BLOWN-UP TORIC SURFACES WITH NON-POLYHEDRAL EFFECTIVE CONE

Ana-Maria Castravet (Versailles) with Antonio Laface, Jenia Tevelev and Luca Ugaglia

October 2020

MODULI SPACE OF STABLE RATIONAL CURVES

•
$$\mathsf{M}_{0,n} = \left\{ \begin{smallmatrix} p_1, \dots, p_n \in \mathbb{P}^1 \\ p_i \neq p_j \end{smallmatrix} \right\} / \mathsf{PGL}_2$$

- $M_{0,3} = \mathsf{pt} \ (\mathsf{send} \ p_1, p_2, p_3 \to 0, 1, \infty)$
- $\mathsf{M}_{0,4} = \mathbb{P}^1 \setminus \{0,1,\infty\}$ via cross-ratio

•
$$\overline{\mathsf{M}}_{0,4} = \mathbb{P}^1$$

- $\overline{M}_{0,n}$ functorial compactification
- $\overline{M}_{0,5} = dP_5$ (del Pezzo of degree 5)
- $\overline{M}_{0,6}$ = blow-up of the Segre cubic at the 10 nodes (-K is big and nef)
- $\overline{\mathsf{M}}_{0,n}$, $n \geq 8$: -K not pseudo-effective

The effective cone of $M_{0,n}$

- (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)
- Every boundary divisor is contracted by a Kapranov map $\overline{M}_{0,n} \to \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\text{Eff}}(\overline{M}_{0,n})$
- $\overline{\text{Eff}}(\overline{M}_{0,5})$ is generated by the 10 boundary divisors (-1 curves)
- Eff($\overline{M}_{0,6}$) is generated by boundary and Keel–Vermeire divisors (Hassett–Tschinkel 2002)

The effective cone of $M_{0,n}$

- Eff(M_{0,n}) has many extremal rays, generated by hypertree divisors, contractible by birational contractions (C.–Tevelev 2013)
- More extremal divisors for n ≥ 7 (Opie 2016, based on Chen–Coskun 2014, Doran–Giansiracusa–Jensen 2017, Gonzàlez 2020)
- p very general point $\implies \overline{\text{Eff}}(\mathsf{Bl}_p \overline{\mathsf{M}}_{0,n})$ not polyhedral for $n \ge 7$ (He-Yang 2019)

THEOREM (C.-LAFACE-TEVELEV-UGAGLIA 2020)

The cone $\overline{Eff}(\overline{M}_{0,n})$ is not polyhedral for $n \ge 10$, both in characteristic 0 and in characteristic p, for an infinite set of primes p of positive density (including all primes up to 2000).

RATIONAL CONTRACTIONS

DEFINITION

A rational contraction $X \dashrightarrow Y$ between \mathbb{Q} -factorial, normal projective varieties, is a rational map that can be decomposed into a sequence of

- small Q-factorial modifications,
- surjective morphisms between Q-factorial varieties.

THEOREM

Let $X \dashrightarrow Y$ be a rational contraction. If X has any of these properties then Y does as well:

- Mori Dream Space (Keel-Hu 2000, Okawa 2016)
- (rational) polyhedral effective cone (BDPP 2013)

 $\mathrm{M}_{0,n}$ and blow-ups of toric varieties

PHILOSOPHY (FULTON)

 $\overline{M}_{0,n}$ is similar to a toric variety.

Not quite true. Instead, $\overline{M}_{0,n}$ is similar to a blown up toric variety:

THEOREM (C.-TEVELEV 2015)

There are rational contractions

$$BI_e \overline{LM}_{0,n+1} \dashrightarrow \overline{M}_{0,n} \to BI_e \overline{LM}_{0,n},$$

where $\overline{LM}_{0,n}$ is the Losev-Manin moduli space of dimension n-3, e = identity point of the open torus $\mathbb{G}_m^{n-3} \subseteq \overline{LM}_{0,n}$.

Kapranov description: $\overline{\text{LM}}_{0,n} = \dots \text{Bl}_{\binom{n-2}{3}} \text{Bl}_{\binom{n-2}{2}} \text{Bl}_{n-2} \mathbb{P}^{n-3}$ (blow-up n-2 points, all lines, planes,... spanned by them)

The Losev-Manin moduli space $\overline{\mathrm{LM}}_{0,n}$

The Losev-Manin moduli space $\overline{\text{LM}}_{0,n}$ is the Hassett moduli space of stable rational curves with *n* markings and weights $1, 1, \epsilon, \ldots, \epsilon$.

Universal blown up toric variety

THEOREM

X projective \mathbb{Q} -factorial toric variety. For $n \gg 0$

- there exists a toric rational contraction $\overline{LM}_{0,n} \dashrightarrow X$
- there exists a rational contraction $Bl_e \overline{LM}_{0,n} \dashrightarrow Bl_e X$

Corollary (C.-Tevelev, 2015)

 $\overline{M}_{0,n}$ is not a MDS in characteristic 0 for $n \gg 0$. There exists a rational contraction

$$\overline{M}_{0,n} \dashrightarrow Bl_e \mathbb{P}(a, b, c)$$

for some a, b, c such that $Bl_e \mathbb{P}(a, b, c)$ has a nef but not semi-ample divisor (Goto–Nishida–Watanabe 1994).

Remark

This argument cannot work in characteristic p, where, by Artin's contractibility criterion, a nef divisor on $Bl_e \mathbb{P}(a, b, c)$ is semi-ample.

BLOWN UP TORIC SURFACES

THEOREM (C.-LAFACE-TEVELEV-UGAGLIA 2020)

There exist projective toric surfaces \mathbb{P}_{Δ} , given by good polygons Δ , such that $\overline{Eff}(Bl_e \mathbb{P}_{\Delta})$ is not polyhedral in characteristic 0. For some of these toric surfaces, $\overline{Eff}(Bl_e \mathbb{P}_{\Delta})$ is not polyhedral in

characteristic p for an infinite set of primes p of positive density.

COROLLARY

For $n \ge 10$, the space $\overline{M}_{0,n}$ is not a MDS both in characteristic 0 and in characteristic p for an infinite set of primes of positive density, including all primes up to 2000.

EXAMPLE OF A GOOD POLYGON

EXAMPLE OF A GOOD POLYGON

There is a rational contraction $\overline{\mathsf{M}}_{0,10} \dashrightarrow \mathsf{Bl}_{e} \mathbb{P}_{\Delta}$:

Red \rightarrow normal fan of Δ

Black \rightarrow projection of fan of $\overline{LM}_{0,10}$

Elliptic Pairs

A good polygon will correspond to an elliptic pair ($BI_e \mathbb{P}_\Delta, C$). DEFINITION

An elliptic pair (C, X) consists of

- a projective rational surface X with log terminal singularities,
- an arithmetic genus 1 curve $C \subseteq X$ such that $C^2 = 0$,
- C disjoint from singularities of X.

Restriction map res : $C^{\perp} \to \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D)|_{C}$

 $\mathcal{C}^{\perp} \subseteq \mathsf{Cl}(X)$ orthogonal complement of \mathcal{C} , \mathcal{C}^{\perp} contains \mathcal{C}

DEFINITION

The order e(C, X) of the pair (C, X) is the order of res(C) in $Pic^{0}(C)$.

In characteristic p, we have $e(C, X) < \infty$.

Order of an elliptic pair

The olive order e(C, X) is the smallest integer e > 0 such $h^0(eC) > 1$. LEMMA

- If $e = e(C, X) < \infty$, then $h^0(eC) = 2$ and $|eC| : X \to \mathbb{P}^1$ is an elliptic fibration with C a multiple fiber.
- If $e(C, X) = \infty$, then C is rigid :

$$h^0(nC) = 1$$
 for all $n \ge 1$.

In this case, $\overline{Eff}(X)$ is not polyhedral if $\rho(X) \ge 3$.

Proof.

Observation (Nikulin): If $\rho(X) \ge 3$ and $\overline{\text{Eff}}(X)$ is polyhedral, then

- $\overline{\text{Eff}}(X)$ is generated by negative curves,
- every irreducible curve with $C^2 = 0$ is contained in the interior of a facet; in particular, a multiple moves.

MINIMAL ELLIPTIC PAIRS

Polyhedrality when $e(C, X) < \infty$? In general, for any e(C, X):

DEFINITION

An elliptic pair (C, X) is called minimal if there are no smooth rational curves $E \subseteq X$ such that $K \cdot E < 0$ and $C \cdot E = 0$.

THEOREM

For an elliptic pair (C, X), there exists a minimal elliptic pair (C, Y) and a morphism $\pi : X \to Y$, which is an isomorphism in a neighborhood of C. In particular, e(C, X) = e(C, Y).

Proof.

$$\mathcal{O}(K+C)|_{\mathcal{C}}\simeq \mathcal{O}_{\mathcal{C}} \Rightarrow K\cdot \mathcal{C}=0$$

(C, X) is minimal $\Leftrightarrow K + C$ is nef $\Leftrightarrow K + C \sim \alpha C$, $\alpha \in \mathbb{Q}$

Run (K + C)-MMP: contract all curves $E \subseteq X$ with $K \cdot E < 0$, $C \cdot E = 0$.

MINIMAL + DU VAL SINGULARITIES

DEFINITION

Since $K \cdot C = 0$, define on $Cl_0(X) = C^{\perp}/\langle K \rangle$ the reduced restriction map

$$\overline{\mathrm{res}}: \operatorname{Cl}_0(X) \to \operatorname{Pic}^0(C)/\langle \operatorname{res}(K) \rangle$$

THEOREM

Let (C, Y) be an elliptic pair such that Y has Du Val singularities. Let Z be the minimal resolution of Y. Then

(C, Y) minimal \Leftrightarrow (C, Z) minimal \Leftrightarrow $\rho(Z) = 10.$ In this case $Cl_0(Z) \simeq \mathbb{E}_8.$

Assume (C, Y) minimal elliptic pair with $\rho(Y) \ge 3$ and $e(C, Y) < \infty$:

 $\overline{Eff}(Y) \quad polyhedral \quad \Leftrightarrow \quad \overline{Eff}(Z) \quad polyhedral \quad \Leftrightarrow \\ \operatorname{Ker}(\overline{\operatorname{res}}) \quad contains \ 8 \ linearly \ independent \ roots \ of \ \mathbb{E}_8.$

Upshot

(C, Y) =minimal model of elliptic pair (C, X)

• $e(C,X) = \infty \Rightarrow \overline{\text{Eff}}(X)$, $\overline{\text{Eff}}(Y)$ not polyhedral (if $\rho \geq 3$)

In this case, Y is Du Val: $\mathcal{O}(C)|_C$ not torsion implies $-K_Y \sim C$

• $e(C,X) < \infty$ and Y is Du Val \Rightarrow polyhedrality criterion for $\overline{\text{Eff}}(Y)$

PROBLEM

- Suppose C, X, Cl(X) are defined over \mathbb{Q} , $e(C, X) = \infty$
- X → Y extends to the morphism of integral models X → Y over Spec Z (outside of finitely many primes of bad reduction)
- Y is Du Val \Rightarrow Y_p is Du Val
- $e(C_p, X_p) < \infty$. Study distribution of "polyhedral" primes

BLOWN UP TORIC SURFACES

Lattice polygon $\Delta \subseteq \mathbb{R}^2 \implies (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$ associated polarized toric surface Set $X = Bl_e \mathbb{P}_{\Delta}$ and let m > 0 integer. Then X, Cl(X) are defined over \mathbb{Q} .

DEFINITION

A lattice polygon Δ with at least 4 vertices is good if there exists

 $C \in |\mathcal{L}_{\Delta} - mE|$

irreducible such that (C, X) is an elliptic pair with $e(C, X) = \infty$:

- (1) The Newton polygon of C coincides with $\Delta \iff C \subseteq X^{smooth}$),
- (II) $Vol(\Delta) = m^2 \text{ and } |\partial \Delta \cap \mathbb{Z}^2| = m \iff C^2 = 0, \ p_a(C) = 1),$
- (III) The restriction $\operatorname{res}(C) = \mathcal{O}_X(C)|_C$ is not torsion in $\operatorname{Pic}^0(C)$ over \mathbb{Q} .

THEOREM

If Δ is a good polygon, then $\overline{Eff}(X)$ is not polyhedral in characteristic 0.

EXAMPLE OF A GOOD POLYGON

$$\operatorname{Vol}(\Delta) = 49, \quad |\partial \Delta \cap \mathbb{Z}^2| = 7$$

The linear system $|\mathcal{L}_{\Delta} - 7E|$ contains a unique curve C with equation

$$-u^{8}v^{2} + 4u^{7}v^{2} + 8u^{6}v^{3} - 5u^{6}v^{2} - 3u^{6}v - 5u^{5}v^{4} - 50u^{5}v^{3} +$$

+21u⁵v² + 6u⁵v + 40u⁴v⁴ + 85u⁴v^3 - 55u⁴v^2 - 6u^{3}v^5 - 85u^{3}v^4 -
-40u³v³ + 56u³v² - 10u³v + u³ + 15u²v⁵ + 80u²v⁴ - 40u²v³ +
+u²v² + 3uv⁶ - 30uv⁵ + 5uv⁴ + 2uv³ - v⁷ + 4v⁶ = 0.

EXAMPLE OF A GOOD POLYGON

The curve C is a smooth elliptic curve labelled 446.a1 in the LMFDB database. It has the minimal equation

$$y^2 + xy = x^3 - x^2 - 4x + 4$$

The Mordell-Weil group is $\mathbb{Z} \times \mathbb{Z}$, with generators

$$P = (0, 2), \quad Q = (-1, 3)$$

(identify $Pic^0(C)$ with C)

Computation : res(C) = -Q = (-1, -2)

 $\operatorname{res}(\mathcal{C})$ not torsion in characteristic $0 \Longrightarrow \Delta$ is good

EXAMPLE - MINIMAL RESOLUTION

Fan of the minimal resolution $\tilde{\mathbb{P}}_{\Delta}$ of \mathbb{P}_{Δ} :

The proper transforms C_1 , C_2 of 1-parameter subgroups $\{u = 1\}$, $\{u = v\}$

• have self-intersection -1 on $\mathsf{Bl}_e \, \tilde{\mathbb{P}}_\Delta$, and also on $X = \mathsf{Bl}_e \, \mathbb{P}_\Delta$

• have
$$C \cdot C_1 = C \cdot C_2 = 0$$

Example - Minimal elliptic pair

(C, X) elliptic pair, $X = Bl_e \mathbb{P}_\Delta$ Zariski decomposition $K_X + C = 2C_1 + C_2 + C_3$ $C_3 =$ curve whose image in \mathbb{P}_Δ has multiplicity 3 at eTo get minimal elliptic pair (C, Y), contract C_1, C_2, C_3 .

 $Z \rightarrow Y$ minimal resolution of Y

$$\rho(X) = 6, \quad \rho(Y) = 3, \quad \rho(Z) = 10$$

EXAMPLE - MINIMAL RESOLUTION

 $Z \rightarrow Y$ minimal resolution of Y, $Cl(Z) = Cl(Y) \oplus T$

T = sublattice spanned by classes of (-2) curves above singularities of YComputation : $T = \mathbb{A}^6 \oplus \mathbb{A}^1$

$$\mathsf{Cl}_0(Y) = \mathsf{Cl}_0(Z)/T = \mathbb{E}_8/\mathbb{A}^6 \oplus \mathbb{A}^1 \cong \mathbb{Z}$$

Reduced restriction map $\overline{\text{res}}$: $\text{Cl}_0(Y) \rightarrow \text{Pic}^0(C)/\langle Q \rangle$, Q = (-1,3)

 $\overline{\mathrm{Eff}}(Y)$ is not polyhedral in characteristic $p \Leftrightarrow$

 $\Leftrightarrow \overline{\mathrm{res}}(\beta) \neq 0 \text{ for all } \beta = \text{image in } \mathsf{Cl}_0(Y) \text{ of a root in } \mathbb{E}_8 \setminus \mathcal{T}$

If $\alpha \in Cl_0(Y)$ generator \implies Images of roots of \mathbb{E}_8 are $\pm k\alpha$, for $0 \le k \le 4$ Computation : $res(\tilde{\alpha}) = P = (0, 2)$ for some lift $\tilde{\alpha} \in C^{\perp} \subseteq Cl(Y)$ of α $\overline{Eff}(Y)$ not polyhedral in characteristic $p \Leftrightarrow k\overline{P} \notin \langle \overline{Q} \rangle$ for k = 1, 2, 3, 4

Example - Non-polyhedral primes

Prove that the set of primes p such that

$$\overline{P}, 2\overline{P}, 3\overline{P}, 4\overline{P} \notin \langle \overline{Q} \rangle \subseteq C(\mathbb{F}_p)$$

has positive density.

Fix q prime. It suffices to prove that the set of primes p such that

• q divides the index of $\langle \overline{Q} \rangle \subseteq C(\mathbb{F}_p)$

• q does not divide the index of $\langle 12\overline{P}\rangle \subseteq C(\mathbb{F}_p)$ has positive density.

Chebotarev Density theorem + Lang-Trotter (1976) \Longrightarrow

C elliptic curve defined over \mathbb{Q} , without complex multiplication over $\overline{\mathbb{Q}}$. If $x, y \in C(\mathbb{Q})$ are points of infinite order, with $\langle x \rangle \cap \langle y \rangle = 0$, then for a set of primes *p* of positive density, *q* divides the index of $\langle \overline{x} \rangle \subseteq C(\mathbb{F}_p)$, but not the index of $\langle \overline{y} \rangle \subseteq C(\mathbb{F}_p)$.

Non-polyhedral primes

The set of non-polyhedral primes p < 2000 for our example of a good polygon:

47, 71, 103, 197, 233, 239, 277, 313, 367, 379, 409, 503, 563, 599, 647, 677, 683, 691, 719, 727, 761, 829, 911, 997, 1103, 1123, 1151, 1171, 1187, 1231, 1283, 1327, 1481, 1493, 1709, 1723, 1861, 1907, 1997

This gives 39/303 = 12% of the primes under 2000.

There are:

- 135 toric surfaces corresponding to good polygons with volume \leq 49;
- Infinite sequences of good pentagons with all primes polyhedral;
- Infinite sequences of good heptagons. For all but finitely many, the set of non-polyhedral primes has positive density.