ..., xj−1, xj+cyi, xj+1, ..., xn, y1, ..., yn).

We have the following basic result:

Theorem 2.1. Let X = (R2n, ω0) be the standard symplectic vector space. Then the group Sp(X)

is generated by the following family of elementary symplectomorphisms:

{Li(c), Lij(c), Ri(c), Rij(c) : 0 < i < j ≤ n and c ∈ R}.

Proof. We reason by induction. For n = 1 we have Sp(R2) = SL(2) and the result is well known

from linear algebra. Assume n > 1.

Let S : R2n → R2n be a linear symplectomorphism. Denote coordinates by x1, y1, ...., xn, yn

(where ω0 =
∑

i dxi ∧ dyi ). We have

S(x1, y1, ..., xn, yn) = (
∑

i

a1,ixi +
∑

j

b1,jyj , . . . ,
∑

i

a2n,ixi +
∑

j

b2n,jyj).

Observe how the rows of the matrix of S are transformed under composition S ◦ L with an el-

ementary symplectomorphism L (for simplicity we consider only the first row and we take the

coordinates x1, ..., xn, y1, ..., yn). After composition
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with Li(c) we have:

1) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1i + cb1i, ..., a1n, b11, ..., b1n),

with Lij(c) we have:

2) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1i + cb1j , ..., a1j + cb1i, ..., a1n, b11, ..., b1n),

with Ri(c) we have:

3) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1n, b11, ..., b1i + ca1i, ..., b1n),

with Rij(c) we have:

4) (a11, ..., a1n, b11, ..., b1n) → (a11, ..., a1n, b11, ..., b1i + ca1j , ..., b1j + ca1i, ..., b1n).

Transformations 1) - 4) will be called elementary operations. Now we show that using only elemen-

tary operations we can transform the first row of S to (1, 0, ..., 0) and the second to (0, ..., 0, 1, 0, ..., 0)

(here the unit corresponds to b1n).

Indeed, consider the first row. Of course it has a non-zero element, say b1s. Using Ls(c) we

can assume that also a1s 6= 0. Now using Lis(c) and Rjs(d) for sufficiently general c and d we

can assume that all elements of the first row are non-zero. Again applying Ri(c) for i > 1 we can

now transform the first row to (a11, ..., a1n, 1, 0, ..., 0). Using L1j(c) we can transform this row to

(1, 0, ..., 0, 1, 0, ..., 0) and finally using R1(−1) we obtain (1, 0, ...., 0). Now consider the second row

(after these transformations): (a21, ..., a2n, b21, ..., b2n). We can apply our method to the subrow

(a22, ..., a2n, b22, ..., b2n) (if it is non-zero) and obtain finally the row (a21, 1, 0, ...., 0, b21, 0, ..., 0) (or

(a21, 0, ...., 0, b21, 0, ..., 0)). Since the value of ω0 on these two rows is 1 we conclude that b21 = 1.

Now (in the first case) we can use L12(−1) to obtain a row of the form (a21, 0, ..., 0, 1, 0, ..., 0).

Finally applying L1(−a12) we get (0, ..., 0, 1, 0, ..., 0).

Thus under all these compositions the matrix of S in the coordinates x1, y1, ..., xn, yn has the

form 

1 0 0 . . . 0
0 1 0 . . . 0
∗ ∗ a33 . . . b3n

∗ ∗ a43 . . . b4n

...
...

...
...

∗ ∗ an3 . . . bn1


.

Let ri denote the ith row of the matrix of S. For j > 2 we have ω0(r1, rj) = 0 and ω0(r2, rj) = 0.

We can easily conclude that all the ∗ in the matrix of S are 0. Since
a33 . . . b3n

a43 . . . b4n

...
...

an3 . . . bn1


is a symplectic matrix we can apply the induction hypothesis. �
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We conclude this section by recalling (and extending) some result from [3].

Definition 2.2. Let Al,2r ⊂ G(l, 2n) denote the set of all l-dimensional linear subspaces of X on

which the form ω has rank ≤ 2r.

Of course Al,2r ⊂ Al,2r+2 if 2r + 2 ≤ l. We have the following (see [3], Theorem 6.2):

Proposition 2.3. Let (X, ω) be a symplectic vector space of dimension 2n and let F : X → X

be a linear automorphism. Let 0 < 2r < 2n. Assume F transforms A2r,2r−2 into A2r,2r−2. Then

there is a non-zero constant c such that F ∗ω = cω.

From Proposition 2.3 we can deduce the following interesting fact:

Proposition 2.4. Let (X, ωX) and (Y, ωY ) be symplectic vector spaces of dimension 2n and let

F : X → Y be a linear isomorphism. Fix a number s : 0 < s < n and assume that F transforms all

2s-dimensional symplectic subspaces of X onto symplectic subspaces of Y. Then there is a non-zero

constant c such that F ∗ωY = cωX .

Proof. Via a symplectic basis we can assume that (X, ωX) ∼= (R2n, ω0) ∼= (Y, ωY ). By assumption

the mapping F ∗ induced by F transforms the set A = A2s,2s \ A2s,2s−2 into the same set A. Of

course F ∗ : A → A is an injection. Since A is a smooth algebraic variety and F ∗ is regular, the

Borel Theorem (see [1]) implies that F ∗ is a bijection. This means that F transforms A2s,2s−2 into

the same set, and we conclude the proof by applying Proposition 2.3. �

We end this section by:

Proposition 2.5. Let X be a vector space of dimension 2n and let ω1, ω2 be two symplectic forms

on X. If Sp(X, ω1) ⊂ Sp(X, ω2), then there exists a non-zero constant c such that ω2 = cω1.

Proof. If n = 1, then theorem is obvious. Assume that n > 1. Let A1 (A2) be a set of all ω1

(ω2) symplectic 2 dimensional subspaces of X. These sets are open and dense in the Grassmannian

G(2, 2n). Hence A1∩A2 6= ∅. Take H ∈ A1∩A2. We have A1 = Sp(X, ω1)H ⊂ Sp(X, ω2)H = A2.

Now apply Proposition 2.4 to X = (X, ω1), Y = (X, ω2) and F = identity. �

3. Technical Results

Let X = (R2n, ω0) be the standard symplectic vector space. In X we consider the norm

‖(a1, . . . , a2n)‖ = max2n
i=1|ai|. Take a smooth function H : X × R 3 (z, t) → R and consider a

system of differential equations

φ′(t, x) = J0(∇zH)(φ(t), t), φ(0, x) = x.

Assume that this system has a solution φ(t, x) for every x and every t (this is satisfied, e.g., if

supports of all functions Ht, t ∈ R are contained in a compact set). Then we can define the

diffeomorphism



DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS 5

(3.1) Φ(x) = φ(1, x)

It is not difficult to check that Φ is a symplectomorphism.

Definition 3.1. Let Φ : X → X be a symplectomorphism. We say that Φ is a hamiltonian

symplectomorphism if it is given by the formula (3.1) for some smooth function H. We also say

that H is a Hamiltonian of Φ.

Lemma 3.2. All elementary linear symplectomorphisms are hamiltonian symplectomorphisms.

Proof. Indeed, we have:

1) Li(c) is given by the Hamiltonian H(x, y) = (c/2)x2
i ,

2) Lij(c) is given by the Hamiltonian H(x, y) = cxixj ,

3) Ri(c) is given by the Hamiltonian H(x, y) = −(c/2)y2
i ,

4) Rij(c) is given by the Hamiltonian H(x, y) = −cyiyj . �

Now we show how to compute a Hamiltonian of a linear symplectomorphism:

Theorem 3.3. Let L : R2n → R2n be a linear symplectomorphism. Then L has a polynomial

Hamiltonian

(3.2) HL(z, t) =
2n∑

i,j=1

ai,j(t)zizj ,

where ai,j(t) ∈ R[t] are polynomials of one variable t. Moreover, we can compute HL effectively.

Proof. Let L = Lm ◦ · · · ◦ L1 where the Li are elementary symplectomorphisms. We proceed by

induction with respect to m. If m = 1 then we can use Lemma 3.2. In this case the flow L1(t)

depends linearly on t.

Now consider L′ = Lm−1 ◦ · · · ◦ L1. By the induction hypothesis L′(t) = Lm−1(t) ◦ · · · ◦ L1(t)

is given by the Hamiltonian H ′ of the form 3.2. Let H ′′ be the Hamiltonian of Lm (as in Lemma

3.2). Now the flow L(t) = Lm(t) ◦ L′(t) is given by the Hamiltonian

H(z, t) = H ′′(z) + H ′(Lm(t)−1(z), t).

Of course it has also the form 3.2. Since we can decompose L into the product L = Lm ◦ · · · ◦ L1

effectively (see the proof of Theorem 2.1), we can also compute H in effective way. �

Proposition 3.4. Let L : R2n → R2n be a hamiltonian symplectomorphism given by the flow

x → φ(t, x); t ∈ R. Assume that φ(t, 0) = 0 for t ∈ [0, 1]. For every η > 0 there is an ε > 0 and a

hamiltonian symplectomorphism Φ : R2n → R2n such that

1) Φ(x) = L(x) for all x with ‖x‖ ≤ ε,

2) Φ(x) = x for all x with ‖x‖ ≥ η.
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Proof. We know that L(x) = φ(1, x), where φ(t, x) is the solution of some differential equation

φ′(t) = J0(∇zH)(φ(t), t); φ(0) = x.

Since φ(t, 0) = 0 for every t ∈ [0, 1], we can find ε > 0 so small, that all trajectories {φ(t, x), 0 ≤
t ≤ 1}, which start from the ball B(0, ε) are contained in the ball B(0, η/2). Let σ : R2n → R be

a smooth function such that

σ(z) =

{
1 if ‖z‖ ≤ η/2,

0 if ‖z‖ ≥ η.

Take S = σH. The hamiltonian symplectomorphism Φ given by the differential equation

φ′(t) = J0(∇zS)(φ(t), t), φ(0) = x,

is well defined on the whole of R2n and

Φ(x) =

{
L(x) if ||x|| ≤ ε,

x if ‖x‖ ≥ η.

�

Now Theorem 3.3 easily yields the following important:

Corollary 3.5. Let L : R2n → R2n be a linear symplectomorphism. For every η > 0 there is an

ε > 0 and a hamiltonian symplectomorphism Φ : R2n → R2n such that

1) Φ(x) = L(x) for all x with ‖x‖ ≤ ε,

2) Φ(x) = x for all x with ‖x‖ ≥ η.

Before we formulate our next result we need the following:

Lemma 3.6. Let X = (R2n, ω0) be the standard symplectic vector space. Fix η > 0 and let

a, b ∈ B(0, η). Then there exists a symplectomorphism Φ : X → X such that

Φ(a) = b and Φ(x) = x for ‖x‖ ≥ 2η.

Proof. Let c = (c1, . . . , c2n) = b− a. Define a sequence of points as follows:

1) a0 = a,

2) ai = ai−1 + (0, . . . , 0, ci, 0, . . . , 0).

Of course ai ∈ B(0, η) and a2n = b. Now consider the translation

Ti : R2n 3 (x, y) 7→ (x, y) + (0, . . . , 0, ci, 0, . . . , 0) ∈ R2n.

We have Ti(ai−1) = ai for i = 1, ..., 2n.

The translation Ti is a hamiltonian symplectomorphism given by the Hamiltonian

Hi(x, y) =

{
−ciyi if i ≤ n,

cixi−n if i > n.
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Let Vi be the symplectic vector field which is determined by the Hamiltonian Hi. Since the ball

B(0, r) is a convex set, all trajectories φ(t), 0 ≤ t ≤ 1, of the symplectic vector fields Vi, which

begin at ai lie in the ball B(0, η). Let σ : R2n → R be a smooth function such that

σ(x) =

{
1 if ‖x‖ ≤ η,

0 if ‖x‖ ≥ 2η.

Now let Fi : R2n → R2n be the hamiltonian symplectomorphism given by the Hamiltonian Gi =

σHi. Then

Gi(ai−1) = ai and Gi(x) = x if ‖x‖ ≥ 2η.

Now it is enough to take Φ = G2n ◦G2n−1 ◦ · · · ◦G1. �

We apply Proposition 3.5 to the general case:

Theorem 3.7. Let (X, ω) be a symplectic manifold. Let a1, ..., am and b1, ..., bm be two families

of points of X. For every i = 1, ..., n choose a linear symplectomorphism Li : TaiX → TbiX. Then

there is a symplectomorphism Φ : X → X such that

1) Φ(ai) = bi,

2) daiΦ = Li.

Proof. By the Darboux Theorem every point x ∈ X has an open neighborhood Vx which is symplec-

tically isomorphic to the ball B(0, rx) in the standard vector space (R2n, ω0). Denote by Ux ⊂ Vx

the open set which corresponds to the ball B(0, rx/3).

Since dim X ≥ 2 the manifold X \ {a2, ..., am} is also connected. Hence there exists a smooth

path γ : I → X such that γ(0) = a1, γ(1) = b1 and {a2, ..., am} ∩ γ(I) = ∅. Additionally we can

assume that the sets Vx which cover γ(I) are also disjoint from {a2, ..., am}.

Let ε be a Lebesgue number for the function γ : I → X with respect to the cover {Ux}x∈X and

choose an integer N with 1/N < ε. If Ik := [k/N, (k + 1)/N ], then γ(Ik) is contained in some {Ux};
denote it by Uk, the set Vx by Vk, and rx by rk. Let Ak := γ(k/N), in particular A0 = a1, AN = b1.

Since Vk
∼= B(0, rk) and Ak, Ak+1 ∈ B(0, rk/3) we can apply Lemma 3.6 to obtain a symplec-

tomorphism Φ : B(0, rk) → B(0, rk) such that

Φ(Ak) = Ak+1 and Φ(x) = x for ‖x‖ ≥ (2/3)rk.

We can extend Φ to the whole of X (we glue it with the identity); denote this extension by Φk.

Put

Ψ = ΦN ◦ ΦN−1 ◦ · · · ◦ Φ0.

Then Ψ(a1) = b1 and Ψ(ai) = ai for i > 1. Repeating this process, we finally arrive at a symplec-

tomorphism Σ : X → X such that Σ(ai) = bi for i = 1, . . . ,m. In a similar way using Proposition

3.5 we can construct a symplectomorphism Π : X → X such that

1) Π(bi) = bi,
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2) dbi
Π = Li ◦ (dai

Σ)−1.

Now it is enough to take Φ = Π ◦ Σ. �

Now we need the following result which is due to S.K. Donaldson (see [2]):

Theorem 3.8. Let (X, ωX) be a compact symplectic manifold of dimension 2n > 2. Fix a number

0 < s < n. There exists a closed 2s−dimensional symplectic submanifold Z ⊂ X.

Using Theorem 3.7 we can restate this result as follows:

Proposition 3.9. Let (X, ω) be a compact symplectic manifold of dimension 2n > 2. Let a1, ..., am

be a family of points of X. Take 0 < s < n. For every i = 1, ...,m choose a linear 2s-dimensional

symplectic subspace Hi ⊂ Tai
X. Then there is a closed symplectic 2s-dimensional submanifold

Y ⊂ X such that

1) ai ∈ Y,

2) TaiY = Hi.

Proof. Let Z ⊂ X be as in Theorem 3.8. Take points b1, . . . , bm ∈ Z. Let Si = Tbi
Z. There

are linear symplectomorphisms Li : TbiX → TaiX such that Li(Si) = Hi for i = 1, . . . ,m. By

Theorem 3.7 there is a symplectomorphism Φ : X → X such that

1) Φ(bi) = ai,

2) dbiΦ = Li.

Now it is enough to take Y = Φ(Z). �

4. Main result

Finally we show that a symplectomorphism can be described as a diffeomorphism which pre-

serves symplectic submanifolds.

Theorem 4.1. Let (X, ωX) and (Y, ωY ) be compact symplectic manifolds of dimension 2n > 2.

Fix a number 0 < s < n. Assume that Φ : X → Y is a diffeomorphism which transforms all

2s-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then Φ is a

conformal symplectomorphism, i.e., there exists a non-zero number c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix x ∈ X and let H ⊂ TxX be a 2s-dimensional symplectic subspace of TxX. By Propo-

sition 3.9 (applied for m = 1, a1 = x and H1 = H) there exists a 2s-dimensional symplectic

submanifold M of X such that x ∈ M and TxM = H.

Let Φ(M) = M ′, x′ = Φ(x). By assumption the submanifold M ′ ⊂ Y is symplectic. This means

that the space dxΦ(H) = Tx′M ′ is symplectic. Hence the mapping dxΦ transforms all linear 2s-

dimensional symplectic subspaces of TxX onto subspaces of the same type. By Proposition 2.4
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this implies that dxΦ is a conformal symplectomorphism, i.e.,

(dxΦ)∗ωY = λ(x)ωX ,

where λ(x) 6= 0. This means that there is a smooth function λ : X → R∗ (= R \ {0}) such that

Φ∗ωY = λωX .

But since the form ωX is closed, so is Φ∗ωY . Since n > 1 this implies that the derivative dλ

vanishes, i.e., the function λ is constant. �

Corollary 4.2. Let X be a compact manifold of dimension 2n > 2. Let ω1 and ω2 be two symplectic

forms on X. Fix a number 0 < k < n. Assume that the family of all 2k-dimensional ω1-symplectic

submanifolds of X is contained in the family of all 2k-dimensional ω2-symplectic submanifolds of

X. Then there exists a non-zero number c ∈ R such that

ω1 = cω2.

Proof. It is enough to apply Theorem 4.1 to X = (X, ω1), Y = (X, ω2) and Φ = identity. �

Corollary 4.3. Let (X, ω) be a compact symplectic manifold of dimension 2n > 2. Fix a number

0 < s < n. Assume that Φ : X → X is a diffeomorphism which transforms all 2s-dimensional

symplectic submanifolds of X onto symplectic submanifolds. Then Φ is a symplectomorphism or

antisimplectomorphism, i.e., Φ∗ω = ±ω. If Φ preserves an orientation and n is odd, then Φ is a

symplectomorphism. Moreover, if n is even, then Φ has to preserve the orientation.

Proof. Indeed, we have Φ∗ω = cω. We have

(4.1) vol(X) =
∫

X

ωn = ±
∫

X

Φ∗ωn = ±cn

∫
X

ωn

hence c = ±1. Moreover, if Φ preserves an orientation and n is odd, then we get that c = 1. If n

is even then (−ω)n = ωn and Φ has to preserve the orientation. �

Example 4.4. We show that in the general case Φ do not need be a symplectomorphism. Let

Y = (S2, ω) (where ω is a standard volume form on the sphere) and let (Xn, ωn) =
∏n

i=1 Y be a

standard symplectic product. Further let σ : S2 3 (x, y, z) → (x, y,−z) ∈ S2 be a miror symmetry.

Of course σ∗ω = −ω. More general if Σ =
∏n

i=1 σ : Xn → Xn, then Σ∗ωn = −ωn. Hence it is

possible that Φ from Corollary 4.3 is an antisimplectomorphism.

However, in any case either Φ or Φ ◦ Φ is a symplectomorphism.

Now let (X, ω) be a symplectic manifold and let us denote by Symp(X, ω) the group of symplec-

tomorphisms of X. At the end of this note we show that this group also determine a conformal

symplectic structure on X:
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Theorem 4.5. Let X be a smooth manifold of dimension 2n > 2 and let ω1, ω2 be two symplectic

forms on X. If Symp(X, ω1) ⊂ Symp(X, ω2), then there exists a non-zero constant c such that

ω2 = cω1.

Proof. Take x ∈ X and consider symplectic vector spaces V1 = (TxX, ω1) and V2 = (TxX, ω2). By

Theorem 3.7 we have that for every linear symplectomorphism S of V1, there is a symplectomor-

phism ΦS ∈ Symp(X, ω1), such that

a) ΦS(x) = x,

b) dxΦS = S.

Since Symp(X, ω1) ⊂ Symp(X, ω2) we easily obtain that Sp(V1) ⊂ Sp(V2). Consequently by

Proposition 2.5 there exist a non-zero number λ(x) such that ω2(x) = λ(x)ω1(x). Now we finish

the proof as in the proof of Theorem 4.1. �
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