Rational pull-backs of toric foliations

Ariel Molinuevo

IMPANGA
June 112021

Joint work with Gargiulo, J. and Velazquez, S.

Codimension 1 foliations in \mathbb{P}^{n}

A codimension one foliation in \mathbb{P}^{n} is given by a 1-differential form

$$
\omega \in H^{0}\left(\Omega_{\mathbb{P}^{n}}^{1}(e)\right)
$$

that verifies the Frobenius integrability condition

$$
\omega \wedge d \omega=0
$$

Such forms define a projective variety (the moduli (or parameter) space of foliations)

$$
\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)
$$

Codimension 1 foliations in \mathbb{P}^{n}

A codimension one foliation in \mathbb{P}^{n} is given by a 1-differential form

$$
\omega \in H^{0}\left(\Omega_{\mathbb{P}^{n}}^{1}(e)\right)
$$

that verifies the Frobenius integrability condition

$$
\omega \wedge d \omega=0
$$

Such forms define a projective variety (the moduli (or parameter) space of foliations)
$\mathcal{F}^{\prime}\left(\mathbb{R}^{\prime \prime}\right)(e)$.

Codimension 1 foliations in \mathbb{P}^{n}

A codimension one foliation in \mathbb{P}^{n} is given by a 1-differential form

$$
\omega \in H^{0}\left(\Omega_{\mathbb{P}^{n}}^{1}(e)\right)
$$

that verifies the Frobenius integrability condition

$$
\omega \wedge d \omega=0
$$

Such forms define a projective variety (the moduli (or parameter) space of foliations)

$$
\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e) .
$$

How do you define this parameter space of foliations？

Just consider the development of ω in terms of its scalar coefficients $a_{i, \alpha}$ ：

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i}=\sum_{i=0,|\alpha|=e-1} a_{i, \alpha} x^{\alpha} d x_{i}
$$

and compute the equation $\omega \wedge d \omega=0$ ．
This equation will return many homogeneous（degree two）equations in the coefficients $a_{i, \alpha}$ ：
$\omega \wedge d \omega=\sum_{i, j, k} A_{i}\left(\frac{\partial A_{k}}{\partial x_{j}}-\frac{\partial A_{j}}{\partial x_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}=\sum_{i, j, k} E q_{i j k}\left(a_{i, \alpha_{i},}, a_{j, \alpha_{j}}, a_{k, \alpha_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}$
Then you have that

$$
\mathcal{F}^{-1}\left(\mathbb{P}^{\mu}\right)(e)=\left\langle E q_{i j k}\left(a_{i, \alpha_{i}}, a_{j, \alpha_{j}}, a_{k, \alpha_{k}}\right)=0\right\rangle \subset \mathbb{P}^{N},
$$

where N is $N=(n+1)\binom{n+e-1}{e-1}$ ．

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i, \alpha}$:

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i}=\sum_{i=0,|\alpha|=e-1} a_{i, \alpha} x^{\alpha} d x_{i}
$$

and compute the equation $\omega \wedge d \omega=0$.
This equation will return many homogeneous (degree two) equations in the coefficients $a_{i, \alpha}$:
$\omega \wedge d \omega=\sum_{i, j k} A_{i}\left(\frac{\partial A_{k}}{\partial x_{j}}-\frac{\partial A_{j}}{\partial x_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}=\sum_{i, j k} E q_{i j k}\left(a_{i, a_{i}}, a_{j, \alpha_{j}}, a_{k, a_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}$
Then you have that

$$
\mathcal{F}^{-1}\left(\mathbb{P}^{\prime}\right)(e)=\left\langle E q_{i j k}\left(a_{i, a_{i}}, a_{j, a_{j}}, a_{k, a_{k}}\right)=0\right\rangle \subset \mathbb{P}^{N}
$$

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i, \alpha}$:

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i}=\sum_{i=0,|\alpha|=e-1} a_{i, \alpha} x^{\alpha} d x_{i}
$$

and compute the equation $\omega \wedge d \omega=0$.
This equation will return many homogeneous (degree two) equations in the coefficients $a_{i, \alpha}$:
$\omega \wedge d \omega=\sum_{i, j, k} A_{i}\left(\frac{\partial A_{k}}{\partial x_{j}}-\frac{\partial A_{j}}{\partial x_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}=\sum_{i, j, k} E q_{i j k}\left(a_{i, \alpha_{i}}, a_{j, \alpha_{j}}, a_{k, \alpha_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}$
Then you have that
$\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)=\left\langle E q_{i j k}\left(a_{i, \alpha_{i}}, a_{j, \alpha_{j}}, a_{k, \alpha_{k}}\right)=0\right\rangle \subset \mathbb{P}^{N}$,

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i, \alpha}$:

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i}=\sum_{i=0,|\alpha|=e-1} a_{i, \alpha} x^{\alpha} d x_{i}
$$

and compute the equation $\omega \wedge d \omega=0$.
This equation will return many homogeneous (degree two) equations in the coefficients $a_{i, \alpha}$:
$\omega \wedge d \omega=\sum_{i, j, k} A_{i}\left(\frac{\partial A_{k}}{\partial x_{j}}-\frac{\partial A_{j}}{\partial x_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}=\sum_{i, j, k} E q_{i j k}\left(a_{i, \alpha_{i}}, a_{j, \alpha_{j}}, a_{k, \alpha_{k}}\right) d x_{i} \wedge d x_{j} \wedge d x_{k}$
Then you have that

$$
\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)=\left\langle E q_{i j k}\left(a_{i, \alpha_{i}}, a_{j, \alpha_{j}}, a_{k, \alpha_{k}}\right)=0\right\rangle \subset \mathbb{P}^{N},
$$

where N is $N=(n+1)\binom{n+e-1}{e-1}$.

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.

Meaning: what are its irreducible components?

What do we know? Not much.

- degree $0=\mathrm{e}-2: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree $2: 6$ componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree \geq 4: ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?

What do we know? Not much.

- degree $0=\mathrm{e}-2: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree $2: 6$ componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree ≥ 4 : ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?
What do we know? Not much.

- degree $0=\mathrm{e}-2: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree $2: 6$ componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree \geq 4: ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?
What do we know? Not much.

- degree $0=\mathrm{e}-\mathbf{2}: 1$ component (of rational type)
- degree 1:2 components, one of rational type and one of logarithmic type
- degree $2: 6$ componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree >4 : ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?
What do we know? Not much.

- degree $0=\mathrm{e}-2: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree 2 : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree ≥ 4 : ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?
What do we know? Not much.

- degree $0=\mathrm{e}-2: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree $2: 6$ componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree ≥ 4 : ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?
What do we know? Not much.

- degree $0=\mathrm{e}-\mathbf{2}: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree 2 : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree ≥ 4 : ?!?!

We are intereseted in knowing how is this variety made: $\mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Meaning: what are its irreducible components?
What do we know? Not much.

- degree $0=\mathrm{e}-2: 1$ component (of rational type)
- degree $1: 2$ components, one of rational type and one of logarithmic type
- degree 2 : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form \mathbb{P}^{2}, exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- degree \geq 4: ?!?!

What are the components that appear in degrees ≤ 2 ?
Rational foliations $\mathcal{R}(n,(r, s)) \subset \mathcal{F}^{1}\left(\mathbb{P}^{h}\right)(e)$

$$
\omega_{\mathcal{R}}=r F d G-s G d F
$$

where F, G are homogeneous polynomials of degrees r and s respectively and $r+s=e$.

Logarithmic foliations $\mathcal{L}\left(n,\left(d_{1}, \ldots, d_{s}\right)\right) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$

$$
\omega_{\mathcal{L}}=\left(\prod_{i=1}^{s} f_{i}\right)\left(\sum_{i=1}^{s} \lambda_{i} \frac{d f_{i}}{f_{i}}\right)=\sum \lambda_{i} F_{i} d f_{i}
$$

where f_{i} is homogeneous of degree $d_{i}, \sum d_{i}=e$ y $\sum d_{i} \lambda_{i}=0$. We denote $F_{i}=\prod_{j \neq i} f_{j}$.

What are the components that appear in degrees ≤ 2 ?
Rational foliations $\mathcal{R}(n,(r, s)) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$

$$
\omega_{\mathcal{R}}=r F d G-s G d F
$$

where F, G are homogeneous polynomials of degrees r and s respectively and $r+s=e$.

Logarithmic foliations $\mathcal{L}\left(n,\left(d_{1}, \ldots, d_{s}\right)\right) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$

$$
\omega_{\mathcal{L}}=\left(\prod_{i=1}^{s} f_{i}\right)\left(\sum_{i=1}^{s} \lambda_{i} \frac{d f_{i}}{f_{i}}\right)=\sum \lambda_{i} F_{i} d f_{i}
$$

where f_{i} is homogeneous of degree $d_{i}, \sum d_{i}=e$ y $\sum d_{i} \lambda_{i}=0$. We denote $F_{i}=\prod_{j \neq i} f_{j}$.

What are the components that appear in degrees ≤ 2 ?
Rational foliations $\mathcal{R}(n,(r, s)) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$

$$
\omega_{\mathcal{R}}=r F d G-s G d F
$$

where F, G are homogeneous polynomials of degrees r and s respectively and $r+s=e$.

Logarithmic foliations $\mathcal{L}\left(n,\left(d_{1}, \ldots, d_{s}\right)\right) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$

$$
\omega_{\mathcal{L}}=\left(\prod_{i=1}^{s} f_{i}\right)\left(\sum_{i=1}^{s} \lambda_{i} \frac{d f_{i}}{f_{i}}\right)=\sum \lambda_{i} F_{i} d f_{i}
$$

where f_{i} is homogeneous of degree $d_{i}, \sum d_{i}=e$ y $\sum d_{i} \lambda_{i}=0$. We denote $F_{i}=\prod_{j \neq i} f_{j}$.

Exceptional componente $\mathcal{E}(n) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.

Obtained as the particular action of the affine Lie algebra \mathbb{C} on \mathbb{P}^{3}.
Linear Pullbacks from $\mathbb{P}^{2} \mathcal{L}(e, n) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Let \mathcal{F} be a foliation of degree e in \mathbb{P}^{2} and $L: \mathbb{P}^{n}--\geqslant \mathbb{P}^{2}$ a rational map induced by a linear submersion $\mathbb{C}^{n+1}-->\mathbb{C}^{3}$. Then $L^{*}(\mathcal{F}) \in \mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

Exceptional componente $\mathcal{E}(n) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.

Obtained as the particular action of the affine Lie algebra \mathbb{C} on \mathbb{P}^{3}.
Linear Pullbacks from $\mathbb{P}^{2} \mathcal{L}(e, n) \subset \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)$.
Let \mathcal{F} be a foliation of degree e in \mathbb{P}^{2} and $L: \mathbb{P}^{n}-->\mathbb{P}^{2}$ a rational map induced by a linear submersion $\mathbb{C}^{n+1}-->\mathbb{C}^{3}$. Then $L^{*}(\mathcal{F}) \in \mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

How can you prove that a family of foliations define an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$?

One idea is as follows: you consider a generic element of your family and look at it first order deformations. If you can parametrize your family in such a way that the differential of the parametrization is surjective, then you just discover an irreducible component of your space.

For example: a Rational Foliation $\omega_{\mathcal{R}}$ is of the form $\omega_{\mathcal{R}}=r F d G-s G d F$ where F, G are homogeneous polynomials of degrees r and s respectively and $r+s=e$.

You can parametrize such foliations as

$$
\begin{aligned}
H^{0}\left(O_{\mathbb{P}^{n}}(r) \oplus O_{\mathbb{P}^{n}}(s)\right) \xrightarrow{\phi} & \longrightarrow \mathcal{R}(n,(r, s)) \\
(F, G) \longmapsto & r F d G-s G d F
\end{aligned}
$$

How can you prove that a family of foliations define an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$?

One idea is as follows: you consider a generic element of your family and look at it first order deformations. If you can parametrize your family in such a way that the differential of the parametrization is surjective, then you just discover an irreducible component of your space.

For example: a Rational Foliation $\omega_{\mathcal{R}}$ is of the form $\omega_{\mathcal{R}}=r F d G-s G d F$
where F, G are homogeneous polynomials of degrees r and s respectively and

You can parametrize such foliations as

$(F, G) \longmapsto r F d G-s G d F$

How can you prove that a family of foliations define an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$?

One idea is as follows: you consider a generic element of your family and look at it first order deformations. If you can parametrize your family in such a way that the differential of the parametrization is surjective, then you just discover an irreducible component of your space.

For example: a Rational Foliation $\omega_{\mathcal{R}}$ is of the form $\omega_{\mathcal{R}}=r F d G-s G d F$ where F, G are homogeneous polynomials of degrees r and s respectively and $r+s=e$.

You can parametrize such foliations as

$$
\begin{aligned}
H^{0}\left(O_{\mathbb{P}^{n}}(r) \oplus O_{\mathbb{P}^{n}}(s)\right) & \xrightarrow{\longrightarrow} \mathcal{R}(n,(r, s)) \\
(F, G) \longmapsto & r F d G-s G d F
\end{aligned}
$$

How is a first order deformation of $\omega_{\mathcal{R}}=r F d G-s G d F$? Is of the form

$$
\omega_{\mathcal{R}}^{\prime}=r F^{\prime} d G-s G d F^{\prime} \quad \text { or } \quad \omega_{\mathcal{R}}^{\prime}=r F d G^{\prime}-s G^{\prime} d F
$$

where F^{\prime} is a polynomial of degree r and G^{\prime} a polynomial of degree s.
Since the differential of the parametrization map is surjective, then we have an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

How is a first order deformation of $\omega_{\mathcal{R}}=r F d G-s G d F$? Is of the form

$$
\omega_{\mathcal{R}}^{\prime}=r F^{\prime} d G-s G d F^{\prime} \quad \text { or } \quad \omega_{\mathcal{R}}^{\prime}=r F d G^{\prime}-s G^{\prime} d F
$$

where F^{\prime} is a polynomial of degree r and G^{\prime} a polynomial of degree s.
Since the differential of the parametrization map is surjective, then we have an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^{2} by any rational map to \mathbb{P}^{n} defines an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

So, we tried to make an algebraic proof of that statement. We couldn't do that, but by taking that path we acquired a lot of insight in what's going on.

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^{2} by any rational map to \mathbb{P}^{n} defines an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

So, we tried to make an algebraic proof of that statement. We couldn't do that, but by taking that path we acquired a lot of insight in what's going on.

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^{2} by any rational map to \mathbb{P}^{n} defines an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

So, we tried to make an algebraic proof of that statement. We couldn't do that, but by taking that path we acquired a lot of insight in what's going on.

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^{2} by any rational map to \mathbb{P}^{n} defines an irreducible component of $\mathcal{F}^{1}\left(\mathbb{P}^{n}, e\right)$.

How did they do this?

The proof use analytic methods (it's not algebraic).
So, we tried to make an algebraic proof of that statement. We couldn't do that, but by taking that path we acquired a lot of insight in what's going on.

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^{2} to \mathbb{P}^{n} by rational maps $\mathbb{P}^{n}-\frac{F}{-}-\mathbb{P}^{2}$ and also we were considering maps $\mathbb{P}^{n}-$ -$-\rightarrow X$ to toric surfaces X t to see if we were able to discover some new irreducible component.

How did we thought we could do that?
Let's consider a rational map with a polynomial lifting $F: \mathbb{P}^{n} \rightarrow-X$, where X is a toric surface. And consider $\alpha \in H^{0}\left(\Omega_{X}^{1}(\mathcal{D})\right)$ where \mathcal{D} is a Weild divisor of X.

If you could prove that an infinitesimal perturbation of the pullback foliation $\omega=F^{*}(\alpha)$ is given by:
i) a deformation of the map F
ii) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^{2} to \mathbb{P}^{n} by rational maps $\mathbb{P}^{n}-\frac{F}{-}-\mathbb{P}^{2}$ and also we were considering maps $\mathbb{P}^{n}-\frac{F}{-}>X$ to toric surfaces X to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F: \mathbb{P}^{n} \rightarrow X$, where X is a toric surface. And consider $\alpha \in H^{0}\left(\Omega_{X}^{1}(\mathcal{D})\right)$ where \mathcal{D} is a Weild divisor of X.

If you could prove that an infinitesimal perturbation of the pullback foliation $\omega=F^{*}(\alpha)$ is given by:
i) a deformation of the map F
ii) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^{2} to \mathbb{P}^{n} by rational maps $\mathbb{P}^{n}-\frac{F}{-}-\mathbb{P}^{2}$ and also we were considering maps $\mathbb{P}^{n}-\frac{F}{-}>X$ to toric surfaces X to see if we were able to discover some new irreducible component.

How did we thought we could do that?
Let's consider a rational map with a polynomial lifting $F: \mathbb{P}^{n} \rightarrow X$, where X is a toric surface. And consider $\alpha \in H^{0}\left(\Omega_{X}^{1}(\mathcal{D})\right)$ where \mathcal{D} is a Weild divisor of X.

If you could prove that an infinitesimal perturbation of the pullback foliation
$\omega=F^{*}(\alpha)$ is given by:
i) a deformation of the map F
ii) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^{2} to \mathbb{P}^{n} by rational maps $\mathbb{P}^{n}-\frac{F}{-}-\mathbb{P}^{2}$ and also we were considering maps $\mathbb{P}^{n}-\frac{F}{-}>X$ to toric surfaces X to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F: \mathbb{P}^{n} \rightarrow X$, where X is a toric surface. And consider $\alpha \in H^{0}\left(\Omega_{X}^{1}(\mathcal{D})\right)$ where \mathcal{D} is a Weild divisor of X.

If you could prove that an infinitesimal perturbation of the pullback foliation $\omega=F^{*}(\alpha)$ is given by:
i) a deformation of the map F
ii) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^{2} to \mathbb{P}^{n} by rational maps $\mathbb{P}^{n}-\frac{F}{-}-\mathbb{P}^{2}$ and also we were considering maps $\mathbb{P}^{n}-\frac{F}{-}>X$ to toric surfaces X to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F: \mathbb{P}^{n} \rightarrow X$, where X is a toric surface. And consider $\alpha \in H^{0}\left(\Omega_{X}^{1}(\mathcal{D})\right)$ where \mathcal{D} is a Weild divisor of X.

If you could prove that an infinitesimal perturbation of the pullback foliation $\omega=F^{*}(\alpha)$ is given by:
i) a deformation of the map F
ii) a deformation of the differential form α

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α.

How did we do that?

We did that by considering first order deformations and first order unfoldings of a

 foliation.
What are those?

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α.

How did we do that?

We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α.

How did we do that?
We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α.

How did we do that?
We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

There are two ways of making a first order perturbation of $\omega \in \Omega_{\mathbb{P}^{n} \mid \mathbb{C}}^{1}(e)$ such that $\omega \wedge d \omega=0$:

Deformations

where $D=\operatorname{Spec}\left(\mathbb{C}[\varepsilon] / \varepsilon^{2}\right)$ and $\omega_{\varepsilon} \wedge d \omega_{\varepsilon}=0$

There are two ways of making a first order perturbation of $\omega \in \Omega_{\mathbb{P}^{n} \mid \mathbb{C}}^{1}(e)$ such that $\omega \wedge d \omega=0$:

Deformations

$$
D(\omega)=T_{\omega} \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)
$$

where $D=\operatorname{Spec}\left(\mathbb{C}[\varepsilon] / \varepsilon^{2}\right)$ and $\omega_{\varepsilon} \wedge d \omega_{\varepsilon}=0$ and $\bar{\omega}_{\varepsilon} \wedge \bar{\omega}_{\varepsilon}=0$.

The geometric idea is that a deformation defines a foliation for every fixed parameter ε and an unfolding is a foliation in $\mathbb{P}^{n} \times \operatorname{Spec}(D)$.

There are two ways of making a first order perturbation of $\omega \in \Omega_{\mathbb{P}^{n} \mid \mathbb{C}}^{1}(e)$ such that $\omega \wedge d \omega=0$:

Deformations

$$
D(\omega)=T_{\omega} \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)
$$

Unfoldings

$$
U(\omega)
$$

where $D=\operatorname{Spec}\left(\mathbb{C}[\varepsilon] / \varepsilon^{2}\right)$ and $\omega_{\varepsilon} \wedge d \omega_{\varepsilon}=0$ and $\widetilde{\omega}_{\varepsilon} \wedge \widetilde{\omega}_{\varepsilon}=0$.

The geometric idea is that a deformation defines a foliation for every fixed parameter ε and an unfolding is a foliation in $\mathbb{P}^{n} \times \operatorname{Spec}(D)$.

There are two ways of making a first order perturbation of $\omega \in \Omega_{\mathbb{P}^{n} \mid \mathbb{C}}^{1}(e)$ such that $\omega \wedge d \omega=0$:

Deformations

$$
D(\omega)=T_{\omega} \mathcal{F}^{1}\left(\mathbb{P}^{n}\right)(e)
$$

Unfoldings

$$
U(\omega)
$$

where $D=\operatorname{Spec}\left(\mathbb{C}[\varepsilon] / \varepsilon^{2}\right)$ and $\omega_{\varepsilon} \wedge d \omega_{\varepsilon}=0$ and $\widetilde{\omega}_{\varepsilon} \wedge \widetilde{\omega}_{\varepsilon}=0$.
The geometric idea is that a deformation defines a foliation for every fixed parameter ε and an unfolding is a foliation in $\mathbb{P}^{n} \times \operatorname{Spec}(D)$.

Both types of perturbations can be written as:

$$
\begin{array}{ll}
\omega_{\varepsilon}=\omega+\varepsilon \eta & \text { (deformations) } \\
\widetilde{\omega}_{\varepsilon}=\omega+\varepsilon \eta+h d \varepsilon & \text { (unfoldings) }
\end{array}
$$

The integrability condition applied to ω_{ε} and $\widetilde{\omega}_{\varepsilon}$ allows to parametrize $D(\omega)$ and $U(\omega)$ as

$$
\begin{aligned}
& D(\omega)=\left\{\eta \in H^{0}\left(\Omega_{\mathbb{P}^{n}}^{1}(e)\right): \omega \wedge d \eta+d \omega \wedge \eta=0\right\} / \mathbb{C} . \omega \\
& U(\omega)=\left\{(h, \eta) \in H^{0}\left(\left(O_{\mathbb{P}^{n}} \times \Omega_{\mathbb{P}^{n}}^{1}\right)(e)\right): h d \omega=\omega \wedge(\eta-d h)\right\} / \mathbb{C} .(0, \omega)
\end{aligned}
$$

In particular we have:

$$
\begin{aligned}
& 0 \longrightarrow I F(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega) \\
&(h, \eta) \longmapsto \longmapsto
\end{aligned}
$$

Both types of perturbations can be written as:

$$
\begin{array}{ll}
\omega_{\varepsilon}=\omega+\varepsilon \eta & \text { (deformations) } \\
\widetilde{\omega}_{\varepsilon}=\omega+\varepsilon \eta+h d \varepsilon & \text { (unfoldings) }
\end{array}
$$

The integrability condition applied to ω_{ε} and $\widetilde{\omega}_{\varepsilon}$ allows to parametrize $D(\omega)$ and $U(\omega)$ as

$$
\begin{aligned}
& D(\omega)=\left\{\eta \in H^{0}\left(\Omega_{\mathbb{P}^{n}}^{1}(e)\right): \omega \wedge d \eta+d \omega \wedge \eta=0\right\} / \mathbb{C} . \omega \\
& U(\omega)=\left\{(h, \eta) \in H^{0}\left(\left(O_{\mathbb{P}^{n}} \times \Omega_{\mathbb{P}^{n}}^{1}\right)(e)\right): h d \omega=\omega \wedge(\eta-d h)\right\} / \mathbb{C} .(0, \omega)
\end{aligned}
$$

In particular we have:

Both types of perturbations can be written as:

$$
\begin{array}{ll}
\omega_{\varepsilon}=\omega+\varepsilon \eta & \text { (deformations) } \\
\widetilde{\omega}_{\varepsilon}=\omega+\varepsilon \eta+h d \varepsilon & \text { (unfoldings) }
\end{array}
$$

The integrability condition applied to ω_{ε} and $\widetilde{\omega}_{\varepsilon}$ allows to parametrize $D(\omega)$ and $U(\omega)$ as

$$
\begin{aligned}
& D(\omega)=\left\{\eta \in H^{0}\left(\Omega_{\mathbb{P}^{n}}^{1}(e)\right): \omega \wedge d \eta+d \omega \wedge \eta=0\right\} / \mathbb{C} \cdot \omega \\
& U(\omega)=\left\{(h, \eta) \in H^{0}\left(\left(O_{\mathbb{P}^{n}} \times \Omega_{\mathbb{P}^{n}}^{1}\right)(e)\right): h d \omega=\omega \wedge(\eta-d h)\right\} / \mathbb{C} .(0, \omega)
\end{aligned}
$$

In particular we have:

$$
\begin{aligned}
0 \longrightarrow I F(\omega) \longrightarrow & U(\omega) \longrightarrow D(\omega) \\
& (h, \eta) \longmapsto \eta
\end{aligned}
$$

So, when a first order deformation comes from a first order unfolding?

The theory of unfoldings of codimension one foliations was developed in the 80 's by Tatsuo Suwa in a local analytic setting

For $\varpi \in \Omega_{\mathbb{C}^{n+1}, p}^{1}$ a germ of an integrable differential 1-form, we have

$$
U_{h}(\bar{*})=\left\{(h, \eta) \in O_{c+1, p} \times \Omega_{C+1, p}^{1}: h d \bar{m}=\overline{ } \wedge(\eta-d h)\right\} / \mathbf{C} \cdot(0, \bar{*}) .
$$

The projection to the first coordinate

defines an ideal $I_{h}(\varpi)$ of $O_{\mathbb{C}^{n+1}, p}$.

The theory of unfoldings of codimension one foliations was developed in the 80 's by Tatsuo Suwa in a local analytic setting

For $\varpi \in \Omega_{\mathbb{C}^{n+1}, p}^{1}$ a germ of an integrable differential 1-form, we have

$$
U_{h}(\varpi)=\left\{(h, \eta) \in O_{\mathbb{C}^{n+1}, p} \times \Omega_{\mathbb{C}^{n+1}, p}^{1}: h d \varpi=\varpi \wedge(\eta-d h)\right\} / \mathbb{C} .(0, \varpi) .
$$

The projection to the first coordinate

defines an ideal $I_{h}(\varpi)$ of $O_{\mathbb{C}^{n+1}, p}$.

The theory of unfoldings of codimension one foliations was developed in the 80 's by Tatsuo Suwa in a local analytic setting

For $\varpi \in \Omega_{\mathbb{C}^{n+1}, p}^{1}$ a germ of an integrable differential 1-form, we have

$$
U_{h}(\varpi)=\left\{(h, \eta) \in O_{\mathbb{C}^{n+1}, p} \times \Omega_{\mathbb{C}^{n+1}, p}^{1}: h d \varpi=\varpi \wedge(\eta-d h)\right\} / \mathbb{C} .(0, \varpi) .
$$

The projection to the first coordinate

$$
\begin{gathered}
U_{h}(\varpi) \xrightarrow{\pi_{1}} O_{\mathbb{C}^{n+1}, p} \\
(h, \eta) \longmapsto \longmapsto
\end{gathered}
$$

defines an ideal $I_{h}(\varpi)$ of $O_{\mathbb{C}^{n+1}, p}$.

For a generic ϖ there is an isomorphism between,

$$
U_{h}(\varpi) \simeq I_{h}(\varpi) .
$$

This fact was used by T. Suwa to classify unfoldings of rational and logarithmic foliations.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ such that

$$
U(\omega) \simeq I(\omega)(e)
$$

and deal with the perturbations defined by unfoldings in terms of an ideal instead of pairs verifying a differential equation

$$
(h, \eta): h d \omega=\omega \wedge(\eta-d h)
$$

For a generic ϖ there is an isomorphism between,

$$
U_{h}(\varpi) \simeq I_{h}(\varpi) .
$$

This fact was used by T. Suwa to classify unfoldings of rational and logarithmic foliations.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ such that

$$
U(\omega) \simeq I(\omega)(e)
$$

and deal with the perturbations defined by unfoldings in terms of an ideal instead of pairs verifying a differential equation

$$
(h, \eta): h d \omega=\omega \wedge(\eta-d h)
$$

For a generic ϖ there is an isomorphism between,

$$
U_{h}(\varpi) \simeq I_{h}(\varpi) .
$$

This fact was used by T. Suwa to classify unfoldings of rational and logarithmic foliations.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ such that

$$
U(\omega) \simeq I(\omega)(e) .
$$

and deal with the perturbations defined by unfoldings in terms of an ideal instead of pairs verifying a differential equation

$$
(h, \eta): h d \omega=\omega \wedge(\eta-d h)
$$

For a generic ϖ there is an isomorphism between,

$$
U_{h}(\varpi) \simeq I_{h}(\varpi) .
$$

This fact was used by T. Suwa to classify unfoldings of rational and logarithmic foliations.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ such that

$$
U(\omega) \simeq I(\omega)(e) .
$$

and deal with the perturbations defined by unfoldings in terms of an ideal instead of pairs verifying a differential equation

$$
(h, \eta): h d \omega=\omega \wedge(\eta-d h)
$$

What about the singular locus of a codimension 1 foliation in \mathbb{P}^{n} ?

As you may know, every global differential form has singular points in \mathbb{P}^{n} (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d \omega=0$ makes that set to have codimension ≥ 2. Why?

Because of the Koszul complex associated to ω :

We clearly have that $d \omega \in \mathcal{Z}^{2}\left(K^{\bullet}(\omega)\right)$ and, by a matter of degrees, we also have that $[d \omega] \neq 0$ in $H^{2}\left(K^{\bullet}(\omega)\right)$.

Our statement comes from:

The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) $\operatorname{codim}(\operatorname{Sing}(\omega)) \geq k$
ii) $H^{\ell}\left(K^{\bullet}(\omega)\right)=0, \forall \ell<k$

What about the singular locus of a codimension 1 foliation in \mathbb{P}^{n} ?

As you may know, every global differential form has singular points in \mathbb{P}^{n} (Jouanolou, Equations de Pfaff algebriques).
set to have codimension ≥ 2. Why?
Because of the Koszul complex associated to ω :

We clearly have that $d \omega \in \mathbb{Z}^{2}\left(K^{\bullet}(\omega)\right)$ and, by a matter of degrees, we also have that $[d \omega] \neq 0$ in $H^{2}\left(K^{\bullet}(\omega)\right)$.

Our statement comes from:

The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) $\operatorname{codim}(\operatorname{Sing}(\omega))) \geq k$
ii) $H^{\ell}\left(K^{\bullet}(\omega)\right)=0, \forall \ell<k$

What about the singular locus of a codimension 1 foliation in \mathbb{P}^{n} ?
As you may know, every global differential form has singular points in \mathbb{P}^{n} (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d \omega=0$ makes that set to have codimension ≥ 2. Why?

Because of the Koszul complex associated to ω :

We clearly have that $d \omega \in \mathcal{Z}^{2}\left(K^{\bullet}(\omega)\right)$ and, by a matter of degrees, we also have that $[d \omega] \neq 0$ in $H^{2}\left(K^{\bullet}(\omega)\right)$.

Our statement comes from:

The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) $\operatorname{codim}(\operatorname{Sing}(\omega)) \geq k$
ii) $H^{\ell}\left(K^{\bullet}(\omega)\right)=0, \forall \ell<k$

What about the singular locus of a codimension 1 foliation in \mathbb{P}^{n} ?
As you may know, every global differential form has singular points in \mathbb{P}^{n} (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d \omega=0$ makes that set to have codimension ≥ 2. Why?

Because of the Koszul complex associated to ω :

$$
K^{\bullet}(\omega): \quad S \xrightarrow{\omega \wedge} \Omega_{S}^{1} \xrightarrow{\omega \wedge} \Omega_{S}^{2} \xrightarrow{\omega \wedge} \ldots
$$

We clearly have that $d \omega \in \mathcal{Z}^{2}\left(K^{\bullet}(\omega)\right)$ and, by a matter of degrees, we also have that $[d \omega] \neq 0$ in $H^{2}\left(K^{\bullet}(\omega)\right)$.

Our statement comes from:

The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) $\operatorname{codim}(\operatorname{Sing}(\omega)) \geq k$
ii) $H^{\ell}\left(K^{\bullet}(\omega)\right)=0, \forall \ell<k$

What about the singular locus of a codimension 1 foliation in \mathbb{P}^{n} ?
As you may know, every global differential form has singular points in \mathbb{P}^{n} (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d \omega=0$ makes that set to have codimension ≥ 2. Why?

Because of the Koszul complex associated to ω :

$$
K^{\bullet}(\omega): \quad S \xrightarrow{\omega \wedge} \Omega_{S}^{1} \xrightarrow{\omega \wedge} \Omega_{S}^{2} \xrightarrow{\omega \wedge} \ldots
$$

We clearly have that $d \omega \in \mathcal{Z}^{2}\left(K^{\bullet}(\omega)\right)$ and, by a matter of degrees, we also have that $[d \omega] \neq 0$ in $H^{2}\left(K^{\bullet}(\omega)\right)$.

Our statement comes from:

The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) $\operatorname{codim}(\operatorname{Sing}(\omega)) \geq k$
ii) $H^{\ell}\left(K^{\bullet}(\omega)\right)=0, \forall \ell<k$

What about the singular locus of a codimension 1 foliation in \mathbb{P}^{n} ?
As you may know, every global differential form has singular points in \mathbb{P}^{n} (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d \omega=0$ makes that set to have codimension ≥ 2. Why?

Because of the Koszul complex associated to ω :

$$
K^{\bullet}(\omega): \quad S \xrightarrow{\omega \wedge} \Omega_{S}^{1} \xrightarrow{\omega \wedge} \Omega_{S}^{2} \xrightarrow{\omega \wedge} \ldots
$$

We clearly have that $d \omega \in \mathcal{Z}^{2}\left(K^{\bullet}(\omega)\right)$ and, by a matter of degrees, we also have that $[d \omega] \neq 0$ in $H^{2}\left(K^{\bullet}(\omega)\right)$.

Our statement comes from:
The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) $\operatorname{codim}(\operatorname{Sing}(\omega)) \geq k$
ii) $H^{\ell}\left(K^{\bullet}(\omega)\right)=0, \forall \ell<k$

What can you have in the singular locus in codimension 2 ?

There is the Kupka set, defined as

$$
K_{\text {set }}(\omega)=\{p \in \operatorname{Sing}(\omega): d \omega(p) \neq 0\}
$$

That set has the following properties:
i) It is generically smooth of codimension 2
ii) It is stable under deformations
iii) Locally, around $p \in K_{\text {set }}(\omega)$, ω has a normal form. It can be written as the pullback of a differential form in \mathbb{C}^{2}

What can you have in the singular locus in codimension 2 ?
There is the Kupka set, defined as

$$
K_{\text {set }}(\omega)=\{p \in \operatorname{Sing}(\omega): d \omega(p) \neq 0\}
$$

That set has the following properties:

i) It is generically smooth of codimension 2
ii) It is stable under deformations
iii) Locally, around $p \in K_{\text {set }}(\omega)$, ω has a normal form. It can be written as the pullback of a differential form in \mathbb{C}^{2}

What can you have in the singular locus in codimension 2 ?
There is the Kupka set, defined as

$$
K_{\text {set }}(\omega)=\{p \in \operatorname{Sing}(\omega): d \omega(p) \neq 0\}
$$

That set has the following properties:
i) It is generically smooth of codimension 2
ii) It is stable under deformations
iii) Locally, around $p \in K_{\text {set }}(\omega)$, ω has a normal form. It can be written as the pullback of a differential form in \mathbb{C}^{2}

In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we gave a scheme structure to (the clousure of) the Kupka set.

Let us denote as $\mathcal{C}(\eta)$ the ideal defined by the polynomial coefficients of the given differential form. Then, $C(\omega)$ is the ideal of the singular locus of ω.

Writing ω as

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i} \quad \Rightarrow \quad C(\omega)=\left(A_{0}, \ldots, A_{n}\right) .
$$

We defined the Kupka scheme as the projective variety defined by the following homogeneous ideal:

$$
K(\omega)=(C(\omega): C(d \omega))
$$

And we proved:

- If ω is 'generic' then

$$
\sqrt{I(\omega)}=\sqrt{K(\omega)}
$$

- If the singular locus of ω is radical then

$$
K(\omega)=K_{\operatorname{set}}(\omega) \neq 0
$$

In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we gave a scheme structure to (the clousure of) the Kupka set.

Let us denote as $\mathcal{C}(\eta)$ the ideal defined by the polynomial coefficients of the given differential form. Then, $C(\omega)$ is the ideal of the singular locus of ω.

Writing ω as

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i} \quad \Rightarrow \quad C(\omega)=\left(A_{0}, \ldots, A_{n}\right) .
$$

We defined the Kupka scheme as the projective variety defined by the following homogeneous ideal:

$$
K(\omega)=(C(\omega): C(d \omega)) .
$$

And we proved:

- If ω is 'generic' then
- If the singular locus of ω is radical then
$K(\omega)=K_{\text {ser }}(\omega) \neq \emptyset$

In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we gave a scheme structure to (the clousure of) the Kupka set.

Let us denote as $C(\eta)$ the ideal defined by the polynomial coefficients of the given differential form. Then, $C(\omega)$ is the ideal of the singular locus of ω.

Writing ω as

$$
\omega=\sum_{i=0}^{n} A_{i} d x_{i} \quad \Rightarrow \quad C(\omega)=\left(A_{0}, \ldots, A_{n}\right) .
$$

We defined the Kupka scheme as the projective variety defined by the following homogeneous ideal:

$$
K(\omega)=(C(\omega): C(d \omega)) .
$$

And we proved:

- If ω is 'generic' then

$$
\sqrt{I(\omega)}=\sqrt{K(\omega)}
$$

- If the singular locus of ω is radical then

$$
K(\omega)=K_{\text {set }}(\omega) \neq \emptyset .
$$

(which was the first existence theorem for the Kupka set)

Toric varieties

X_{T}^{q} a simplicial complete toric variety of dimension q.

Definition

A toric variety is an algebraic variety X which contains a torus $T \simeq\left(\mathbb{C}^{*}\right)^{q}$ as a Zariski open set, in such way that the natural action of T on itself extends to an algebraic action of T on X. Examples: $\mathbb{P}^{n}, \mathbb{P}^{n}(\bar{a}), \mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{q}}, \mathcal{H}_{r}, \ldots$

Guiding principle:

- X_{T}^{q} "geometric object" $\rightsquigarrow>\Sigma$ fan "simplicial and combinatorial object"
- $X_{T}^{q} \leadsto s$ ring of homogeneous coordinates

Toric varieties

X_{T}^{q} a simplicial complete toric variety of dimension q.

Definition

A toric variety is an algebraic variety X which contains a torus $T \simeq\left(\mathbb{C}^{*}\right)^{q}$ as a Zariski open set, in such way that the natural action of T on itself extends to an algebraic action of T on X. Examples: $\mathbb{P}^{n}, \mathbb{P}^{n}(\bar{a}), \mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{q}}, \mathcal{H}_{r}, \ldots$

Guiding principle:

- X_{T}^{q} "geometric object" $\leadsto \leadsto \Sigma$ fan "simplicial and combinatorial object".
- $X_{T}^{q} \leadsto s$ ring of homogeneous coordinates

Cox ring

Ingredients for X_{T}^{q} :
(1) $\Sigma(1)=\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathbb{Z}^{q}, m=|\Sigma(1)| \rightsquigarrow$ (skeleton).
(2) $a=\left\{a^{j}=\left(a_{1}^{j}, \ldots, a_{m}^{j}\right)\right\}_{j=1}^{m-q}$ basis of relations among the rays: $\sum_{i=1}^{m} a_{i}^{j} v_{i}=0$ \leadsto (charge matrix).
(3) $\Sigma(d) \ldots d \geq 2 \rightsquigarrow($ rest of the fan, exceptional set $\rightsquigarrow \sim Z$).

There is $S=\mathbb{C}\left[z_{1}, \ldots, z_{m}\right]$ homogeneous coordinate ring such that:
(2) $v_{i} \in \Sigma(1)$ we have D_{i} a T-invariant divisor $\left(z_{i}=0\right)$,
(b) $C l(X) \simeq \mathbb{Z}^{m-q} \times H, \operatorname{deg}\left(z_{i}\right)=\left[D_{i}\right] \mapsto\left(a_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{m-q}\right), h_{i}\right) \in \mathbb{Z}^{m-q} \times H$.
(0) $S=\bigoplus_{D \in C l(X)} S_{D}$ is $C l(X)$-graded (Cox ring).
(a) A quasi coherent sheaf of $O_{X_{T}^{4}}$ is given by a graded S-module M. A subvariety of X_{T}^{q} by an homogeneous ideal $I \subset S$.

Cox ring

Ingredients for X_{T}^{q} :
(1) $\Sigma(1)=\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathbb{Z}^{q}, m=|\Sigma(1)| \leadsto$ (skeleton).
(2) $a=\left\{a^{j}=\left(a_{1}^{j}, \ldots, a_{m}^{j}\right)\right\}_{j=1}^{m-q}$ basis of relations among the rays: $\sum_{i=1}^{m} a_{i}^{j} v_{i}=0$ \leadsto (charge matrix).
(3) $\Sigma(d) . . . d \geq 2 \rightsquigarrow$ (rest of the fan, exceptional set $\rightsquigarrow Z$).

There is $S=\mathbb{C}\left[z_{1}, \ldots, z_{m}\right]$ homogeneous coordinate ring such that:
(a) $v_{i} \in \Sigma(1)$ we have D_{i} a T-invariant divisor $\left(z_{i}=0\right)$.
(1) $C l(X) \simeq \mathbb{Z}^{m-q} \times H$, $\operatorname{deg}\left(z_{i}\right)=\left[D_{i}\right] \mapsto\left(a_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{m-q}\right), h_{i}\right) \in \mathbb{Z}^{m-q} \times H$.
© $S=\bigoplus_{D \in C l(X)} S_{D}$ is $C l(X)$-graded (Cox ring).
(c) A quasi coherent sheaf of $O_{X_{T}^{q}}$ is given by a graded S-module M. A subvariety of X_{T}^{q} by an homogeneous ideal $I \subset S$.

How to describe foliations on X_{T}^{q} ?

Let X be normal variety. A singular foliation of dimension t (or codimension $k=q-t)$ on X is a nonzero coherent subsheaf $\mathcal{F} \subset T X$ of generic rank t which is closed under [,] and saturated: $T X / \mathcal{F}$ torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of X_{T}^{q},

- $j: X_{r} \hookrightarrow X, \operatorname{codim}\left(X-X_{r}\right) \geq 2$ and has finite quotient singularities.
- $\hat{\Omega}_{X}^{\bullet}:=\left(\Omega_{X}^{\bullet}\right)^{\vee \vee}=j_{*}\left(\Omega_{X_{r}}^{\bullet}\right)$ (Zariski forms).

Toric Euler sequence:

$0 \rightarrow \hat{\Omega}_{X}^{1} \rightarrow \oplus_{i=1}^{m} O_{X}\left(-D_{i}\right) \rightarrow C l(X) \otimes O_{X} \rightarrow 0$

Radial Euler fields

We consider: $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k} \times O_{X}(D)\right)$ satisfying certain equations

How to describe foliations on X_{T}^{q} ?

Let X be normal variety. A singular foliation of dimension t (or codimension $k=q-t)$ on X is a nonzero coherent subsheaf $\mathcal{F} \subset T X$ of generic rank t which is closed under [,] and saturated: $T X / \mathcal{F}$ torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of $X_{T}^{q "}$

- $j: X_{r} \hookrightarrow X, \operatorname{codim}\left(X-X_{r}\right) \geq 2$ and has finite quotient singularities.
- $\hat{\Omega}_{X}^{-}:=\left(\Omega_{X}^{\bullet}\right)^{\vee \vee}=j_{*}\left(\Omega_{X_{r}}^{\bullet}\right)$ (Zariski forms).

Toric Euler sequence:

$0 \rightarrow \hat{\Omega}_{X}^{1} \rightarrow \oplus_{i=1}^{m} O_{X}\left(-D_{i}\right) \rightarrow C l(X) \otimes O_{X} \rightarrow 0$
Radial Euler fields

We consider: $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k} \times O_{X}(D)\right)$ satisfying certain equations

How to describe foliations on X_{T}^{q} ?

Let X be normal variety. A singular foliation of dimension t (or codimension $k=q-t)$ on X is a nonzero coherent subsheaf $\mathcal{F} \subset T X$ of generic rank t which is closed under [,] and saturated: $T X / \mathcal{F}$ torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of $X_{T}^{q "}$

- $j: X_{r} \hookrightarrow X, \operatorname{codim}\left(X-X_{r}\right) \geq 2$ and has finite quotient singularities.
- $\hat{\Omega}_{X}^{-}:=\left(\Omega_{X}^{\bullet}\right)^{\vee \vee}=j_{*}\left(\Omega_{X_{r}}^{\bullet}\right)$ (Zariski forms).

Toric Euler sequence:

$0 \rightarrow \hat{\Omega}_{X}^{1} \rightarrow \oplus_{i=1}^{m} O_{X}\left(-D_{i}\right) \rightarrow C l(X) \otimes O_{X} \rightarrow 0$
Radial Euler fields

We consider: $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k} \times O_{X}(D)\right)$ satisfying certain equations

How to describe foliations on X_{T}^{q} ?

Let X be normal variety. A singular foliation of dimension t (or codimension $k=q-t)$ on X is a nonzero coherent subsheaf $\mathcal{F} \subset T X$ of generic rank t which is closed under [,] and saturated: $T X / \mathcal{F}$ torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of $X_{T}^{q "}$

- $j: X_{r} \hookrightarrow X, \operatorname{codim}\left(X-X_{r}\right) \geq 2$ and has finite quotient singularities.
- $\hat{\Omega}_{X}^{\bullet}:=\left(\Omega_{X}^{\bullet}\right)^{\vee \vee}=j_{*}\left(\Omega_{X_{r}}^{\bullet}\right)$ (Zariski forms).

Toric Euler sequence:

$0 \rightarrow \hat{\Omega}_{X}^{1} \rightarrow \oplus_{i=1}^{m} O_{X}\left(-D_{i}\right) \rightarrow C l(X) \otimes O_{X} \rightarrow 0$
Radial Euler fields
$R_{j}=\sum_{i=1}^{m} a_{i}^{j} z_{i} \frac{\partial}{\partial z_{i}}$ with $j=1, \ldots, m-q$.

How to describe foliations on X_{T}^{q} ?

Let X be normal variety. A singular foliation of dimension t (or codimension $k=q-t)$ on X is a nonzero coherent subsheaf $\mathcal{F} \subset T X$ of generic rank t which is closed under [,] and saturated: $T X / \mathcal{F}$ torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of $X_{T}^{q "}$

- $j: X_{r} \hookrightarrow X, \operatorname{codim}\left(X-X_{r}\right) \geq 2$ and has finite quotient singularities.
- $\hat{\Omega}_{X}^{\bullet}:=\left(\Omega_{X}^{\bullet}\right)^{\vee \vee}=j_{*}\left(\Omega_{X_{r}}^{\bullet}\right)$ (Zariski forms).

Toric Euler sequence:

$0 \rightarrow \hat{\Omega}_{X}^{1} \rightarrow \oplus_{i=1}^{m} O_{X}\left(-D_{i}\right) \rightarrow C l(X) \otimes O_{X} \rightarrow 0$
Radial Euler fields
$R_{j}=\sum_{i=1}^{m} a_{i}^{j} z_{i} \frac{\partial}{\partial z_{i}}$ with $j=1, \ldots, m-q$.

We consider: $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k} \times O_{X}(D)\right)$ satisfying certain equations
$\leadsto \operatorname{Ker}(\alpha)=\mathcal{F} \subset \mathcal{T}_{X}$.

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)$ with $D=\sum d_{i} D_{i}$:
(1) $\alpha=\sum A_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{k}} \in \Omega_{S}^{k}$ of degree $D \mapsto \sum d_{i} a_{i}$ (Multi-homogeneity)
(2) $i_{R_{j}}(\alpha)=0 \quad(\forall j=1, \ldots, m-q) \quad$ (Descent conditions)
(3) $i_{v}(\alpha) \wedge \alpha=0 \quad\left(\forall v \in \wedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Plücker's decomposability conditions)
(4) $i_{v}(\alpha) \wedge d \alpha=0 \quad\left(\forall v \in \Lambda^{k-1} \mathbb{C}^{m}\right) \quad$ (Integrability conditions)

Parameter spaces for toric foliations

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)$ with $D=\sum d_{i} D_{i}$:
(1) $\alpha=\sum A_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{k}} \in \Omega_{S}^{k}$ of degree $D \mapsto \sum d_{i} a_{i}$ (Multi-homogeneity)
(2) $i_{R_{j}}(\alpha)=0 \quad(\forall j=1, \ldots, m-q) \quad$ (Descent conditions)
(3) $i_{v}(\alpha) \wedge \alpha=0 \quad\left(\forall v \in \bigwedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Plücker's decomposability conditions)
(4) $i_{v}(\alpha) \wedge d \alpha=0 \quad\left(\forall v \in \bigwedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Integrability conditions)

Parameter spaces for toric foliations

$\mathcal{F}_{k}(X, D)=\left\{[\alpha] \in \mathbb{P}\left(H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)\right): \alpha\right.$ satisfies (3), (4) and $\left.\operatorname{codim}(S(\alpha)) \geq 2\right\}$

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)$ with $D=\sum d_{i} D_{i}$:
(1) $\alpha=\sum A_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{k}} \in \Omega_{S}^{k}$ of degree $D \mapsto \sum d_{i} a_{i}$ (Multi-homogeneity)
(2) $i_{R_{j}}(\alpha)=0 \quad(\forall j=1, \ldots, m-q) \quad$ (Descent conditions)
(3) $i_{v}(\alpha) \wedge \alpha=0 \quad\left(\forall v \in \bigwedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Plücker's decomposability conditions)
(4) $i_{v}(\alpha) \wedge d \alpha=0 \quad\left(\forall v \in \Lambda^{k-1} \mathbb{C}^{m}\right) \quad$ (Integrability conditions)

Parameter spaces for toric foliations

$\mathcal{F}_{k}(X, D)=\left\{[\alpha] \in \mathbb{P}\left(H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)\right): \alpha\right.$ satisfies (3), (4) and $\left.\operatorname{codim}(S(\alpha)) \geq 2\right\}$

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)$ with $D=\sum d_{i} D_{i}$:
(1) $\alpha=\sum A_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{k}} \in \Omega_{S}^{k}$ of degree $D \mapsto \sum d_{i} a_{i}$ (Multi-homogeneity)
(2) $i_{R_{j}}(\alpha)=0 \quad(\forall j=1, \ldots, m-q) \quad$ (Descent conditions)
(3) $i_{v}(\alpha) \wedge \alpha=0 \quad\left(\forall v \in \wedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Plücker's decomposability conditions)
(4) $i_{v}(\alpha) \wedge d \alpha=0 \quad\left(\forall v \in \Lambda^{k-1} \mathbb{C}^{m}\right) \quad$ (Integrability conditions)

Parameter spaces for toric foliations

$\mathcal{F}_{k}(X, D)=\left\{[\alpha] \in \mathbb{P}\left(H^{n}\left(X, \hat{S}_{X}^{k}(D)\right)\right): \alpha \operatorname{satisfies}(3),(4)\right.$ and $\left.\operatorname{codim}(S(\alpha)) \geq 2\right\}$

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)$ with $D=\sum d_{i} D_{i}$:
(1) $\alpha=\sum A_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{k}} \in \Omega_{S}^{k}$ of degree $D \mapsto \sum d_{i} a_{i}$ (Multi-homogeneity)
(2) $i_{R_{j}}(\alpha)=0 \quad(\forall j=1, \ldots, m-q) \quad$ (Descent conditions)
(3) $i_{v}(\alpha) \wedge \alpha=0 \quad\left(\forall v \in \wedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Plücker's decomposability conditions)
(4) $i_{v}(\alpha) \wedge d \alpha=0 \quad\left(\forall v \in \bigwedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Integrability conditions)

Parameter spaces for toric foliations

$\mathcal{F}_{k}(X, D)=\left\{[\alpha] \in \mathbb{P}\left(H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)\right): \alpha\right.$ satisfies (3), (4) and $\left.\operatorname{codim}(S(\alpha)) \geq 2\right\}$

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)$ with $D=\sum d_{i} D_{i}$:
(1) $\alpha=\sum A_{I} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{k}} \in \Omega_{S}^{k}$ of degree $D \mapsto \sum d_{i} a_{i}$ (Multi-homogeneity)
(2) $i_{R_{j}}(\alpha)=0 \quad(\forall j=1, \ldots, m-q) \quad$ (Descent conditions)
(3) $i_{v}(\alpha) \wedge \alpha=0 \quad\left(\forall v \in \wedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Plücker's decomposability conditions)
(4) $i_{v}(\alpha) \wedge d \alpha=0 \quad\left(\forall v \in \wedge^{k-1} \mathbb{C}^{m}\right) \quad$ (Integrability conditions)

Parameter spaces for toric foliations
$\mathcal{F}_{k}(X, D)=\left\{[\alpha] \in \mathbb{P}\left(H^{0}\left(X, \hat{\Omega}_{X}^{k}(D)\right)\right): \alpha\right.$ satisfies (3), (4) and $\left.\operatorname{codim}(S(\alpha)) \geq 2\right\}$

Rational maps. What about $F: \mathbb{P}^{n} \rightarrow X_{T}^{q}$?

Rational maps in Cox coordinates:

Let $e_{1} v_{1}+\cdots+e_{m} v_{m}=0$ be a relation among the rays of $X=X_{T}^{q}$. Every $F=\left(F_{1}, \ldots, F_{m}\right) \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]^{m}$ such that F_{i} is homogeneous of degree e_{i}, induces a rational map $\tilde{F}: \mathbb{P}^{n} \rightarrow X$ that fits in the diagram

$$
\begin{aligned}
& \mathbb{C}^{n+1}-\{0\}-\stackrel{F}{-}>\mathbb{C}^{m}-Z \\
& \left.\downarrow_{\mathbb{P}^{n}}\right|^{\pi} \pi_{X} \\
& \|^{n}-\frac{\tilde{F}}{-}->X
\end{aligned}
$$

- (Cox) If X is smooth, every regular map $\tilde{F}: \mathbb{P}^{n} \rightarrow X$ arises from $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.
- (Brown-Buczyński) Every rational map $\phi: Y ~-->X$ between two toric varieties admits a complete description in Cox coordinates (formal roots).
- (GMV.) If X_{T}^{q} is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X_{T}^{q}$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$. In other cases, we need $\operatorname{codim}\left(\phi^{-1}\left(\operatorname{Sing}\left(X_{T}^{q}\right)\right)\right) \geq 2$.

Rational maps. What about $F: \mathbb{P}^{n} \rightarrow X_{T}^{q}$?

Rational maps in Cox coordinates:

Let $e_{1} v_{1}+\cdots+e_{m} v_{m}=0$ be a relation among the rays of $X=X_{T}^{q}$. Every $F=\left(F_{1}, \ldots, F_{m}\right) \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]^{m}$ such that F_{i} is homogeneous of degree e_{i}, induces a rational map $\tilde{F}: \mathbb{P}^{n} \rightarrow X$ that fits in the diagram

$$
\begin{gathered}
\mathbb{C}^{n+1}-\{0\}-F-\mathbb{C}^{m}-Z \\
\|\left._{\mathbb{P}^{n}} \quad\right|_{\pi_{X}}-\frac{\tilde{F}}{-}->X
\end{gathered}
$$

- (Cox) If X is smooth, every regular map $\tilde{F}: \mathbb{P}^{n} \rightarrow X$ arises from $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.
- (Brown-Buczyński) Every rational map $\phi: Y \rightarrow X$ between two toric varieties admits a complete description in Cox coordinates (formal roots).
- (GMV.) If X_{T}^{q} is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X_{T}^{q}$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$. In other cases, we need $\operatorname{codim}\left(\phi^{-1}\left(\operatorname{Sing}\left(X_{T}^{q}\right)\right)\right) \geq 2$.

What does complete means?

It means that the lifting has the right base locus. That is:

$$
\operatorname{Reg}(\phi)=\mathbb{P}^{n} \backslash \pi\left(\left\{F^{-1}(Z)\right\}\right)
$$

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F: \mathbb{C}^{n} \backslash\{0\} \cdots \mathbb{C}^{m} \backslash Z$.

To see that the lifting is complete is more tricky.

What does complete means?

It means that the lifting has the right base locus. That is:

$$
\operatorname{Reg}(\phi)=\mathbb{P}^{n} \backslash \pi\left(\left\{F^{-1}(Z)\right\}\right)
$$

How did we do this?

Proposition (GMV)

If X is a smooth variet with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F: \mathbb{C}^{\prime \prime} \backslash\{0\} \rightarrow \mathbb{C}^{\cdots \prime \prime} \backslash Z$.

To see that the lifting is complete is more tricky.

What does complete means?

It means that the lifting has the right base locus. That is:

$$
\operatorname{Reg}(\phi)=\mathbb{P}^{n} \backslash \pi\left(\left\{F^{-1}(Z)\right\}\right)
$$

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{m} \backslash Z$.

To see that the lifting is complete is more tricky.

What does complete means?

It means that the lifting has the right base locus. That is:

$$
\operatorname{Reg}(\phi)=\mathbb{P}^{n} \backslash \pi\left(\left\{F^{-1}(Z)\right\}\right)
$$

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{m} \backslash Z$.

To see that the lifting is complete is more tricky.

What does complete means?

It means that the lifting has the right base locus. That is:

$$
\operatorname{Reg}(\phi)=\mathbb{P}^{n} \backslash \pi\left(\left\{F^{-1}(Z)\right\}\right)
$$

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi: \mathbb{P}^{n} \rightarrow X$ admits a complete polynomial lifting: $F: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{m}-Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{m} \backslash Z$.

To see that the lifting is complete is more tricky.

For that (following Brown-Buczyński):

suppose F^{\prime} is a polynomial lifting wich is not defined along $V(f)$, where f is an irreducible polynomial.

Let $u_{i}=\operatorname{mult}_{f}\left(F_{i}^{\prime}\right)$ be the multiplicity of F_{i}^{\prime} along f and $\tau=\operatorname{Cone}\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \in \Sigma_{X}$ be the cone of minimal dimension satisfying $\sum_{i=1}^{m} u_{i} v_{i} \in \tau$. Let $u^{\prime} \in \mathbb{Q}_{+}^{m}$ satisfy $u_{k}^{\prime}=0$ for $k \notin\left\{i_{1}, \ldots, i_{k}\right\}$ and $\sum_{i=1}^{m} u_{i} v_{i}=\sum_{j=1}^{k} u_{i_{j}}^{\prime} v_{i_{j}}$. By construction,

$$
F_{1}=\left(f^{u_{1}^{\prime}-u_{1}}, \ldots, f^{u_{m}^{\prime}-u_{m}}\right) \cdot F^{\prime}
$$

is a multi-valued lifting.
Moreover, F_{1} does not have a general point of $V(f)$ in its base locus. Since τ is a smooth cone, we can assume that $u^{\prime} \in \mathbb{N}^{m}$ and therefore F_{1} is polynomial. Applying this algorithm a finite number of times we get a complete polynomial lifting F as claimed.

For that (following Brown-Buczyński):

suppose F^{\prime} is a polynomial lifting wich is not defined along $V(f)$, where f is an irreducible polynomial.

Let $u_{i}=\operatorname{mult}_{f}\left(F_{i}^{\prime}\right)$ be the multiplicity of F_{i}^{\prime} along f and $\tau=\operatorname{Cone}\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \in \Sigma_{X}$ be the cone of minimal dimension satisfying $\sum_{i=1}^{m} u_{i} v_{i} \in \tau$. Let $u^{\prime} \in \mathbb{Q}_{+}^{m}$ satisfy $u_{k}^{\prime}=0$ for $k \notin\left\{i_{1}, \ldots, i_{k}\right\}$ and $\sum_{i=1}^{m} u_{i} v_{i}=\sum_{j=1}^{k} u_{i j}^{\prime} v_{i j}$. By construction,

$$
F_{1}=\left(f^{u_{1}^{\prime}-u_{1}}, \ldots, f^{u_{m}^{\prime}-u_{m}}\right) \cdot F^{\prime}
$$

is a multi-valued lifting.

Moreover, F_{1} does not have a general point of $V(f)$ in its base locus. Since τ is a smooth cone, we can assume that $u^{\prime} \in \mathbb{N}^{m}$ and therefore F_{1} is polynomial. Applying this algorithm a finite number of times we get a complete polynomial lifting F as claimed.

For that (following Brown-Buczyński):

suppose F^{\prime} is a polynomial lifting wich is not defined along $V(f)$, where f is an irreducible polynomial.

Let $u_{i}=\operatorname{mult}_{f}\left(F_{i}^{\prime}\right)$ be the multiplicity of F_{i}^{\prime} along f and $\tau=\operatorname{Cone}\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \in \Sigma_{X}$ be the cone of minimal dimension satisfying $\sum_{i=1}^{m} u_{i} v_{i} \in \tau$. Let $u^{\prime} \in \mathbb{Q}_{+}^{m}$ satisfy $u_{k}^{\prime}=0$ for $k \notin\left\{i_{1}, \ldots, i_{k}\right\}$ and $\sum_{i=1}^{m} u_{i} v_{i}=\sum_{j=1}^{k} u_{i_{j}}^{\prime} v_{i_{j}}$. By construction,

$$
F_{1}=\left(f^{u_{1}^{\prime}-u_{1}}, \ldots, f^{u_{m}^{\prime}-u_{m}}\right) \cdot F^{\prime}
$$

is a multi-valued lifting.

Moreover, F_{1} does not have a general point of $V(f)$ in its base locus. Since τ is a smooth cone, we can assume that $u^{\prime} \in \mathbb{N}^{m}$ and therefore F_{1} is polynomial. Applying this algorithm a finite number of times we get a complete polynomial lifting F as claimed.

An example:

consider the map $\mathbb{P}^{2} \rightarrow \mathbb{P}(1,1,2)$ defined in homogeneous coordinates by $F=\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)$.

Then if we consider the polynomial $f=z_{0}$ we get that the multiplicities are given by the vector $u=(2,1,1)$.

Since we can generate the fan of $\mathbb{P}^{2}(1,1,2)$ with the rays: $v_{0}=(-2,-1) \leftrightarrow z_{0}$,
$v_{1}=(0,1) \leadsto z_{1}$ and $v_{2}=(1,0) \leftrightarrow \leadsto z_{2}$. We get that the vector
$2 . v_{0}+1 . v_{1}+1 . v_{2}+=(-3,-1) \in \tau$. Then we can write τ with v_{0} and v_{1} as $\tau=\frac{3}{2} v_{0}+\frac{1}{2} v_{1}$.

With this, we have that $u^{\prime}=(3 / 2,1 / 2,0)$ and $u^{\prime}-u=(-1 / 2,-1 / 2,-1)$. Finally

$$
F_{1}=\left(z_{0}^{-1 / 2}, z_{0}^{-1 / 2}, z_{0}^{-1}\right)\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)=\left(z_{0}^{3 / 2}, z_{0}^{1 / 2} z_{1}, z_{2}^{3}\right) .
$$

We see that F contracts the divisor $\left\{z_{0}=0\right\}$ into the singular point $[0: 0: 1]$ and does not admit a complete polynomial lifting.

An example:

consider the map $\mathbb{P}^{2} \rightarrow \mathbb{P}(1,1,2)$ defined in homogeneous coordinates by $F=\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)$.

Then if we consider the polynomial $f=z_{0}$ we get that the multiplicities are given by the vector $u=(2,1,1)$.

Since we can generate the fan of $\mathbb{P}^{2}(1,1,2)$ with the rays: $v_{0}=(-2,-1) \leftrightarrow z_{0}$, $v_{1}=(0,1) \leadsto \leadsto z_{1}$ and $v_{2}=(1,0) \leftrightarrow \leadsto z_{2}$. We get that the vector $2 . v_{0}+1 . v_{1}+1 . v_{2}+=(-3,-1) \in \tau$. Then we can write τ with v_{0} and v_{1} as $\tau=\frac{3}{2} v_{0}+\frac{1}{2} v_{1}$.

With this, we have that $u^{\prime}=(3 / 2,1 / 2,0)$ and $u^{\prime}-u=(-1 / 2,-1 / 2,-1)$. Finally $F_{1}=\left(z_{0}^{-1 / 2}, z_{0}^{-1 / 2}, z_{0}^{-1}\right)\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)=\left(z_{0}^{3 / 2}, z_{0}^{1 / 2} z_{1}, z_{2}^{3}\right)$.

We see that F contracts the divisor $\left\{z_{0}=0\right\}$ into the singular point $[0: 0: 1]$ and does not admit a complete polynomial lifting.

An example:

consider the map $\mathbb{P}^{2} \rightarrow \mathbb{P}(1,1,2)$ defined in homogeneous coordinates by $F=\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)$.

Then if we consider the polynomial $f=z_{0}$ we get that the multiplicities are given by the vector $u=(2,1,1)$.

Since we can generate the fan of $\mathbb{P}^{2}(1,1,2)$ with the rays: $v_{0}=(-2,-1) \leftrightarrow \rightarrow z_{0}$, $v_{1}=(0,1) \leadsto \leadsto z_{1}$ and $v_{2}=(1,0) \leftrightarrow \leadsto z_{2}$.
$2 . v_{0}+1 . v_{1}+1 . v_{2}+=(-3,-1) \in \tau$. Then we can write τ with v_{0} and v_{1} as
$\tau=\frac{3}{2} v_{0}+\frac{1}{2} v_{1}$.
With this, we have that $u^{\prime}=(3 / 2,1 / 2,0)$ and $u^{\prime}-u=(-1 / 2,-1 / 2,-1)$. Finally

We see that F contracts the divisor $\left\{z_{0}=0\right\}$ into the singular point $[0: 0: 1]$ and does not admit a complete polynomial lifting.

An example:

consider the map $\mathbb{P}^{2} \rightarrow \mathbb{P}(1,1,2)$ defined in homogeneous coordinates by $F=\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)$.

Then if we consider the polynomial $f=z_{0}$ we get that the multiplicities are given by the vector $u=(2,1,1)$.

Since we can generate the fan of $\mathbb{P}^{2}(1,1,2)$ with the rays: $v_{0}=(-2,-1) \leftrightarrow z_{0}$, $v_{1}=(0,1) \leadsto z_{1}$ and $v_{2}=(1,0) \leftrightarrow z_{2}$. We get that the vector $2 . v_{0}+1 . v_{1}+1 . v_{2}+=(-3,-1) \in \tau$. Then we can write τ with v_{0} and v_{1} as $\tau=\frac{3}{2} v_{0}+\frac{1}{2} v_{1}$.

With this, we have that $u^{\prime}=(3 / 2,1 / 2,0)$ and $u^{\prime}-u=(-1 / 2,-1 / 2,-1)$.

An example:

consider the map $\mathbb{P}^{2} \rightarrow \mathbb{P}(1,1,2)$ defined in homogeneous coordinates by $F=\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)$.

Then if we consider the polynomial $f=z_{0}$ we get that the multiplicities are given by the vector $u=(2,1,1)$.

Since we can generate the fan of $\mathbb{P}^{2}(1,1,2)$ with the rays: $v_{0}=(-2,-1) \leftrightarrow z_{0}$, $v_{1}=(0,1) \leadsto z_{1}$ and $v_{2}=(1,0) \leftrightarrow z_{2}$. We get that the vector $2 \cdot v_{0}+1 . v_{1}+1 . v_{2}+=(-3,-1) \in \tau$. Then we can write τ with v_{0} and v_{1} as $\tau=\frac{3}{2} v_{0}+\frac{1}{2} v_{1}$.

With this, we have that $u^{\prime}=(3 / 2,1 / 2,0)$ and $u^{\prime}-u=(-1 / 2,-1 / 2,-1)$. Finally

$$
F_{1}=\left(z_{0}^{-1 / 2}, z_{0}^{-1 / 2}, z_{0}^{-1}\right)\left(z_{0}^{2}, z_{0} z_{1}, z_{0} z_{2}^{3}\right)=\left(z_{0}^{3 / 2}, z_{0}^{1 / 2} z_{1}, z_{2}^{3}\right)
$$

We see that F contracts the divisor $\left\{z_{0}=0\right\}$ into the singular point $[0: 0: 1]$ and does not admit a complete polynomial lifting.

Then, for the other statement we need:

Proposition (GMV)

Iet X be a simnlicial complete toric variety and $\phi: \mathbb{P}^{n} \rightarrow X$ be a dominant rational map such that $\operatorname{codim}\left(\phi^{-1}(\operatorname{Sing}(X))\right) \geq 2$. Then ϕ admits a complete polynomial lifting.

Then, for the other statement we need:

Proposition (GMV)

Let X be a simplicial complete toric variety and $\phi: \mathbb{P}^{n} \rightarrow X$ be a dominant rational map such that $\operatorname{codim}\left(\phi^{-1}(\operatorname{Sing}(X))\right) \geq 2$. Then ϕ admits a complete polynomial lifting.

Foliations induced by fibers of rational maps

Canonical sheaf

For a toric variety X_{T}^{q}, the canonical sheaf is given by $\omega_{X_{T}}=O_{X_{T}}\left(-\sum_{i=1}^{m} D_{i}\right)$ reflexive sheaf of rank $1 \leadsto\left[-\sum D_{i}\right]=K_{X} \in C l\left(X_{T}\right)$ canonical Weil divisor class.

Volume form

The volume form Ω_{X} in X_{T}^{q} can be described in homogeneous coordinates as:
$\Omega_{X}=i_{R_{1}} \ldots i_{R_{m-q}} d z_{1} \wedge \cdots \wedge d z_{m}=\sum_{|I|=q} b_{I} \hat{z}_{I} d z_{I} \in H^{0}\left(X_{T}^{q}, \hat{\Omega}_{X_{T}}^{q}\left(-K_{X}\right)\right)$.

Definition

Let $F: \mathbb{D} n \rightarrow X_{T}^{q}$ be a rational map with a complete lifting of degree \bar{e}. Write \mathcal{F}_{F} for the
foliation given by the fibers of F :

- \mathcal{F}_{F} is a singular projective foliation of codimension q.
- \mathcal{F}_{F} is represented by the twisted a-form $F^{*}\left(\Omega_{V}\right)$.

Foliations induced by fibers of rational maps

Canonical sheaf

For a toric variety X_{T}^{q}, the canonical sheaf is given by $\omega_{X_{T}}=O_{X_{T}}\left(-\sum_{i=1}^{m} D_{i}\right)$ reflexive sheaf of rank $1 \leadsto\left[-\sum D_{i}\right]=K_{X} \in C l\left(X_{T}\right)$ canonical Weil divisor class.

Volume form

The volume form Ω_{X} in X_{T}^{q} can be described in homogeneous coordinates as:
$\Omega_{X}=i_{R_{1}} \ldots i_{R_{m-q}} d z_{1} \wedge \cdots \wedge d z_{m}=\sum_{|I|=q} b_{I} \hat{z}_{I} d z_{I} \in H^{0}\left(X_{T}^{q}, \hat{\Omega}_{X_{T}}^{q}\left(-K_{X}\right)\right)$.

Definition

Let $F: \mathbb{P}^{n} \rightarrow X_{T}^{q}$ be a rational map with a complete lifting of degree \bar{e}. Write \mathcal{F}_{F} for the foliation given by the fibers of F :

- \mathcal{F}_{F} is a singular projective foliation of codimension q.
- \mathcal{F}_{F} is represented by the twisted q-form $F^{*}\left(\Omega_{X}\right)$.

Varieties of foliations given by fibers

We consider the following rational map:

$$
\begin{array}{r}
\phi_{\bar{e}, X}: \bigoplus_{i=1}^{m} \mathbb{P}\left(H^{0}\left(\mathbb{P}^{n}, O\left(e_{i}\right)\right) \mapsto \mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)\right. \\
\left(F_{1}, \ldots, F_{m}\right) \mapsto \omega=F^{*} \Omega_{X}
\end{array}
$$

Define $\mathcal{R}_{q}(n, X, \bar{e}) \subset \mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)$ as the Zariski closure of the image of $\phi_{\bar{e}, X}$.

Weighted projective case

If $X=\mathbb{P}^{q}(\bar{e})$, then $\mathcal{R}_{q}(n, X, \bar{e})$ determines an irreducible and generically reduced component of $\mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)$ (Cukierman-Pereira-Vainsencher).

Proposition (GMV.)

Iet \boldsymbol{x}_{T}^{q} be a complete simplicial toric variety. Then $\mathcal{R}_{q}\left(n, X_{T}^{q}, \bar{e}\right)$ fills an irreducible component of $\mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)$ if and only if X_{T}^{q} is a weighted projective space or a fake weighted projective space

Varieties of foliations given by fibers

We consider the following rational map:

$$
\begin{array}{r}
\phi_{\bar{e}, X}: \bigoplus_{i=1}^{m} \mathbb{P}\left(H^{0}\left(\mathbb{P}^{n}, O\left(e_{i}\right)\right) \mapsto \mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)\right. \\
\left(F_{1}, \ldots, F_{m}\right) \mapsto \omega=F^{*} \Omega_{X}
\end{array}
$$

Define $\mathcal{R}_{q}(n, X, \bar{e}) \subset \mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)$ as the Zariski closure of the image of $\phi_{\bar{e}, X}$.

Weighted projective case

If $X=\mathbb{P}^{q}(\bar{e})$, then $\mathcal{R}_{q}(n, X, \bar{e})$ determines an irreducible and generically reduced component of $\mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)$ (Cukierman-Pereira-Vainsencher).

Proposition (GMV.)

Let X_{T}^{q} be a complete simplicial toric variety. Then $\mathcal{R}_{q}\left(n, X_{T}^{q}, \bar{e}\right)$ fills an irreducible component of $\mathcal{F}_{q}\left(\mathbb{P}^{n}, \sum e_{i}\right)$ if and only if X_{T}^{q} is a weighted projective space or a fake weighted projective space.

Definitions

Focus on the situtation where $X=X_{T}^{2}$ a complete simplicial toric surface:
$\mathcal{F}_{1}(X, D) \underset{\text { open }}{\subset} \mathbb{P} H^{0}\left(X, \hat{\Omega}_{X}^{1}(D)\right)$ because $\alpha \wedge d \alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{3}\left(D^{\otimes 2}\right)\right)=0$.

- Twisted 1-forms $\hat{\Omega}_{X}^{1}(D): \alpha=\sum A_{i}(z) d z_{i}$ with $i_{R_{j}}(\alpha)=\sum a_{i}^{j} z_{i} A_{i}=0$.
- (Homogeneous) Vector fields $T X\left(D+K_{X}\right):[Y]=\sum B_{j} \frac{\partial}{\partial z_{j}}\left(\bmod \sum f_{i} R_{i}\right)$. Assume $H^{1}\left(X, O_{X}\left(D+K_{X}\right)\right)=0$.

Rational pul-backs

For $F: \mathbb{P}^{n} \rightarrow X$ with a polynomial lifting of degree $\bar{e}=\left(e_{i}\right)$, then
where $\alpha \in \mathcal{F}_{1}(X, D)$ ("generic") and $D=\sum d_{i} D_{i} \in E f f(X)$.

Definitions

Focus on the situtation where $X=X_{T}^{2}$ a complete simplicial toric surface:
$\mathcal{F}_{1}(X, D) \subset{ }_{\text {open }} \mathbb{P} H^{0}\left(X, \hat{\Omega}_{X}^{1}(D)\right)$ because $\alpha \wedge d \alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{3}\left(D^{82}\right)\right)=0$.

- Twisted 1-forms $\hat{\Omega}_{X}^{1}(D): \alpha=\sum A_{i}(z) d z_{i}$ with $i_{R_{j}}(\alpha)=\sum a_{i}^{j} z_{i} A_{i}=0$.
- (Homogeneous) Vector fields $T X\left(D+K_{X}\right):[Y]=\sum B_{j} \frac{\partial}{\partial z_{j}}\left(\bmod \sum f_{i} R_{i}\right)$. Assume $H^{1}\left(X, O_{X}\left(D+K_{X}\right)\right)=0$.

Rational pull-backs

For $F: \mathbb{P}^{n} \rightarrow X$ with a polynomial lifting of degree $\bar{e}=\left(e_{i}\right)$, then

$$
\omega=F^{*}(\alpha)=\sum_{i} A_{i}(F) d F_{i} \in \mathcal{F}_{1}\left(\mathbb{P}^{n}, \bar{d} \cdot \bar{e}\right)
$$

where $\alpha \in \mathcal{F}_{1}(X, D)$ ("generic") and $D=\sum d_{i} D_{i} \in E f f(X)$.

Varieties of foliations given by pull-backs

Definition

$$
\begin{array}{r}
\phi=\phi_{(\bar{e}, D)}: \mathcal{F}_{1}(X, D) \times\left(\prod_{i=1}^{m} H^{0}\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}\left(e_{i}\right)\right) \backslash \tilde{Z}\right) / G \rightarrow-\rightarrow \mathcal{F}_{1}\left(\mathbb{P}^{n}, \bar{d} \cdot \bar{e}\right) \\
\left(\alpha,\left(F_{1}, \ldots, F_{m}\right)\right) \longmapsto \omega=F^{*}(\alpha)
\end{array}
$$

and define $P B_{1}(n, X, D, \bar{e})=\overline{\operatorname{Im}\left(\phi_{(\bar{e}, D)}\right)} \quad$ (Zariski closure)

- $P B_{1}\left(n, \mathbb{P}^{2}, d, e\right)$ irreducible component of $\mathcal{F}_{1}\left(\mathbb{P}^{n}, d \cdot e\right)$ (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D=-K_{X}$)

The variety $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ is contained in the variety of logarithmic foliations $\mathcal{L}_{1}(n, \bar{e})$. Moreover, $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ coincides with $\mathcal{L}_{1}(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

Varieties of foliations given by pull-backs

Definition

$$
\begin{aligned}
\phi=\phi_{(\bar{e}, D)}: \mathcal{F}_{1}(X, D) \times\left(\prod_{i=1}^{m} H^{0}\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}\left(e_{i}\right)\right) \backslash \tilde{Z}\right) / G & \rightarrow \mathcal{F}_{1}\left(\mathbb{P}^{n}, \bar{d} \cdot \bar{e}\right) \\
\left(\alpha,\left(F_{1}, \ldots, F_{m}\right)\right) & \longmapsto \omega=F^{*}(\alpha)
\end{aligned}
$$

and define $P B_{1}(n, X, D, \bar{e})=\overline{\operatorname{Im}\left(\phi_{(\bar{e}, D)}\right)} \quad$ (Zariski closure)

$$
P B_{1}\left(n, \mathbb{P}^{2}, d, e\right) \text { irreducible component of } \mathcal{F}_{1}\left(\mathbb{P}^{n}, d \cdot e\right) \text { (Cerveau-Lins }
$$ Neto-Edixhoven).

Proposition (GMV.) (Degree $D=-K_{X}$)

The variety $P R,\left(n, X,-K_{X}, \bar{\rho}\right)$ is contained in the variety of logarithmic foliations $\mathcal{L}_{1}(n, \bar{e})$. Moreover, $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ coincides with $\mathcal{L}_{1}(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

Varieties of foliations given by pull-backs

Definition

$$
\begin{aligned}
\phi=\phi_{(\bar{e}, D)}: \mathcal{F}_{1}(X, D) \times\left(\prod_{i=1}^{m} H^{0}\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}\left(e_{i}\right)\right) \backslash \tilde{Z}\right) / G & \rightarrow \\
\left(\alpha,\left(F_{1}, \ldots, F_{m}\right)\right) & \longmapsto \omega=F^{*}(\alpha)
\end{aligned}
$$

and define $P B_{1}(n, X, D, \bar{e})=\overline{\operatorname{Im}\left(\phi_{(\bar{e}, D)}\right)} \quad$ (Zariski closure)

- $P B_{1}\left(n, \mathbb{P}^{2}, d, e\right)$ irreducible component of $\mathcal{F}_{1}\left(\mathbb{P}^{n}, d \cdot e\right)$ (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D=-K_{X}$)

The variety $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ is contained in the variety of logarithmic foliations $\mathcal{L}_{1}(n, \bar{e})$. Moreover, $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ coincides with $\mathcal{L}_{1}(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

Varieties of foliations given by pull-backs

Definition

$$
\begin{aligned}
\phi=\phi_{(\bar{e}, D)}: \mathcal{F}_{1}(X, D) \times\left(\prod_{i=1}^{m} H^{0}\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}\left(e_{i}\right)\right) \backslash \tilde{Z}\right) / G & \rightarrow \\
\left(\alpha,\left(F_{1}, \ldots, F_{m}\right)\right) & \longmapsto \omega=\mathcal{F}_{1}\left(\mathbb{P}^{n}, \bar{d} \cdot \bar{e}\right)
\end{aligned}
$$

and define $P B_{1}(n, X, D, \bar{e})=\overline{\operatorname{Im}\left(\phi_{(\bar{e}, D)}\right)} \quad$ (Zariski closure)

- $P B_{1}\left(n, \mathbb{P}^{2}, d, e\right)$ irreducible component of $\mathcal{F}_{1}\left(\mathbb{P}^{n}, d \cdot e\right)$ (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D=-K_{X}$)
The variety $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ is contained in the variety of logarithmic foliations $\mathcal{L}_{1}(n, \bar{e})$. Moreover, $P B_{1}\left(n, X,-K_{X}, \bar{e}\right)$ coincides with $\mathcal{L}_{1}(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

Genericity conditions

Notation: $\alpha=\sum_{i=1}^{m} A_{i}(z) d z_{i} \in H^{0}\left(X_{T}^{2}, \widehat{\Omega}^{1}(D)\right)$ and $F: \mathbb{P}^{n} \rightarrow X_{T}^{2}$.

Definition

The pair (F, α) is generic if the following holds:
(1) The critical values of $F, C_{V}(F)$, are such that $C_{V}(F) \cap \operatorname{Sing}(\alpha)=\emptyset$. Also, $\operatorname{Sing}(\omega)$ is reduced along $C(F)$ (the critical points of F).
(II) $C(\alpha)$ is radical $(\sqrt{C(\alpha)}=C(\alpha))$ and has codimension ≥ 2.

IIII The affine variety associated to the ideal $C(d \alpha)$ has codimension ≥ 3, that is $K(\alpha)=C(\alpha)$.

Kupka set of foliations on toric surfaces

A generic foliation on \mathbb{P}^{2} has all of its singular points of Kupka type.
When a foliation on $\mathbb{P}^{2}\left(a_{i}\right)$ has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field $[Y]=\left[\sum_{i=0}^{2} B_{i}, \frac{\theta}{-1}\right] \in H^{0}\left(\mathbb{R}^{2}\left(a_{i}\right), T P^{2}\left(a_{i}\right) \otimes O(Q)\right)$ induces a foliation with all its singular points of Kupka type if and only if $\ell+a_{0} \equiv 0\left(a_{i}\right)$ or $\ell+a_{1} \equiv 0\left(a_{i}\right)$ or $\ell+a_{2} \equiv 0\left(a_{i}\right) \forall i$. Moreover, in that case, $\operatorname{Sing}(\alpha)=\mathcal{K}(\alpha)$.

Idea: In homogeneous coordinates, we can assume that $\operatorname{div}(Y)=0$. Then we use: $d\left(i_{Y} \Omega_{\mathbb{P}^{2}\left(a_{0}, a_{1}, a_{2}\right)}\right)=\operatorname{div}(Y) \Omega_{\mathbb{P}^{2}\left(a_{0}, a_{1}, a_{2}\right)}+\ell\left(l_{Y} d z_{0} \wedge d z_{1} \wedge d z_{2}\right)=\ell\left(l_{Y} d z_{0} \wedge d z_{1} \wedge d z_{2}\right)$.

Kupka set of foliations on toric surfaces

A generic foliation on \mathbb{P}^{2} has all of its singular points of Kupka type.
When a foliation on $\mathbb{P}^{2}\left(a_{i}\right)$ has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field $[Y]=\left[\sum_{j=0}^{2} B_{j} \frac{\theta}{-1}\right] \in H^{0}\left(\mathbb{R}^{2}\left(a_{i}\right), T R^{2}\left(a_{i}\right) \otimes O(Q)\right)$ induces a foliation with all its singular points of Kupka type if and only if $\ell+a_{0} \equiv 0\left(a_{i}\right)$ or $\ell+a_{1} \equiv 0\left(a_{i}\right)$ or $\ell+a_{2} \equiv 0\left(a_{i}\right) \forall i$. Moreover, in that case, $\operatorname{Sing}(\alpha)=\mathcal{K}(\alpha)$.

Idea: In homogeneous coordinates, we can assume that $\operatorname{div}(Y)=0$. Then we use: $d\left(i_{Y} \Omega_{\mathbb{P}^{2}\left(a_{0}, a_{1}, a_{2}\right)}\right)=\operatorname{div}(Y) \Omega_{\mathbb{P}^{2}\left(a_{0}, a_{1}, a_{2}\right)}+\ell\left(l_{Y} d z_{0} \wedge d z_{1} \wedge d z_{2}\right)=\ell\left(l_{Y} d z_{0} \wedge d z_{1} \wedge d z_{2}\right)$.

Kupka set of foliations on toric surfaces

A generic foliation on \mathbb{P}^{2} has all of its singular points of Kupka type.
When a foliation on $\mathbb{P}^{2}\left(a_{i}\right)$ has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field $[Y]=\left[\sum_{j=0}^{2} B_{j} \frac{\partial}{\partial z_{j}}\right] \in H^{0}\left(\mathbb{P}^{2}\left(a_{i}\right), T \mathbb{P}^{2}\left(a_{i}\right) \otimes O(\ell)\right)$ induces a foliation with all its singular points of Kupka type if and only if $\ell+a_{0} \equiv 0\left(a_{i}\right)$ or $\ell+a_{1} \equiv 0\left(a_{i}\right)$ or $\ell+a_{2} \equiv 0\left(a_{i}\right) \forall i$. Moreover, in that case, Sing $(\alpha)=\mathcal{K}(\alpha)$.

Idea: In homogeneous coordinates, we can assume that $\operatorname{div}(Y)=0$. Then we use: $d\left(i_{Y} \Omega_{\mathbb{P}^{2}\left(a_{0}, a_{1}, a_{2}\right)}\right)=\operatorname{div}(Y) \Omega_{\mathbb{P}^{2}\left(a_{0}, a_{1}, a_{2}\right)}+\ell\left(l_{Y} d z_{0} \wedge d z_{1} \wedge d z_{2}\right)=\ell\left(l_{Y} d z_{0} \wedge d z_{1} \wedge d z_{2}\right)$.

When a foliation in a regular toric surface has all of its singular points of Kupka type?

Theorem (GMV.)

Let V be a regular toric surface and $\mathcal{L} \in \operatorname{Pic}(X)$ such that $T X(\mathcal{L})$ is generated on global sections. If $Y \in H^{0}(X, T X(\mathcal{L}))$ is generic, then

$$
\alpha=i_{Y} i_{R_{1}} \ldots i_{R_{m-2}} d z_{1} \wedge \ldots \wedge d z_{m} \in H^{0}\left(X, \hat{\Omega}_{X}^{1}\left(\mathcal{L}-K_{X}\right)\right)
$$

has all its singular points in X of Kupka type. Moreover $\left(C(\alpha): I_{Z}^{\infty}\right)=\left(K(\alpha): I_{Z}^{\infty}\right)$.

When a foliation in a regular toric surface has all of its singular points of Kupka type?

Theorem (GMV.)

Let X be a regular toric surface and $\mathcal{L} \in \operatorname{Pic}(X)$ such that $T X(\mathcal{L})$ is generated on global sections. If $Y \in H^{0}(X, T X(\mathcal{L}))$ is generic, then

$$
\alpha=i_{Y} i_{R_{1}} \ldots i_{R_{m-2}} d z_{1} \wedge \ldots \wedge d z_{m} \in H^{0}\left(X, \hat{\Omega}_{X}^{1}\left(\mathcal{L}-K_{X}\right)\right)
$$

has all its singular points in X of Kupka type. Moreover $\left(C(\alpha): I_{Z}^{\infty}\right)=\left(K(\alpha): I_{Z}^{\infty}\right)$.

When a foliation in a regular toric surface has all of its singular points of Kupka type?

Theorem (GMV.)

Let X be a regular toric surface and $\mathcal{L} \in \operatorname{Pic}(X)$ such that $T X(\mathcal{L})$ is generated on global sections. If $Y \in H^{0}(X, T X(\mathcal{L}))$ is generic, then

$$
\alpha=i_{Y} i_{R_{1}} \ldots i_{R_{m-2}} d z_{1} \wedge \ldots \wedge d z_{m} \in H^{0}\left(X, \hat{\Omega}_{X}^{1}\left(\mathcal{L}-K_{X}\right)\right)
$$

has all its singular points in X of Kupka type. Moreover $\left(C(\alpha): I_{Z}^{\infty}\right)=\left(K(\alpha): I_{Z}^{\infty}\right)$.

What about the singular scheme of $\omega=F^{*}(\alpha)$?

Lemma

Let (F, α) be an generic pair in X_{T}^{2}. Then (if $m>3$)

$$
\operatorname{Sing}_{s e t}(\omega)=\underbrace{\bigcup_{p_{j} \in \operatorname{Sing}(\alpha)} \overline{F^{-1}\left(p_{j}\right)} \cup \bigcup_{\operatorname{certain}((k, l))}\left\{F_{k}=F_{l}=0\right\}}_{\mathcal{K}_{\text {set }}(\omega)} \cup C(F, \alpha) \cup \bigcup_{\substack{\text { certain } \\(i, j)}}\left\{F_{i}=F_{j}=0\right\}
$$

Theorem (GMV.)

Iet (F, α) be an generic pair in X_{T}^{2}, with $F^{*}: S_{X} \rightarrow S_{E n}$ flat. Then $K(\omega)=F^{*}(K(\alpha))$.

Corollary (GMV.)

I et (F, α) be a generic pair in X_{T}^{2} with F flat. Then the Kupka ideal of $\omega=F^{*}(\alpha)$ is $K(\omega)=\left\langle A_{1}(F), \ldots, A_{m}(F)\right\rangle$. In addition, Sing $(\omega)=\mathcal{K}(\omega) \cup C(F, \alpha)$.

What about the singular scheme of $\omega=F^{*}(\alpha)$?

Lemma

Let (F, α) be an generic pair in X_{T}^{2}. Then (if $m>3$)

$$
\operatorname{Sing}_{\text {set }}(\omega)=\underbrace{\bigcup_{p_{j} \in \operatorname{Sing}(\alpha)} \overline{F^{-1}\left(p_{j}\right)} \cup \bigcup_{\operatorname{certain}((k, l))}\left\{F_{k}=F_{l}=0\right\}}_{\mathcal{K}_{\text {set }}(\omega)} \cup C(F, \alpha) \cup \bigcup_{\substack{\text { certain } \\(i, j)}}\left\{F_{i}=F_{j}=0\right\}
$$

Theorem (GMV.)

Let (F, α) be an generic pair in X_{T}^{2}, with $F^{*}: S_{X} \rightarrow S_{\mathbb{P}^{n}}$ flat. Then $K(\omega)=F^{*}(K(\alpha))$.

Corollary (GMV.)

Let (F, α) be a generic pair in X_{T}^{2} with F flat. Then the Kupka ideal of $\omega=F^{*}(\alpha)$ is $K(\omega)=\left\langle A_{1}(F), \ldots, A_{m}(F)\right\rangle$. In addition, Sing $(\omega)=\mathcal{K}(\omega) \cup C(F, \alpha)$.

Regarding deformations of $\omega=F^{*}(\alpha)$

Consider a first order deformation of $\omega=F^{*}(\alpha)$ of the following form: $(F+\varepsilon G)^{*}(\alpha+\varepsilon \beta)=F^{*}(\alpha)+\varepsilon \eta$:

Zariski derivative of the natural parametrization:

Remark

Since $\mathcal{T}_{F}<\mathcal{F}_{F_{\alpha}}$ we have: $F^{*}\left(\Omega_{X}\right) \wedge F^{*}(\alpha)=0$ and also

$$
F^{*}\left(\Omega_{X}\right) \wedge \eta_{2}=0
$$

These deformations preserve the subfoliation given by the fibers of F.

Regarding deformations of $\omega=F^{*}(\alpha)$

Consider a first order deformation of $\omega=F^{*}(\alpha)$ of the following form: $(F+\varepsilon G)^{*}(\alpha+\varepsilon \beta)=F^{*}(\alpha)+\varepsilon \eta$:

Zariski derivative of the natural parametrization:

$$
d \phi_{(\alpha, F)}(\beta, G)=\underbrace{\left(\sum_{i} \nabla A_{i}(F) \cdot G d F_{i}+\sum_{i} A_{i}(F) d G_{i}\right)}_{\eta_{1} \sim(F+\varepsilon G)^{*}(\alpha)=F^{*}(\alpha)+\varepsilon \eta_{1}}+\underbrace{\sum_{i} B_{i}(F) d F_{i}}_{\left.\eta_{2}=F^{*}(\beta) \sim(F)^{*}(\alpha+\& \beta)\right) F^{*}(\alpha)+\varepsilon F^{*}(\beta)}
$$

Remark

Since $\mathcal{T}_{F}<\mathcal{F}_{F} \alpha$ we have: $F^{*}\left(\Omega_{X}\right) \wedge F^{*}(\alpha)=0$ and also

These deformations preserve the subfoliation given by the fibers of F

Regarding deformations of $\omega=F^{*}(\alpha)$

Consider a first order deformation of $\omega=F^{*}(\alpha)$ of the following form: $(F+\varepsilon G)^{*}(\alpha+\varepsilon \beta)=F^{*}(\alpha)+\varepsilon \eta$:

Zariski derivative of the natural parametrization:

$$
d \phi_{(\alpha, F)}(\beta, G)=\underbrace{\left(\sum_{i} \nabla A_{i}(F) \cdot G d F_{i}+\sum_{i} A_{i}(F) d G_{i}\right)}_{\eta_{1} \sim(F+\varepsilon G)^{*}(\alpha)=F^{*}(\alpha)+\varepsilon \eta_{1}}+\underbrace{\sum_{i} B_{i}(F) d F_{i}}_{\eta_{2}=F^{*}(\beta) \sim(F)^{*}(\alpha+\varepsilon \beta)=F^{*}(\alpha)+\varepsilon F^{*}(\beta)}
$$

Remark

Since $\mathcal{F}_{F}<\mathcal{F}_{F^{*} \alpha}$ we have: $F^{*}\left(\Omega_{X}\right) \wedge F^{*}(\alpha)=0$ and also

$$
F^{*}\left(\Omega_{X}\right) \wedge \eta_{2}=0 .
$$

These deformations preserve the subfoliation given by the fibers of F.

We said that we wanted to solve this problem:

Problem

For (α, F) generic and $\omega=F^{*}(\alpha)$, when $D(\omega)=\operatorname{Im}\left(d \phi_{(\alpha, F)}\right)$? Meaning that $\eta \in D(\omega)$ is of the form $\eta=\eta_{1}+\eta_{2}$ as before?

Theorem (GMV.)
Let $X=Y_{T}^{q}, \alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{1}(D)\right)$ integrable, $F: \mathbb{P}^{n} \rightarrow X$ dominant and $\omega=F^{*}(\alpha)$. If $\eta \in D(\omega)$, then $F^{*}\left(\Omega_{X}\right) \wedge \eta=0$ iff $\eta=F^{*}(\beta)$, meaning that η is of type η_{2}

We said that we wanted to solve this problem:

Problem

For (α, F) generic and $\omega=F^{*}(\alpha)$, when $D(\omega)=\operatorname{Im}\left(d \phi_{(\alpha, F)}\right)$? Meaning that $\eta \in D(\omega)$ is of the form $\eta=\eta_{1}+\eta_{2}$ as before?

Theorem (GMV.)

Let $X=X_{T}^{q}, \alpha \in H^{0}\left(X, \hat{\Omega}_{X}^{1}(D)\right)$ integrable, $F: \mathbb{P}^{n} \rightarrow X$ dominant and $\omega=F^{*}(\alpha)$. If $\eta \in D(\omega)$, then $F^{*}\left(\Omega_{X}\right) \wedge \eta=0$ iff $\eta=F^{*}(\beta)$, meaning that η is of type η_{2}

Deformations from unfoldings in the pull-back case

Recall that:

$$
\begin{aligned}
& 0 \longrightarrow I F(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega) \\
&(h, \eta) \longmapsto \\
& \longrightarrow \eta
\end{aligned}
$$

Theorem (GMV.)

Let $\Gamma: \mathbb{T}^{n} \rightarrow X_{T}^{2}, \alpha \in \mathcal{F}_{1}\left(X_{T}^{2}, D\right)$, and $\omega=F^{*}(\alpha)$.

Let (F, α) be a generic pair with F flat, then $\eta \in D(\omega)$ comes from a first order unfolding iff η is of type η_{1}. Also:

$$
I_{U}\left(F^{*}(\alpha)\right)=K\left(F^{*}(\alpha)\right)=\left\langle A_{i}(F)\right\rangle_{i}
$$

Deformations from unfoldings in the pull-back case

Recall that:

$$
\begin{array}{r}
0 \longrightarrow I F(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega) \\
(h, \eta) \longmapsto \eta
\end{array}
$$

Theorem (GMV.)

Let $F: \mathbb{P}^{n} \rightarrow X_{T}^{2}, \alpha \in \mathcal{F}_{1}\left(X_{T}^{2}, D\right)$, and $\omega=F^{*}(\alpha)$.
Let (F, α) be a generic pair with F flat, then $\eta \in D(\omega)$ comes from a first order unfolding iff η is of type η_{1}.

Deformations from unfoldings in the pull-back case

Recall that:

$$
\begin{aligned}
& 0 \longrightarrow I F(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega) \\
&(h, \eta) \longmapsto \eta
\end{aligned}
$$

Theorem (GMV.)

Let $F: \mathbb{P}^{n} \rightarrow X_{T}^{2}, \alpha \in \mathcal{F}_{1}\left(X_{T}^{2}, D\right)$, and $\omega=F^{*}(\alpha)$.
Let (F, α) be a generic pair with F flat, then $\eta \in D(\omega)$ comes from a first order unfolding iff η is of type η_{1}. Also:

$$
I_{U}\left(F^{*}(\alpha)\right)=K\left(F^{*}(\alpha)\right)=\left\langle A_{i}(F)\right\rangle_{i}
$$

Thanks!

Thanks!

Questions?

