Pull-back of foliations of codimension one on surfaces.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational pull-backs of toric foliations

Ariel Molinuevo

IMPANGA

June 11 2021

Joint work with Gargiulo, J. and Velazquez, S.

Pull-back of foliations of codimension one on surfaces.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Codimension 1 foliations in \mathbb{P}^n

A codimension one foliation in \mathbb{P}^n is given by a 1-differential form

 $\omega \in H^0(\Omega^1_{\mathbb{P}^n}(e))$

that verifies the **Frobenius integrability condition**

 $\omega \wedge d\omega = 0.$

Such forms define a **projective variety** (the **moduli (or parameter) space of foliations**)

 $\mathcal{F}^1(\mathbb{P}^n)(e).$

Pull-back of foliations of codimension one on surfaces.

Codimension 1 foliations in \mathbb{P}^n

A codimension one foliation in \mathbb{P}^n is given by a 1-differential form

 $\omega \in H^0(\Omega^1_{\mathbb{P}^n}(e))$

that verifies the Frobenius integrability condition

 $\omega \wedge d\omega = 0.$

Such forms define a **projective variety** (the **moduli (or parameter) space of foliations**)

 $\mathcal{F}^1(\mathbb{P}^n)(e).$

Pull-back of foliations of codimension one on surfaces.

Codimension 1 foliations in \mathbb{P}^n

A codimension one foliation in \mathbb{P}^n is given by a 1-differential form

 $\omega \in H^0(\Omega^1_{\mathbb{P}^n}(e))$

that verifies the Frobenius integrability condition

 $\omega \wedge d\omega = 0.$

Such forms define a **projective variety** (the **moduli** (or **parameter**) **space of foliations**)

 $\mathcal{F}^1(\mathbb{P}^n)(e).$

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i,\alpha}$:

$$\omega = \sum_{i=0}^{n} A_i dx_i = \sum_{i=0, |\alpha|=e-1} a_{i,\alpha} x^{\alpha} dx_i$$

and compute the equation $\omega \wedge d\omega = 0$.

This equation will return many homogeneous (degree two) equations in the coefficients $a_{i,\alpha}$:

$$\omega \wedge d\omega = \sum_{i,j,k} A_i \left(\frac{\partial A_k}{\partial x_j} - \frac{\partial A_j}{\partial x_k}\right) dx_i \wedge dx_j \wedge dx_k = \sum_{i,j,k} Eq_{ijk}(a_{i,\alpha_i}, a_{j,\alpha_j}, a_{k,\alpha_k}) dx_i \wedge dx_j \wedge dx_k$$

Then you have that

$$\mathcal{F}^{1}(\mathbb{P}^{n})(e) = \langle Eq_{ijk}(a_{i,\alpha_{i}}, a_{j,\alpha_{j}}, a_{k,\alpha_{k}}) = 0 \rangle \subset \mathbb{P}^{N},$$

$$V \text{ is } N = (n+1)\binom{n+e-1}{e-1}.$$

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i,\alpha}$:

$$\omega = \sum_{i=0}^{n} A_i dx_i = \sum_{i=0, |\alpha|=e-1} a_{i,\alpha} x^{\alpha} dx_i$$

and compute the equation $\omega \wedge d\omega = 0$.

This equation will return many homogeneous (degree two) equations in the coefficients $a_{i,\alpha}$:

$$\omega \wedge d\omega = \sum_{i,j,k} A_i \left(\frac{\partial A_k}{\partial x_j} - \frac{\partial A_j}{\partial x_k}\right) dx_i \wedge dx_j \wedge dx_k = \sum_{i,j,k} Eq_{ijk}(a_{i,\alpha_i}, a_{j,\alpha_j}, a_{k,\alpha_k}) dx_i \wedge dx_j \wedge dx_k$$

Then you have that

$$\mathcal{F}^{1}(\mathbb{P}^{n})(e) = \langle Eq_{ijk}(a_{i,\alpha_{i}}, a_{j,\alpha_{j}}, a_{k,\alpha_{k}}) = 0 \rangle \subset \mathbb{P}^{N},$$

$$V \text{ is } N = (n+1)\binom{n+e-1}{e-1}.$$

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i,\alpha}$:

$$\omega = \sum_{i=0}^{n} A_i dx_i = \sum_{i=0, |\alpha|=e-1} a_{i,\alpha} x^{\alpha} dx_i$$

and compute the equation $\omega \wedge d\omega = 0$.

This equation will return many homogeneous (degree two) equations in the coefficients $a_{i,\alpha}$:

$$\omega \wedge d\omega = \sum_{i,j,k} A_i \left(\frac{\partial A_k}{\partial x_j} - \frac{\partial A_j}{\partial x_k}\right) dx_i \wedge dx_j \wedge dx_k = \sum_{i,j,k} Eq_{ijk}(a_{i,\alpha_i}, a_{j,\alpha_j}, a_{k,\alpha_k}) dx_i \wedge dx_j \wedge dx_k$$

Then you have that

$$\mathcal{F}^{1}(\mathbb{P}^{n})(e) = \langle Eq_{ijk}(a_{i,\alpha_{i}}, a_{j,\alpha_{j}}, a_{k,\alpha_{k}}) = 0 \rangle \subset \mathbb{P}^{N},$$

where *N* is $N = (n + 1) \binom{n+e-1}{e-1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients $a_{i,\alpha}$:

$$\omega = \sum_{i=0}^{n} A_i dx_i = \sum_{i=0, |\alpha|=e-1} a_{i,\alpha} x^{\alpha} dx_i$$

and compute the equation $\omega \wedge d\omega = 0$.

This equation will return many homogeneous (degree two) equations in the coefficients $a_{i,\alpha}$:

$$\omega \wedge d\omega = \sum_{i,j,k} A_i \left(\frac{\partial A_k}{\partial x_j} - \frac{\partial A_j}{\partial x_k}\right) dx_i \wedge dx_j \wedge dx_k = \sum_{i,j,k} Eq_{ijk}(a_{i,\alpha_i}, a_{j,\alpha_j}, a_{k,\alpha_k}) dx_i \wedge dx_j \wedge dx_k$$

Then you have that

where N is N

$$\mathcal{F}^{1}(\mathbb{P}^{n})(e) = \langle Eq_{ijk}(a_{i,\alpha_{i}}, a_{j,\alpha_{j}}, a_{k,\alpha_{k}}) = 0 \rangle \subset \mathbb{P}^{N},$$
$$= (n+1)\binom{n+e-1}{e-1}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

We are interested in knowing how is this variety made: $\mathcal{F}^1(\mathbb{P}^n)(e)$.

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** ≥ 4: ?!?!

We are interested in knowing how is this variety made: $\mathcal{F}^1(\mathbb{P}^n)(e)$.

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** ≥ 4: ?!?!

We are interested in knowing how is this variety made: $\mathcal{F}^1(\mathbb{P}^n)(e)$.

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** ≥ 4: ?!?!

We are interested in knowing how is this variety made: $\mathcal{F}^1(\mathbb{P}^n)(e)$.

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** ≥ 4: ?!?!

We are interested in knowing how is this variety made: $\mathcal{F}^1(\mathbb{P}^n)(e)$.

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** ≥ 4: ?!?!

```
We are interested in knowing how is this variety made: \mathcal{F}^1(\mathbb{P}^n)(e).
```

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** ≥ 4: ?!?!

```
We are interested in knowing how is this variety made: \mathcal{F}^1(\mathbb{P}^n)(e).
```

Meaning: what are its irreducible components?

What do we know? Not much.

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.

• **degree** ≥ 4: ?!?!

We are interested in knowing how is this variety made: $\mathcal{F}^1(\mathbb{P}^n)(e)$.

Meaning: what are its irreducible components?

- **degree 0 = e-2** : 1 component (of rational type)
- degree 1 : 2 components, one of rational type and one of logarithmic type
- **degree 2** : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form ℙ², exceptional component [Cerveau, D. and Lins Neto, A., 1996]
- **degree 3**: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael Constant they shows that it has at least 24 components.
- **degree** \geq 4: ?!?!

What are the components that appear in degrees ≤ 2 ?

Rational foliations $\mathcal{R}(n, (r, s)) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$

 $\omega_{\mathcal{R}} = rF \, dG - sG \, dF$

where F, G are homogeneous polynomials of degrees r and s respectively and r + s = e.

Logarithmic foliations $\mathcal{L}(n, (d_1, \ldots, d_s)) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$

$$\omega_{\mathcal{L}} = \left(\prod_{i=1}^{s} f_i\right) \left(\sum_{i=1}^{s} \lambda_i \frac{df_i}{f_i}\right) = \sum \lambda_i F_i df_i$$

where f_i is homogeneous of degree d_i , $\sum d_i = e$ y $\sum d_i \lambda_i = 0$. We denote $F_i = \prod_{j \neq i} f_j$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

▲□▶▲□▶▲□▶▲□▶ □ のQで

What are the components that appear in degrees ≤ 2 ?

Rational foliations $\mathcal{R}(n, (r, s)) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$

 $\omega_{\mathcal{R}} = rF \, dG - sG \, dF$

where *F*, *G* are homogeneous polynomials of degrees *r* and *s* respectively and r + s = e.

Logarithmic foliations $\mathcal{L}(n, (d_1, \ldots, d_s)) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$

$$\omega_{\mathcal{L}} = \left(\prod_{i=1}^{s} f_i\right) \left(\sum_{i=1}^{s} \lambda_i \frac{df_i}{f_i}\right) = \sum \lambda_i F_i df_i$$

where f_i is homogeneous of degree d_i , $\sum d_i = e$ y $\sum d_i \lambda_i = 0$. We denote $F_i = \prod_{i \neq i} f_i$.

What are the components that appear in degrees ≤ 2 ?

Rational foliations $\mathcal{R}(n, (r, s)) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$

 $\omega_{\mathcal{R}} = rF \, dG - sG \, dF$

where *F*, *G* are homogeneous polynomials of degrees *r* and *s* respectively and r + s = e.

Logarithmic foliations $\mathcal{L}(n, (d_1, \ldots, d_s)) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$

$$\omega_{\mathcal{L}} = \left(\prod_{i=1}^{s} f_i\right) \left(\sum_{i=1}^{s} \lambda_i \frac{df_i}{f_i}\right) = \sum \lambda_i F_i df_i$$

where f_i is homogeneous of degree d_i , $\sum d_i = e$ y $\sum d_i \lambda_i = 0$. We denote $F_i = \prod_{j \neq i} f_j$.

Exceptional componente $\mathcal{E}(n) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$.

Obtained as the particular action of the affine Lie algebra \mathbb{C} on \mathbb{P}^3 .

Linear Pullbacks from $\mathbb{P}^2 \mathcal{L}(e, n) \subset \mathcal{F}^1(\mathbb{P}^n)(e).$

Let \mathcal{F} be a foliation of degree e in \mathbb{P}^2 and $L : \mathbb{P}^n - \mathbb{P}^2$ a rational map induced by a linear submersion $\mathbb{C}^{n+1} - \mathbb{P}^3$. Then $L^*(\mathcal{F}) \in \mathcal{F}^1(\mathbb{P}^n, e)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exceptional componente $\mathcal{E}(n) \subset \mathcal{F}^1(\mathbb{P}^n)(e)$.

Obtained as the particular action of the affine Lie algebra \mathbb{C} on \mathbb{P}^3 .

Linear Pullbacks from $\mathbb{P}^2 \mathcal{L}(e, n) \subset \mathcal{F}^1(\mathbb{P}^n)(e).$

Let \mathcal{F} be a foliation of degree e in \mathbb{P}^2 and $L : \mathbb{P}^n - \mathbb{P}^2$ a rational map induced by a linear submersion $\mathbb{C}^{n+1} - \mathbb{P}^3$. Then $L^*(\mathcal{F}) \in \mathcal{F}^1(\mathbb{P}^n, e)$.

How can you prove that a family of foliations define an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$?

One idea is as follows: you consider a generic element of your family and look at it first order deformations. If you can parametrize your family in such a way that the differential of the parametrization is surjective, then you just discover an irreducible component of your space.

For example: a Rational Foliation $\omega_{\mathcal{R}}$ is of the form $\omega_{\mathcal{R}} = r F dG - s G dF$ where *F*, *G* are homogeneous polynomials of degrees *r* and *s* respectively and r + s = e.

You can parametrize such foliations as

$$H^{0}(\mathcal{O}_{\mathbb{P}^{n}}(r) \oplus \mathcal{O}_{\mathbb{P}^{n}}(s)) \xrightarrow{\phi} \mathcal{R}(n, (r, s))$$
$$(F, G) \longmapsto rFdG - sGdF$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ � � �

How can you prove that a family of foliations define an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$?

One idea is as follows: you consider a generic element of your family and look at it first order deformations. If you can parametrize your family in such a way that the differential of the parametrization is surjective, then you just discover an irreducible component of your space.

For example: a Rational Foliation $\omega_{\mathcal{R}}$ is of the form $\omega_{\mathcal{R}} = r F dG - s G dF$ where *F*, *G* are homogeneous polynomials of degrees *r* and *s* respectively and r + s = e.

You can parametrize such foliations as

$$H^{0}(\mathcal{O}_{\mathbb{P}^{n}}(r) \oplus \mathcal{O}_{\mathbb{P}^{n}}(s)) \xrightarrow{\phi} \mathcal{R}(n, (r, s))$$
$$(F, G) \longmapsto rFdG - sGdF$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How can you prove that a family of foliations define an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$?

One idea is as follows: you consider a generic element of your family and look at it first order deformations. If you can parametrize your family in such a way that the differential of the parametrization is surjective, then you just discover an irreducible component of your space.

For example: a Rational Foliation $\omega_{\mathcal{R}}$ is of the form $\omega_{\mathcal{R}} = r F dG - s G dF$ where *F*, *G* are homogeneous polynomials of degrees *r* and *s* respectively and r + s = e.

You can parametrize such foliations as

$$H^{0}(\mathcal{O}_{\mathbb{P}^{n}}(r) \oplus \mathcal{O}_{\mathbb{P}^{n}}(s)) \xrightarrow{\phi} \mathcal{R}(n, (r, s))$$
$$(F, G) \longmapsto rFdG - sGdF$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How is a first order deformation of $\omega_{\mathcal{R}} = r F dG - s G dF$? Is of the form

 $\omega'_{\mathcal{R}} = rF' dG - sGdF'$ or $\omega'_{\mathcal{R}} = rFdG' - sG' dF$

where F' is a polynomial of degree r and G' a polynomial of degree s.

Since the differential of the parametrization map is surjective, then we have an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How is a first order deformation of $\omega_{\mathcal{R}} = r F dG - s G dF$? Is of the form

$$\omega'_{\mathcal{R}} = rF' dG - sGdF'$$
 or $\omega'_{\mathcal{R}} = rFdG' - sG' dF$

where F' is a polynomial of degree r and G' a polynomial of degree s.

Since the differential of the parametrization map is surjective, then we have an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$.

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^2 by any rational map to \mathbb{P}^n defines an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^2 by any rational map to \mathbb{P}^n defines an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^2 by any rational map to \mathbb{P}^n defines an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven, extended the result obtained in the paper of 1996, showing in 2001 that the pullback from \mathbb{P}^2 by any rational map to \mathbb{P}^n defines an irreducible component of $\mathcal{F}^1(\mathbb{P}^n, e)$.

How did they do this?

The proof use analytic methods (it's not algebraic).

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^2 to \mathbb{P}^n by rational maps

 $\mathbb{P}^n - \frac{F}{2} - \mathbb{P}^2$ and also we were considering maps $\mathbb{P}^n - \frac{F}{2} > X$ to toric surfaces X to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F : \mathbb{P}^n \to X$, where X is a toric surface. And consider $\alpha \in H^0(\Omega^1_X(\mathcal{D}))$ where \mathcal{D} is a Weild divisor of X.

- i) a deformation of the map F
- **ii**) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^2 to \mathbb{P}^n by rational maps $\mathbb{P}^n - \frac{F}{-} - \mathbb{P}^2$ and also we were considering maps $\mathbb{P}^n - \frac{F}{-} \gg X$ to toric surfaces *X* to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F : \mathbb{P}^n \to X$, where X is a toric surface. And consider $\alpha \in H^0(\Omega^1_X(\mathcal{D}))$ where \mathcal{D} is a Weild divisor of X.

- i) a deformation of the map F
- **ii**) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^2 to \mathbb{P}^n by rational maps $\mathbb{P}^n - \frac{F}{-} - \mathbb{P}^2$ and also we were considering maps $\mathbb{P}^n - \frac{F}{-} \gg X$ to toric surfaces *X* to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F : \mathbb{P}^n \to X$, where X is a toric surface. And consider $\alpha \in H^0(\Omega^1_X(\mathcal{D}))$ where \mathcal{D} is a Weild divisor of X.

- i) a deformation of the map F
- ii) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^2 to \mathbb{P}^n by rational maps $\mathbb{P}^n - \frac{F}{-} - \mathbb{P}^2$ and also we were considering maps $\mathbb{P}^n - \frac{F}{-} > X$ to toric surfaces *X* to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F : \mathbb{P}^n \to X$, where X is a toric surface. And consider $\alpha \in H^0(\Omega^1_X(\mathcal{D}))$ where \mathcal{D} is a Weild divisor of X.

- i) a deformation of the map *F*
- ii) a deformation of the differential form α

What exactly we were trying to do?

We tried to prove the stability of pullback foliations from \mathbb{P}^2 to \mathbb{P}^n by rational maps $\mathbb{P}^n - \frac{F}{-} - \mathbb{P}^2$ and also we were considering maps $\mathbb{P}^n - \frac{F}{-} > X$ to toric surfaces *X* to see if we were able to discover some new irreducible component.

How did we thought we could do that?

Let's consider a rational map with a polynomial lifting $F : \mathbb{P}^n \to X$, where X is a toric surface. And consider $\alpha \in H^0(\Omega^1_X(\mathcal{D}))$ where \mathcal{D} is a Weild divisor of X.

- i) a deformation of the map F
- ii) a deformation of the differential form α

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α .

How did we do that?

We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α .

How did we do that?

We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α .

How did we do that?

We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

Then we would be ok. Because we were able to classify the deformations of the map F and of the differential form α .

How did we do that?

We did that by considering first order deformations and first order unfoldings of a foliation.

What are those?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

There are two ways of making a first order perturbation of $\omega \in \Omega^1_{\mathbb{P}^n|\mathbb{C}}(e)$ such that $\omega \wedge d\omega = 0$:

Deformations

where $D = Spec(\mathbb{C}[\varepsilon]/\varepsilon^2)$ and $\omega_{\varepsilon} \wedge d\omega_{\varepsilon} = 0$ and $\widetilde{\omega}_{\varepsilon} \wedge \widetilde{\omega}_{\varepsilon} = 0$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

There are two ways of making a first order perturbation of $\omega \in \Omega^1_{\mathbb{P}^n|\mathbb{C}}(e)$ such that $\omega \wedge d\omega = 0$:

Deformations

where $D = Spec(\mathbb{C}[\varepsilon]/\varepsilon^2)$ and $\omega_{\varepsilon} \wedge d\omega_{\varepsilon} = 0$ and $\widetilde{\omega}_{\varepsilon} \wedge \widetilde{\omega}_{\varepsilon} = 0$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Unfoldings

There are two ways of making a first order perturbation of $\omega \in \Omega^1_{\mathbb{P}^n|\mathbb{C}}(e)$ such that $\omega \wedge d\omega = 0$:

Deformations

where $D = Spec(\mathbb{C}[\varepsilon]/\varepsilon^2)$ and $\omega_{\varepsilon} \wedge d\omega_{\varepsilon} = 0$ and $\widetilde{\omega}_{\varepsilon} \wedge \widetilde{\omega}_{\varepsilon} = 0$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Unfoldings

There are two ways of making a first order perturbation of $\omega \in \Omega^1_{\mathbb{P}^n|\mathbb{C}}(e)$ such that $\omega \wedge d\omega = 0$:

Deformations

where $D = Spec(\mathbb{C}[\varepsilon]/\varepsilon^2)$ and $\omega_{\varepsilon} \wedge d\omega_{\varepsilon} = 0$ and $\widetilde{\omega}_{\varepsilon} \wedge \widetilde{\omega}_{\varepsilon} = 0$.

Both types of perturbations can be written as:

 $\omega_{\varepsilon} = \omega + \varepsilon \eta \qquad (deformations)$ $\widetilde{\omega}_{\varepsilon} = \omega + \varepsilon \eta + hd\varepsilon \qquad (unfoldings)$

The **integrability condition** applied to ω_{ε} and $\widetilde{\omega}_{\varepsilon}$ allows to **parametrize** $D(\omega)$ and $U(\omega)$ as

$$D(\omega) = \left\{ \eta \in H^0(\Omega^1_{\mathbb{P}^n}(e)) : \ \omega \wedge d\eta + d\omega \wedge \eta = 0 \right\} / \mathbb{C}.\omega$$

$$U(\omega) = \left\{ (h,\eta) \in H^0((\mathcal{O}_{\mathbb{P}^n} \times \Omega^1_{\mathbb{P}^n})(e)) : hd\omega = \omega \land (\eta - dh) \right\} / \mathbb{C}.(0,\omega)$$

In particular we have:

$$0 \longrightarrow IF(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega)$$
$$(h, \eta) \longmapsto \eta$$

So, when a first order deformation comes from a first order unfolding?

Both types of perturbations can be written as:

 $\omega_{\varepsilon} = \omega + \varepsilon \eta \qquad (deformations)$ $\widetilde{\omega}_{\varepsilon} = \omega + \varepsilon \eta + hd\varepsilon \qquad (unfoldings)$

The integrability condition applied to ω_{ε} and $\widetilde{\omega}_{\varepsilon}$ allows to parametrize $D(\omega)$ and $U(\omega)$ as

$$D(\omega) = \left\{ \eta \in H^0(\Omega^1_{\mathbb{P}^n}(e)) : \omega \wedge d\eta + d\omega \wedge \eta = 0 \right\} / \mathbb{C}.\omega$$

$$U(\omega) = \left\{ (h,\eta) \in H^0((\mathcal{O}_{\mathbb{P}^n} \times \Omega^1_{\mathbb{P}^n})(e)) : hd\omega = \omega \wedge (\eta - dh) \right\} / \mathbb{C}.(0,\omega)$$

In particular we have:

$$0 \longrightarrow IF(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega)$$
$$(h,\eta) \longmapsto \eta$$

So, when a first order deformation comes from a first order unfolding?

Both types of perturbations can be written as:

 $\omega_{\varepsilon} = \omega + \varepsilon \eta \qquad (deformations)$ $\widetilde{\omega}_{\varepsilon} = \omega + \varepsilon \eta + hd\varepsilon \qquad (unfoldings)$

The integrability condition applied to ω_{ε} and $\widetilde{\omega}_{\varepsilon}$ allows to parametrize $D(\omega)$ and $U(\omega)$ as

$$D(\omega) = \left\{ \eta \in H^0(\Omega^1_{\mathbb{P}^n}(e)) : \omega \wedge d\eta + d\omega \wedge \eta = 0 \right\} / \mathbb{C}.\omega$$

$$U(\omega) = \left\{ (h,\eta) \in H^0((\mathcal{O}_{\mathbb{P}^n} \times \Omega^1_{\mathbb{P}^n})(e)) : hd\omega = \omega \wedge (\eta - dh) \right\} / \mathbb{C}.(0,\omega)$$

In particular we have:

$$0 \longrightarrow IF(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega)$$
$$(h, \eta) \longmapsto \eta$$

So, when a first order deformation comes from a first order unfolding?

The theory of unfoldings of codimension one foliations was developed in the 80's by **Tatsuo Suwa** in a **local analytic setting**

For $\varpi \in \Omega^1_{\mathbb{C}^{n+1}}$, a germ of an integrable differential 1-form, we have

$$U_{h}(\varpi) = \left\{ (h,\eta) \in O_{\mathbb{C}^{n+1},p} \times \Omega^{1}_{\mathbb{C}^{n+1},p} : h \, d\varpi = \varpi \land (\eta - dh) \right\} / \mathbb{C}.(0,\varpi)$$

The projection to the first coordinate

$$U_h(\varpi) \xrightarrow{\pi_1} O_{\mathbb{C}^{n+1},p}$$
$$(h,\eta) \longmapsto h$$

defines an **ideal** $I_h(\varpi)$ of $\mathcal{O}_{\mathbb{C}^{n+1},p}$.

The theory of unfoldings of codimension one foliations was developed in the 80's by **Tatsuo Suwa** in a **local analytic setting**

For $\varpi \in \Omega^1_{\mathbb{C}^{n+1},p}$ a germ of an integrable differential 1-form, we have

$$U_h(\varpi) = \left\{ (h,\eta) \in O_{\mathbb{C}^{n+1},p} \times \Omega^1_{\mathbb{C}^{n+1},p} : h \, d\varpi = \varpi \land (\eta - dh) \right\} / \mathbb{C}.(0,\varpi).$$

The projection to the first coordinate

$$U_h(\varpi) \xrightarrow{\pi_1} O_{\mathbb{C}^{n+1},p}$$
$$(h,\eta) \longmapsto h$$

defines an **ideal** $I_h(\varpi)$ of $\mathcal{O}_{\mathbb{C}^{n+1},p}$.

The theory of unfoldings of codimension one foliations was developed in the 80's by **Tatsuo Suwa** in a **local analytic setting**

For $\varpi \in \Omega^1_{\mathbb{C}^{n+1},p}$ a germ of an integrable differential 1-form, we have

$$U_h(\varpi) = \left\{ (h,\eta) \in O_{\mathbb{C}^{n+1},p} \times \Omega^1_{\mathbb{C}^{n+1},p} : h \, d\varpi = \varpi \land (\eta - dh) \right\} / \mathbb{C}.(0,\varpi).$$

The projection to the first coordinate

$$U_h(\varpi) \xrightarrow{\pi_1} O_{\mathbb{C}^{n+1},p}$$
$$(h,\eta) \longmapsto h$$

defines an **ideal** $I_h(\varpi)$ of $\mathcal{O}_{\mathbb{C}^{n+1},p}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

For a generic ϖ there is an isomorphism between,

 $U_h(\varpi) \simeq I_h(\varpi).$

This fact was used by T. Suwa to **classify unfoldings of rational and logarithmic foliations**.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S = \mathbb{C}[x_0, \dots, x_n]$ such that

 $U(\omega) \simeq I(\omega)(e).$

$$(h,\eta)$$
 : $hd\omega = \omega \wedge (\eta - dh)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

For a generic ϖ there is an isomorphism between,

 $U_h(\varpi) \simeq I_h(\varpi).$

This fact was used by T. Suwa to **classify unfoldings of rational and logarithmic foliations**.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S = \mathbb{C}[x_0, \ldots, x_n]$ such that

 $U(\omega) \simeq I(\omega)(e).$

$$(h,\eta)$$
 : $hd\omega = \omega \wedge (\eta - dh)$

For a generic ϖ there is an isomorphism between,

 $U_h(\varpi) \simeq I_h(\varpi).$

This fact was used by T. Suwa to **classify unfoldings of rational and logarithmic foliations**.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S = \mathbb{C}[x_0, \dots, x_n]$ such that

 $U(\omega)\simeq I(\omega)(e).$

$$(h,\eta)$$
 : $hd\omega = \omega \wedge (\eta - dh)$

For a generic ϖ there is an isomorphism between,

 $U_h(\varpi) \simeq I_h(\varpi).$

This fact was used by T. Suwa to **classify unfoldings of rational and logarithmic foliations**.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we can also define a graded ideal $I(\omega) \subset S = \mathbb{C}[x_0, \dots, x_n]$ such that

 $U(\omega) \simeq I(\omega)(e).$

$$(h,\eta)$$
 : $hd\omega = \omega \wedge (\eta - dh)$

What about the **singular locus** of a codimension 1 foliation in \mathbb{P}^n ?

As you may know, every global differential form has singular points in \mathbb{P}^n (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d\omega = 0$ makes that set to have codimension ≥ 2 . Why?

Because of the **Koszul complex** associated to ω :

$$K^{\bullet}(\omega): \qquad \qquad S \xrightarrow{\omega \wedge} \Omega^1_S \xrightarrow{\omega \wedge} \Omega^2_S \xrightarrow{\omega \wedge} \dots$$

We clearly have that $d\omega \in \mathbb{Z}^2(K^{\bullet}(\omega))$ and, by a matter of degrees, we also have that $[d\omega] \neq 0$ in $H^2(K^{\bullet}(\omega))$.

Our statement comes from:

- i) $codim(Sing(\omega)) \ge k$
- ii) $H^{\ell}(K^{\bullet}(\omega)) = 0, \forall \ell < k$

What about the **singular locus** of a codimension 1 foliation in \mathbb{P}^n ?

As you may know, every global differential form has singular points in \mathbb{P}^n (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d\omega = 0$ makes that set to have codimension ≥ 2 . Why?

Because of the **Koszul complex** associated to ω :

$$K^{\bullet}(\omega): \qquad \qquad S \xrightarrow{\omega \wedge} \Omega^1_S \xrightarrow{\omega \wedge} \Omega^2_S \xrightarrow{\omega \wedge} \dots$$

We clearly have that $d\omega \in \mathbb{Z}^2(K^{\bullet}(\omega))$ and, by a matter of degrees, we also have that $[d\omega] \neq 0$ in $H^2(K^{\bullet}(\omega))$.

Our statement comes from:

- i) $codim(Sing(\omega)) \ge k$
- ii) $H^{\ell}(K^{\bullet}(\omega)) = 0, \forall \ell < k$

What about the **singular locus** of a codimension 1 foliation in \mathbb{P}^n ?

As you may know, every global differential form has singular points in \mathbb{P}^n (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d\omega = 0$ makes that set to have codimension ≥ 2 . Why?

Because of the **Koszul complex** associated to ω :

$$K^{\bullet}(\omega): \qquad \qquad S \xrightarrow{\omega \wedge} \Omega^1_S \xrightarrow{\omega \wedge} \Omega^2_S \xrightarrow{\omega \wedge} \dots$$

We clearly have that $d\omega \in \mathbb{Z}^2(K^{\bullet}(\omega))$ and, by a matter of degrees, we also have that $[d\omega] \neq 0$ in $H^2(K^{\bullet}(\omega))$.

Our statement comes from:

- i) $codim(Sing(\omega)) \ge k$
- ii) $H^{\ell}(K^{\bullet}(\omega)) = 0, \forall \ell < k$

What about the **singular locus** of a codimension 1 foliation in \mathbb{P}^n ?

As you may know, every global differential form has singular points in \mathbb{P}^n (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d\omega = 0$ makes that set to have codimension ≥ 2 . Why?

Because of the **Koszul complex** associated to ω :

$$K^{\bullet}(\omega): \qquad S \xrightarrow{\omega \wedge} \Omega^1_S \xrightarrow{\omega \wedge} \Omega^2_S \xrightarrow{\omega \wedge} \dots$$

We clearly have that $d\omega \in \mathbb{Z}^2(K^{\bullet}(\omega))$ and, by a matter of degrees, we also have that $[d\omega] \neq 0$ in $H^2(K^{\bullet}(\omega))$.

Our statement comes from:

- i) $codim(Sing(\omega)) \ge k$
- ii) $H^{\ell}(K^{\bullet}(\omega)) = 0, \forall \ell < k$

・ロト・(四)・(日)・(日)・(日)・(日)

What about the **singular locus** of a codimension 1 foliation in \mathbb{P}^n ?

As you may know, every global differential form has singular points in \mathbb{P}^n (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d\omega = 0$ makes that set to have codimension ≥ 2 . Why?

Because of the Koszul complex associated to ω :

$$K^{\bullet}(\omega): \qquad S \xrightarrow{\omega \wedge} \Omega^1_S \xrightarrow{\omega \wedge} \Omega^2_S \xrightarrow{\omega \wedge} \dots$$

We clearly have that $d\omega \in \mathbb{Z}^2(K^{\bullet}(\omega))$ and, by a matter of degrees, we also have that $[d\omega] \neq 0$ in $H^2(K^{\bullet}(\omega))$.

Our statement comes from:

- i) $codim(Sing(\omega)) \ge k$
- ii) $H^{\ell}(K^{\bullet}(\omega)) = 0, \forall \ell < k$

What about the **singular locus** of a codimension 1 foliation in \mathbb{P}^n ?

As you may know, every global differential form has singular points in \mathbb{P}^n (Jouanolou, Equations de Pfaff algebriques). The integrability condition $\omega \wedge d\omega = 0$ makes that set to have codimension ≥ 2 . Why?

Because of the **Koszul complex** associated to ω :

$$K^{\bullet}(\omega): \qquad S \xrightarrow{\omega \wedge} \Omega^1_S \xrightarrow{\omega \wedge} \Omega^2_S \xrightarrow{\omega \wedge} \dots$$

We clearly have that $d\omega \in \mathbb{Z}^2(K^{\bullet}(\omega))$ and, by a matter of degrees, we also have that $[d\omega] \neq 0$ in $H^2(K^{\bullet}(\omega))$.

Our statement comes from:

- i) $codim(Sing(\omega)) \ge k$
- ii) $H^{\ell}(K^{\bullet}(\omega)) = 0, \forall \ell < k$

▲□▶▲□▶▲□▶▲□▶ □ のQで

What can you have in the singular locus in codimension 2?

There is the Kupka set, defined as

 $K_{set}(\omega) = \{ p \in Sing(\omega) : d\omega(p) \neq 0 \}$

That set has the following properties:

- i) It is generically smooth of codimension 2
- ii) It is stable under deformations
- iii) Locally, around $p \in K_{set}(\omega)$, ω has a normal form. It can be written as the pullback of a differential form in \mathbb{C}^2

▲□▶▲□▶▲□▶▲□▶ □ のQで

What can you have in the singular locus in codimension 2?

There is the Kupka set, defined as

 $K_{set}(\omega) = \{p \in Sing(\omega) : d\omega(p) \neq 0\}$

That set has the following properties:

- i) It is generically smooth of codimension 2
- ii) It is stable under deformations
- iii) Locally, around $p \in K_{set}(\omega)$, ω has a normal form. It can be written as the pullback of a differential form in \mathbb{C}^2

What can you have in the singular locus in codimension 2?

There is the **Kupka set**, defined as

```
K_{set}(\omega) = \{p \in Sing(\omega) : d\omega(p) \neq 0\}
```

That set has the following properties:

- i) It is generically smooth of codimension 2
- ii) It is stable under deformations
- iii) Locally, around $p \in K_{set}(\omega)$, ω has a normal form. It can be written as the pullback of a differential form in \mathbb{C}^2

In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we gave a **scheme structure** to (the clousure of) the Kupka set.

Let us denote as $C(\eta)$ the ideal defined by the polynomial coefficients of the given differential form. Then, $C(\omega)$ is the ideal of the singular locus of ω .

Writing ω as

$$\omega = \sum_{i=0}^n A_i \, dx_i \qquad \Rightarrow \qquad C(\omega) = (A_0, \ldots, A_n) \, .$$

We defined the **Kupka scheme** as the projective variety defined by the following homogeneous ideal:

 $K(\omega) = (C(\omega) : C(d\omega)) .$

And we proved:

• If ω is 'generic' then

$$\sqrt{I(\omega)} = \sqrt{K(\omega)}$$

• If the singular locus of ω is radical then

$$K(\omega) = K_{set}(\omega) \neq \emptyset .$$

(which was the first existence theorem for the Kupka set) = + (=

In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we gave a **scheme structure** to (the clousure of) the Kupka set.

Let us denote as $C(\eta)$ the ideal defined by the polynomial coefficients of the given differential form. Then, $C(\omega)$ is the ideal of the singular locus of ω .

Writing ω as

$$\omega = \sum_{i=0}^n A_i \, dx_i \qquad \Rightarrow \qquad C(\omega) = (A_0, \ldots, A_n) \, .$$

We defined the **Kupka scheme** as the projective variety defined by the following homogeneous ideal:

$$K(\omega) = (C(\omega) : C(d\omega)) .$$

And we proved:If ω is 'generic' then

$$\sqrt{I(\omega)} = \sqrt{K(\omega)}$$

• If the singular locus of ω is radical then

$$K(\omega) = K_{set}(\omega) \neq \emptyset .$$

(which was the first existence theorem for the Kupka set) = + (=

In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we gave a **scheme structure** to (the clousure of) the Kupka set.

Let us denote as $C(\eta)$ the ideal defined by the polynomial coefficients of the given differential form. Then, $C(\omega)$ is the ideal of the singular locus of ω .

Writing ω as

$$\omega = \sum_{i=0}^n A_i \, dx_i \qquad \Rightarrow \qquad C(\omega) = (A_0, \ldots, A_n) \, .$$

We defined the **Kupka scheme** as the projective variety defined by the following homogeneous ideal:

$$K(\omega) = (C(\omega) : C(d\omega)) .$$

And we proved:

• If ω is 'generic' then

$$\sqrt{I(\omega)} = \sqrt{K(\omega)}$$

• If the singular locus of ω is radical then

$$K(\omega) = K_{set}(\omega) \neq \emptyset .$$

Pull-back of foliations of codimension one on surfaces.

Toric varieties

 X_T^q a simplicial complete toric variety of dimension q.

Definition

A toric variety is an algebraic variety X which contains a torus $T \simeq (\mathbb{C}^*)^q$ as a Zariski open set, in such way that the natural action of T on itself extends to an algebraic action of T on X. Examples: \mathbb{P}^n , $\mathbb{P}^n(\bar{a})$, $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_q}$, \mathcal{H}_r , ...

Guiding principle:

- X_T^q "geometric object" $\leftrightarrow \Sigma$ fan "simplicial and combinatorial object".
- $X_T^q \iff S$ ring of homogeneous coordinates

Pull-back of foliations of codimension one on surfaces.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Toric varieties

 X_T^q a simplicial complete toric variety of dimension q.

Definition

A toric variety is an algebraic variety X which contains a torus $T \simeq (\mathbb{C}^*)^q$ as a Zariski open set, in such way that the natural action of T on itself extends to an algebraic action of T on X. Examples: \mathbb{P}^n , $\mathbb{P}^n(\bar{a})$, $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_q}$, \mathcal{H}_r , ...

Guiding principle:

- X_T^q "geometric object" $\leftrightarrow \Sigma$ fan "simplicial and combinatorial object".
- $X_T^q \iff S$ ring of homogeneous coordinates

▲□▶▲□▶▲□▶▲□▶ □ のQで

Cox ring

Ingredients for X_T^q :

- 2 $a = \{a^j = (a_1^j, \dots, a_m^j)\}_{j=1}^{m-q}$ basis of relations among the rays: $\sum_{i=1}^m a_i^j v_i = 0$ \rightsquigarrow (charge matrix).
- **3** $\Sigma(d)$... $d \ge 2 \rightsquigarrow$ (rest of the fan, exceptional set $\rightsquigarrow Z$).

There is $S = \mathbb{C}[z_1, \ldots, z_m]$ homogeneous coordinate ring such that:

- a) $v_i \in \Sigma(1)$ we have D_i a *T*-invariant divisor $(z_i = 0)$.
- $Cl(X) \simeq \mathbb{Z}^{m-q} \times H, \, deg(z_i) = [D_i] \mapsto (a_i = (a_i^1, \dots, a_i^{m-q}), h_i) \in \mathbb{Z}^{m-q} \times H.$
- $S = \bigoplus_{D \in Cl(X)} S_D$ is Cl(X)-graded (Cox ring).
- A quasi coherent sheaf of $O_{X_T^q}$ is given by a graded *S*-module *M*. A subvariety of X_T^q by an homogeneous ideal $I \subset S$.

Cox ring

Ingredients for X_T^q :

- 2 $a = \{a^j = (a_1^j, \dots, a_m^j)\}_{j=1}^{m-q}$ basis of relations among the rays: $\sum_{i=1}^m a_i^j v_i = 0$ \rightsquigarrow (charge matrix).
- **3** $\Sigma(d)$... $d \ge 2 \rightsquigarrow$ (rest of the fan, exceptional set $\rightsquigarrow Z$).

There is $S = \mathbb{C}[z_1, \dots, z_m]$ homogeneous coordinate ring such that:

- (a) $v_i \in \Sigma(1)$ we have D_i a *T*-invariant divisor $(z_i = 0)$.
- $Cl(X) \simeq \mathbb{Z}^{m-q} \times H, \, deg(z_i) = [D_i] \mapsto (a_i = (a_i^1, \dots, a_i^{m-q}), h_i) \in \mathbb{Z}^{m-q} \times H.$
- $S = \bigoplus_{D \in Cl(X)} S_D$ is Cl(X)-graded (Cox ring).
- **1** A quasi coherent sheaf of $O_{X_T^q}$ is given by a graded *S*-module *M*. A subvariety of X_T^q by an homogeneous ideal $I \subset S$.

How to describe foliations on X_T^q ?

Let X be normal variety. A singular foliation of dimension t (or codimension k = q - t) on X is a nonzero coherent subsheaf $\mathcal{F} \subset TX$ of generic rank t which is closed under [,] and saturated: TX/\mathcal{F} torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of X_T^q ."

- $j: X_r \hookrightarrow X$, $codim(X X_r) \ge 2$ and has finite quotient singularities.
- $\hat{\Omega}_X^{\bullet} := (\Omega_X^{\bullet})^{\vee \vee} = j_*(\Omega_{X_r}^{\bullet})$ (Zariski forms).

Toric Euler sequence:

 $0 \to \hat{\Omega}^1_X \to \bigoplus_{i=1}^m \mathcal{O}_X(-D_i) \to Cl(X) \otimes \mathcal{O}_X \to 0$

Radial Euler fields

$$R_j = \sum_{i=1}^m a_i^j z_i \frac{\partial}{\partial z_i}$$
 with $j = 1, \dots, m - q$.

We consider: $\alpha \in H^0(X, \hat{\Omega}^k_X \times \mathcal{O}_X(D))$ satisfying certain equations $\rightsquigarrow Ker(\alpha) = \mathcal{F} \subset \mathcal{T}_X.$

How to describe foliations on X_T^q ?

Let X be normal variety. A singular foliation of dimension t (or codimension k = q - t) on X is a nonzero coherent subsheaf $\mathcal{F} \subset TX$ of generic rank t which is closed under [,] and saturated: TX/\mathcal{F} torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of X_T^q ."

- $j: X_r \hookrightarrow X$, $codim(X X_r) \ge 2$ and has finite quotient singularities.
- $\hat{\Omega}_X^{\bullet} := (\Omega_X^{\bullet})^{\vee \vee} = j_*(\Omega_{X_r}^{\bullet})$ (Zariski forms).

Toric Euler sequence:

 $0 \to \hat{\Omega}^1_X \to \oplus_{i=1}^m O_X(-D_i) \to Cl(X) \otimes O_X \to 0$

Radial Euler fields

$$R_j = \sum_{i=1}^m a_i^j z_i \frac{\partial}{\partial z_i}$$
 with $j = 1, \dots, m-q$.

We consider: $\alpha \in H^0(X, \hat{\Omega}^k_X \times \mathcal{O}_X(D))$ satisfying certain equations $\rightsquigarrow Ker(\alpha) = \mathcal{F} \subset \mathcal{T}_X.$

How to describe foliations on X_T^q ?

Let X be normal variety. A singular foliation of dimension t (or codimension k = q - t) on X is a nonzero coherent subsheaf $\mathcal{F} \subset TX$ of generic rank t which is closed under [,] and saturated: TX/\mathcal{F} torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of X_T^q ."

- $j: X_r \hookrightarrow X$, $codim(X X_r) \ge 2$ and has finite quotient singularities.
- $\hat{\Omega}_X^{\bullet} := (\Omega_X^{\bullet})^{\vee \vee} = j_*(\Omega_{X_r}^{\bullet})$ (Zariski forms).

Toric Euler sequence:

 $0 \to \hat{\Omega}^1_X \to \oplus_{i=1}^m O_X(-D_i) \to Cl(X) \otimes O_X \to 0$

Radial Euler fields

$$R_j = \sum_{i=1}^m a_i^j z_i \frac{\partial}{\partial z_i}$$
 with $j = 1, \dots, m-q$.

We consider: $\alpha \in H^0(X, \hat{\Omega}^k_X \times \mathcal{O}_X(D))$ satisfying certain equations $\rightsquigarrow Ker(\alpha) = \mathcal{F} \subset \mathcal{T}_X.$

How to describe foliations on X_T^q ?

Let X be normal variety. A singular foliation of dimension t (or codimension k = q - t) on X is a nonzero coherent subsheaf $\mathcal{F} \subset TX$ of generic rank t which is closed under [,] and saturated: TX/\mathcal{F} torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of X_T^q ."

- $j: X_r \hookrightarrow X$, $codim(X X_r) \ge 2$ and has finite quotient singularities.
- $\hat{\Omega}_X^{\bullet} := (\Omega_X^{\bullet})^{\vee \vee} = j_*(\Omega_{X_r}^{\bullet})$ (Zariski forms).

Toric Euler sequence:

 $0 \to \hat{\Omega}^1_X \to \oplus_{i=1}^m O_X(-D_i) \to Cl(X) \otimes O_X \to 0$

Radial Euler fields

$$R_j = \sum_{i=1}^m a_i^j z_i \frac{\partial}{\partial z_i}$$
 with $j = 1, \dots, m - q$.

We consider: $\alpha \in H^0(X, \hat{\Omega}_X^k \times \mathcal{O}_X(D))$ satisfying certain equations $\rightsquigarrow Ker(\alpha) = \mathcal{F} \subset \mathcal{T}_X.$

How to describe foliations on X_T^q ?

Let X be normal variety. A singular foliation of dimension t (or codimension k = q - t) on X is a nonzero coherent subsheaf $\mathcal{F} \subset TX$ of generic rank t which is closed under [,] and saturated: TX/\mathcal{F} torsion free.

Idea: "Dualizing we need a line bundle and a twisted differential form on the regular part of X_T^q ."

- $j: X_r \hookrightarrow X$, $codim(X X_r) \ge 2$ and has finite quotient singularities.
- $\hat{\Omega}_X^{\bullet} := (\Omega_X^{\bullet})^{\vee \vee} = j_*(\Omega_{X_r}^{\bullet})$ (Zariski forms).

Toric Euler sequence:

 $0 \to \hat{\Omega}^1_X \to \oplus_{i=1}^m O_X(-D_i) \to Cl(X) \otimes O_X \to 0$

Radial Euler fields

$$R_j = \sum_{i=1}^m a_i^j z_i \frac{\partial}{\partial z_i}$$
 with $j = 1, \dots, m - q$.

We consider: $\alpha \in H^0(X, \hat{\Omega}^k_X \times \mathcal{O}_X(D))$ satisfying certain equations $\rightsquigarrow Ker(\alpha) = \mathcal{F} \subset \mathcal{T}_X.$

Pull-back of foliations of codimension one on surfaces.

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^0(X, \hat{\Omega}^k_X(D))$ with $D = \sum d_i D_i$:

- $\alpha = \sum A_I dz_{i_1} \wedge \cdots \wedge dz_{i_k} \in \Omega_S^k$ of degree $D \mapsto \sum d_i a_i$ (Multi-homogeneity)
- **2** $i_{R_j}(\alpha) = 0$ ($\forall j = 1, ..., m q$) (**Descent conditions**)
- (a) $i_{\nu}(\alpha) \wedge \alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Plücker's decomposability conditions) (b) $i_{\nu}(\alpha) \wedge d\alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Integrability conditions)

Parameter spaces for toric foliations

 $\mathcal{F}_k(X,D) = \{ [\alpha] \in \mathbb{P}(H^0(X,\hat{\Omega}^k_X(D))) : \alpha \text{ satisfies } (3), (4) \text{ and } codim(S(\alpha)) \ge 2 \}$

・ロト・「聞・・」 単・ 「聞・・」 目・

Pull-back of foliations of codimension one on surfaces.

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^0(X, \hat{\Omega}^k_X(D))$ with $D = \sum d_i D_i$:

- $\alpha = \sum A_I dz_{i_1} \wedge \cdots \wedge dz_{i_k} \in \Omega_S^k$ of degree $D \mapsto \sum d_i a_i$ (Multi-homogeneity)
- **2** $i_{R_j}(\alpha) = 0$ ($\forall j = 1, ..., m q$) (**Descent conditions**)
- (a) $\lambda \alpha = 0$ ($\forall v \in \bigwedge^{k-1} \mathbb{C}^m$) (Plücker's decomposability conditions) (a) $i_v(\alpha) \wedge d\alpha = 0$ ($\forall v \in \bigwedge^{k-1} \mathbb{C}^m$) (Integrability conditions)

Parameter spaces for toric foliations

Pull-back of foliations of codimension one on surfaces.

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^0(X, \hat{\Omega}^k_X(D))$ with $D = \sum d_i D_i$:

- $\alpha = \sum A_I dz_{i_1} \wedge \cdots \wedge dz_{i_k} \in \Omega_S^k$ of degree $D \mapsto \sum d_i a_i$ (Multi-homogeneity) • $i_{R_i}(\alpha) = 0$ ($\forall j = 1, \dots, m - q$) (Descent conditions)
- (a) $i_{\nu}(\alpha) \wedge \alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Plücker's decomposability conditions) (b) $i_{\nu}(\alpha) \wedge d\alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Integrability conditions)

Parameter spaces for toric foliations

Pull-back of foliations of codimension one on surfaces.

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^0(X, \hat{\Omega}^k_X(D))$ with $D = \sum d_i D_i$:

- $\alpha = \sum A_I dz_{i_1} \wedge \cdots \wedge dz_{i_k} \in \Omega_S^k$ of degree $D \mapsto \sum d_i a_i$ (Multi-homogeneity)
- **2** $i_{R_j}(\alpha) = 0$ ($\forall j = 1, ..., m q$) (**Descent conditions**)
- **(3)** $i_{\nu}(\alpha) \wedge \alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Plücker's decomposability conditions) **(a)** $i_{\nu}(\alpha) \wedge d\alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Integrability conditions)

Parameter spaces for toric foliations

Pull-back of foliations of codimension one on surfaces.

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^0(X, \hat{\Omega}^k_X(D))$ with $D = \sum d_i D_i$:

- $\mathbf{0} \ \alpha = \sum A_I dz_{i_1} \land \dots \land dz_{i_k} \in \Omega_S^k \text{ of degree } D \mapsto \sum d_i a_i \text{ (Multi-homogeneity)}$
- **2** $i_{R_j}(\alpha) = 0$ ($\forall j = 1, ..., m q$) (**Descent conditions**)
- (a) $i_{\nu}(\alpha) \wedge \alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Plücker's decomposability conditions) (b) $i_{\nu}(\alpha) \wedge d\alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Integrability conditions)

Parameter spaces for toric foliations

Pull-back of foliations of codimension one on surfaces.

Parameter spaces of singular toric foliations

Conditions in Cox coordinates for $\alpha \in H^0(X, \hat{\Omega}^k_X(D))$ with $D = \sum d_i D_i$:

- $\alpha = \sum A_I dz_{i_1} \wedge \cdots \wedge dz_{i_k} \in \Omega_S^k$ of degree $D \mapsto \sum d_i a_i$ (Multi-homogeneity)
- **2** $i_{R_j}(\alpha) = 0$ ($\forall j = 1, ..., m q$) (**Descent conditions**)
- (a) $i_{\nu}(\alpha) \wedge \alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Plücker's decomposability conditions) (b) $i_{\nu}(\alpha) \wedge d\alpha = 0$ ($\forall \nu \in \bigwedge^{k-1} \mathbb{C}^m$) (Integrability conditions)

Parameter spaces for toric foliations

Rational maps. What about $F : \mathbb{P}^n \dashrightarrow X_T^q$?

Rational maps in Cox coordinates:

Let $e_1v_1 + \cdots + e_mv_m = 0$ be a relation among the rays of $X = X_T^q$. Every $F = (F_1, \dots, F_m) \in \mathbb{C}[x_0, \dots, x_n]^m$ such that F_i is homogeneous of degree e_i , induces a rational map $\tilde{F} : \mathbb{P}^n \to X$ that fits in the diagram

$\mathbb{C}^{n+1} - \{$	$0\} - \frac{F}{-}$	$\succ \mathbb{C}^m$	-Z
π			π_X
$\bigvee_{\mathbb{P}^n}$ –	<u>˜</u>	- >	\bigvee_{X}

- (Cox) If X is smooth, every regular map $\tilde{F} : \mathbb{P}^n \to X$ arises from $F : \mathbb{C}^{n+1} \{0\} \to \mathbb{C}^m Z$.
- (Brown-Buczyński) Every rational map φ : Y → X between two toric varieties admits a complete description in Cox coordinates (formal roots).
- (GMV.) If X_T^q is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \to X_T^q$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}^m - Z$. In other cases, we need $codim(\phi^{-1}(Sing(X_T^q))) \ge 2$.

Rational maps. What about $F : \mathbb{P}^n \dashrightarrow X_T^q$?

Rational maps in Cox coordinates:

Let $e_1v_1 + \cdots + e_mv_m = 0$ be a relation among the rays of $X = X_T^q$. Every $F = (F_1, \dots, F_m) \in \mathbb{C}[x_0, \dots, x_n]^m$ such that F_i is homogeneous of degree e_i , induces a rational map $\tilde{F} : \mathbb{P}^n \to X$ that fits in the diagram

$\mathbb{C}^{n+1} - \{$	$\{0\} - \frac{F}{-}$	$\succ \mathbb{C}^m$	-Z
π			πχ
$\bigvee_{\mathbb{P}^n}$	<u>Ĩ</u>	_ >	\bigvee_{X}

- (Cox) If X is smooth, every regular map $\tilde{F} : \mathbb{P}^n \to X$ arises from $F : \mathbb{C}^{n+1} \{0\} \to \mathbb{C}^m Z$.
- (Brown-Buczyński) Every rational map φ : Y → X between two toric varieties admits a complete description in Cox coordinates (formal roots).
- (GMV.) If X_T^q is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \to X_T^q$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}^m - Z$. In other cases, we need $codim(\phi^{-1}(Sing(X_T^q))) \ge 2$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

What does complete means?

It means that the lifting has the right base locus. That is:

 $Reg(\phi) = \mathbb{P}^n \setminus \pi(\{F^{-1}(Z)\})$

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \to X$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}^m - Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F : \mathbb{C}^{n} \setminus \{0\} \longrightarrow \mathbb{C}^{m} \setminus Z$.

What does complete means?

It means that the lifting has the right base locus. That is:

 $Reg(\phi) = \mathbb{P}^n \setminus \pi(\{F^{-1}(Z)\})$

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \to X$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}^m - Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F : \mathbb{C}^{n} \setminus \{0\} \longrightarrow \mathbb{C}^{m} \setminus Z$.

What does complete means?

It means that the lifting has the right base locus. That is:

 $Reg(\phi) = \mathbb{P}^n \setminus \pi(\{F^{-1}(Z)\})$

How did we do this?

Proposition (GMV)

If *X* is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \dashrightarrow X$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \dashrightarrow \mathbb{C}^m - Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F : \mathbb{C}^{n} \setminus \{0\} \longrightarrow \mathbb{C}^{m} \setminus Z$.

What does complete means?

It means that the lifting has the right base locus. That is:

 $Reg(\phi) = \mathbb{P}^n \setminus \pi(\{F^{-1}(Z)\})$

How did we do this?

Proposition (GMV)

If *X* is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \dashrightarrow X$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \dashrightarrow \mathbb{C}^m - Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F : \mathbb{C}^{n} \setminus \{0\} \longrightarrow \mathbb{C}^{m} \setminus Z$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

What does complete means?

It means that the lifting has the right base locus. That is:

 $Reg(\phi) = \mathbb{P}^n \setminus \pi(\{F^{-1}(Z)\})$

How did we do this?

Proposition (GMV)

If *X* is a smooth variety with a cone of maximal dimension, then every dominant rational $\phi : \mathbb{P}^n \dashrightarrow X$ admits a complete polynomial lifting: $F : \mathbb{C}^{n+1} - \{0\} \dashrightarrow \mathbb{C}^m - Z$.

By considering the cone of maximal dimension we get that exists an open set $U_{\sigma} \simeq \mathbb{C}^{q}$. Then we just dehomogenize and homogenize there and we get the polynomial lifting $F : \mathbb{C}^{n} \setminus \{0\} \longrightarrow \mathbb{C}^{m} \setminus Z$.

For that (following Brown-Buczyński):

suppose F' is a polynomial lifting wich is not defined along V(f), where f is an irreducible polynomial.

Let $u_i = mult_f(F'_i)$ be the multiplicity of F'_i along f and $\tau = Cone(v_{i_1}, \ldots, v_{i_k}) \in \Sigma_X$ be the cone of minimal dimension satisfying $\sum_{i=1}^m u_i v_i \in \tau$. Let $u' \in \mathbb{Q}^m_+$ satisfy $u'_k = 0$ for $k \notin \{i_1, \ldots, i_k\}$ and $\sum_{i=1}^m u_i v_i = \sum_{j=1}^k u'_{i_j} v_{i_j}$. By construction,

$$F_1 = \left(f^{u_1'-u_1}, \dots, f^{u_m'-u_m}\right) \cdot F'$$

is a multi-valued lifting.

Moreover, F_1 does not have a general point of V(f) in its base locus. Since τ is a smooth cone, we can assume that $u' \in \mathbb{N}^m$ and therefore F_1 is polynomial. Applying this algorithm a finite number of times we get a complete polynomial lifting F as claimed.

For that (following Brown-Buczyński):

suppose F' is a polynomial lifting wich is not defined along V(f), where f is an irreducible polynomial.

Let $u_i = mult_f(F'_i)$ be the multiplicity of F'_i along f and $\tau = Cone(v_{i_1}, \ldots, v_{i_k}) \in \Sigma_X$ be the cone of minimal dimension satisfying $\sum_{i=1}^m u_i v_i \in \tau$. Let $u' \in \mathbb{Q}^m_+$ satisfy $u'_k = 0$ for $k \notin \{i_1, \ldots, i_k\}$ and $\sum_{i=1}^m u_i v_i = \sum_{j=1}^k u'_{i_j} v_{i_j}$. By construction,

$$F_1 = \left(f^{u_1'-u_1}, \dots, f^{u_m'-u_m}\right) \cdot F'$$

is a multi-valued lifting.

Moreover, F_1 does not have a general point of V(f) in its base locus. Since τ is a smooth cone, we can assume that $u' \in \mathbb{N}^m$ and therefore F_1 is polynomial. Applying this algorithm a finite number of times we get a complete polynomial lifting F as claimed.

For that (following Brown-Buczyński):

suppose F' is a polynomial lifting wich is not defined along V(f), where f is an irreducible polynomial.

Let $u_i = mult_f(F'_i)$ be the multiplicity of F'_i along f and $\tau = Cone(v_{i_1}, \ldots, v_{i_k}) \in \Sigma_X$ be the cone of minimal dimension satisfying $\sum_{i=1}^m u_i v_i \in \tau$. Let $u' \in \mathbb{Q}^m_+$ satisfy $u'_k = 0$ for $k \notin \{i_1, \ldots, i_k\}$ and $\sum_{i=1}^m u_i v_i = \sum_{j=1}^k u'_{i_j} v_{i_j}$. By construction,

$$F_1 = \left(f^{u_1'-u_1}, \dots, f^{u_m'-u_m}\right) \cdot F'$$

is a multi-valued lifting.

Moreover, F_1 does not have a general point of V(f) in its base locus. Since τ is a smooth cone, we can assume that $u' \in \mathbb{N}^m$ and therefore F_1 is polynomial. Applying this algorithm a finite number of times we get a complete polynomial lifting F as claimed.

An example:

consider the map $\mathbb{P}^2 \to \mathbb{P}(1, 1, 2)$ defined in homogeneous coordinates by $F = (z_0^2, z_0 z_1, z_0 z_2^3)$.

Then if we consider the polynomial $f = z_0$ we get that the multiplicities are given by the vector u = (2, 1, 1).

Since we can generate the fan of $\mathbb{P}^2(1, 1, 2)$ with the rays: $v_0 = (-2, -1) \iff z_0$, $v_1 = (0, 1) \iff z_1$ and $v_2 = (1, 0) \iff z_2$. We get that the vector $2.v_0 + 1.v_1 + 1.v_2 + = (-3, -1) \in \tau$. Then we can write τ with v_0 and v_1 as $\tau = \frac{3}{2}v_0 + \frac{1}{2}v_1$.

With this, we have that u' = (3/2, 1/2, 0) and u' - u = (-1/2, -1/2, -1). Finally

$$F_1 = (z_0^{-1/2}, z_0^{-1/2}, z_0^{-1}) (z_0^2, z_0 z_1, z_0 z_2^3) = (z_0^{3/2}, z_0^{1/2} z_1, z_2^3) .$$

An example:

consider the map $\mathbb{P}^2 \to \mathbb{P}(1, 1, 2)$ defined in homogeneous coordinates by $F = (z_0^2, z_0 z_1, z_0 z_2^3)$.

Then if we consider the polynomial $f = z_0$ we get that the multiplicities are given by the vector u = (2, 1, 1).

Since we can generate the fan of $\mathbb{P}^2(1, 1, 2)$ with the rays: $v_0 = (-2, -1) \iff z_0$, $v_1 = (0, 1) \iff z_1$ and $v_2 = (1, 0) \iff z_2$. We get that the vector $2.v_0 + 1.v_1 + 1.v_2 + = (-3, -1) \in \tau$. Then we can write τ with v_0 and v_1 as $\tau = \frac{3}{2}v_0 + \frac{1}{2}v_1$.

With this, we have that u' = (3/2, 1/2, 0) and u' - u = (-1/2, -1/2, -1). Finally

$$F_1 = (z_0^{-1/2}, z_0^{-1/2}, z_0^{-1}) (z_0^2, z_0 z_1, z_0 z_2^3) = (z_0^{3/2}, z_0^{1/2} z_1, z_2^3) .$$

An example:

consider the map $\mathbb{P}^2 \to \mathbb{P}(1, 1, 2)$ defined in homogeneous coordinates by $F = (z_0^2, z_0 z_1, z_0 z_2^3)$.

Then if we consider the polynomial $f = z_0$ we get that the multiplicities are given by the vector u = (2, 1, 1).

Since we can generate the fan of $\mathbb{P}^2(1, 1, 2)$ with the rays: $v_0 = (-2, -1) \iff z_0$, $v_1 = (0, 1) \iff z_1$ and $v_2 = (1, 0) \iff z_2$. We get that the vector $2.v_0 + 1.v_1 + 1.v_2 + = (-3, -1) \in \tau$. Then we can write τ with v_0 and v_1 as $\tau = \frac{3}{2}v_0 + \frac{1}{2}v_1$.

With this, we have that u' = (3/2, 1/2, 0) and u' - u = (-1/2, -1/2, -1). Finally

$$F_1 = (z_0^{-1/2}, z_0^{-1/2}, z_0^{-1}) (z_0^2, z_0 z_1, z_0 z_2^3) = (z_0^{3/2}, z_0^{1/2} z_1, z_2^3) .$$

An example:

consider the map $\mathbb{P}^2 \to \mathbb{P}(1, 1, 2)$ defined in homogeneous coordinates by $F = (z_0^2, z_0 z_1, z_0 z_2^3)$.

Then if we consider the polynomial $f = z_0$ we get that the multiplicities are given by the vector u = (2, 1, 1).

Since we can generate the fan of $\mathbb{P}^2(1, 1, 2)$ with the rays: $v_0 = (-2, -1) \iff z_0$, $v_1 = (0, 1) \iff z_1$ and $v_2 = (1, 0) \iff z_2$. We get that the vector $2.v_0 + 1.v_1 + 1.v_2 + = (-3, -1) \in \tau$. Then we can write τ with v_0 and v_1 as $\tau = \frac{3}{2}v_0 + \frac{1}{2}v_1$.

With this, we have that u' = (3/2, 1/2, 0) and u' - u = (-1/2, -1/2, -1). Finally

$$F_1 = (z_0^{-1/2}, z_0^{-1/2}, z_0^{-1}) (z_0^2, z_0 z_1, z_0 z_2^3) = (z_0^{3/2}, z_0^{1/2} z_1, z_2^3) .$$

An example:

consider the map $\mathbb{P}^2 \to \mathbb{P}(1, 1, 2)$ defined in homogeneous coordinates by $F = (z_0^2, z_0 z_1, z_0 z_2^3)$.

Then if we consider the polynomial $f = z_0$ we get that the multiplicities are given by the vector u = (2, 1, 1).

Since we can generate the fan of $\mathbb{P}^2(1, 1, 2)$ with the rays: $v_0 = (-2, -1) \iff z_0$, $v_1 = (0, 1) \iff z_1$ and $v_2 = (1, 0) \iff z_2$. We get that the vector $2.v_0 + 1.v_1 + 1.v_2 + = (-3, -1) \in \tau$. Then we can write τ with v_0 and v_1 as $\tau = \frac{3}{2}v_0 + \frac{1}{2}v_1$.

With this, we have that u' = (3/2, 1/2, 0) and u' - u = (-1/2, -1/2, -1). Finally

$$F_1 = (z_0^{-1/2}, z_0^{-1/2}, z_0^{-1}) (z_0^2, z_0 z_1, z_0 z_2^3) = (z_0^{3/2}, z_0^{1/2} z_1, z_2^3) \,.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Then, for the other statement we need:

Proposition (GMV)

Let *X* be a simplicial complete toric variety and $\phi : \mathbb{P}^n \to X$ be a dominant rational map such that $\operatorname{codim}(\phi^{-1}(\operatorname{Sing}(X))) \ge 2$. Then ϕ admits a complete polynomial lifting.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then, for the other statement we need:

Proposition (GMV)

Let *X* be a simplicial complete toric variety and $\phi : \mathbb{P}^n \to X$ be a dominant rational map such that $\operatorname{codim}(\phi^{-1}(\operatorname{Sing}(X))) \ge 2$. Then ϕ admits a complete polynomial lifting.

Pull-back of foliations of codimension one on surfaces.

Foliations induced by fibers of rational maps

Canonical sheaf

For a toric variety X_T^q , the canonical sheaf is given by $\omega_{X_T} = O_{X_T}(-\sum_{i=1}^m D_i)$ reflexive sheaf of rank $1 \rightsquigarrow [-\sum D_i] = K_X \in Cl(X_T)$ canonical Weil divisor class.

Volume form

The volume form Ω_X in X_T^q can be described in homogeneous coordinates as: $\Omega_X = i_{R_1} \dots i_{R_{m-q}} dz_1 \wedge \dots \wedge dz_m = \sum_{|I|=q} b_I \hat{z}_I dz_I \in H^0(X_T^q, \hat{\Omega}_{X_T}^q(-K_X)).$

Definition

Let $F : \mathbb{P}^n \to X_T^q$ be a rational map with a complete lifting of degree \bar{e} . Write \mathcal{F}_F for the foliation given by the fibers of F:

- \mathcal{F}_F is a singular projective foliation of codimension q.
- \mathcal{F}_F is represented by the twisted *q*-form $F^*(\Omega_X)$.

Pull-back of foliations of codimension one on surfaces.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Foliations induced by fibers of rational maps

Canonical sheaf

For a toric variety X_T^q , the canonical sheaf is given by $\omega_{X_T} = O_{X_T}(-\sum_{i=1}^m D_i)$ reflexive sheaf of rank $1 \rightsquigarrow [-\sum D_i] = K_X \in Cl(X_T)$ canonical Weil divisor class.

Volume form

The volume form Ω_X in X_T^q can be described in homogeneous coordinates as: $\Omega_X = i_{R_1} \dots i_{R_{m-q}} dz_1 \wedge \dots \wedge dz_m = \sum_{|I|=q} b_I \hat{z}_I dz_I \in H^0(X_T^q, \hat{\Omega}_{X_T}^q(-K_X)).$

Definition

Let $F : \mathbb{P}^n \to X_T^q$ be a rational map with a complete lifting of degree \bar{e} . Write \mathcal{F}_F for the foliation given by the fibers of F:

- \mathcal{F}_F is a singular projective foliation of codimension q.
- \mathcal{F}_F is represented by the twisted *q*-form $F^*(\Omega_X)$.

Varieties of foliations given by fibers

We consider the following rational map:

$$\phi_{\bar{e},X}:\bigoplus_{i=1}^{m} \mathbb{P}(H^{0}(\mathbb{P}^{n}, O(e_{i})) \dashrightarrow \mathcal{F}_{q}(\mathbb{P}^{n}, \sum e_{i})$$
$$(F_{1}, \dots, F_{m}) \mapsto \omega = F^{*}\Omega_{X}.$$

Define $\mathcal{R}_q(n, X, \bar{e}) \subset \mathcal{F}_q(\mathbb{P}^n, \sum e_i)$ as the Zariski closure of the image of $\phi_{\bar{e}, X}$.

Weighted projective case

If $X = \mathbb{P}^q(\bar{e})$, then $\mathcal{R}_q(n, X, \bar{e})$ determines an irreducible and generically reduced component of $\mathcal{F}_q(\mathbb{P}^n, \sum e_i)$ (Cukierman-Pereira-Vainsencher).

Proposition (GMV.)

Let X_T^q be a complete simplicial toric variety. Then $\mathcal{R}_q(n, X_T^q, \bar{e})$ fills an irreducible component of $\mathcal{F}_q(\mathbb{P}^n, \sum e_i)$ if and only if X_T^q is a weighted projective space or a fake weighted projective space.

Varieties of foliations given by fibers

We consider the following rational map:

$$\phi_{\bar{e},X}:\bigoplus_{i=1}^{m} \mathbb{P}(H^{0}(\mathbb{P}^{n}, O(e_{i})) \dashrightarrow \mathcal{F}_{q}(\mathbb{P}^{n}, \sum e_{i})$$
$$(F_{1}, \dots, F_{m}) \mapsto \omega = F^{*}\Omega_{X}.$$

Define $\mathcal{R}_q(n, X, \bar{e}) \subset \mathcal{F}_q(\mathbb{P}^n, \sum e_i)$ as the Zariski closure of the image of $\phi_{\bar{e}, X}$.

Weighted projective case

If $X = \mathbb{P}^q(\bar{e})$, then $\mathcal{R}_q(n, X, \bar{e})$ determines an irreducible and generically reduced component of $\mathcal{F}_q(\mathbb{P}^n, \sum e_i)$ (Cukierman-Pereira-Vainsencher).

Proposition (GMV.)

Let X_T^q be a complete simplicial toric variety. Then $\mathcal{R}_q(n, X_T^q, \bar{e})$ fills an irreducible component of $\mathcal{F}_q(\mathbb{P}^n, \sum e_i)$ if and only if X_T^q is a weighted projective space or a fake weighted projective space.

Definitions

Focus on the situation where $X = X_T^2$ a complete simplicial toric surface:

 $\mathcal{F}_1(X,D) \underset{\text{open}}{\subset} \mathbb{P}H^0(X,\hat{\Omega}^1_X(D)) \text{ because } \alpha \wedge d\alpha \in H^0(X,\hat{\Omega}^3_X(D^{\otimes 2})) = 0.$

• **Twisted 1-forms** $\hat{\Omega}_X^1(D)$: $\alpha = \sum A_i(z) dz_i$ with $i_{R_j}(\alpha) = \sum a_i^j z_i A_i = 0$.

• (Homogeneous) Vector fields $TX(D + K_X)$: $[Y] = \sum B_j \frac{\partial}{\partial z_j} \pmod{\sum f_i R_i}$. Assume $H^1(X, O_X(D + K_X)) = 0$.

Rational pull-backs

For $F : \mathbb{P}^n \to X$ with a polynomial lifting of degree $\overline{e} = (e_i)$, then

$$\omega = F^*(\alpha) = \sum_i A_i(F) dF_i \in \mathcal{F}_1(\mathbb{P}^n, \overline{d} \cdot \overline{e}),$$

where $\alpha \in \mathcal{F}_1(X, D)$ ("generic") and $D = \sum d_i D_i \in Eff(X)$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Definitions

Focus on the situation where $X = X_T^2$ a complete simplicial toric surface:

 $\mathcal{F}_1(X,D) \underset{\text{open}}{\subset} \mathbb{P}H^0(X,\hat{\Omega}^1_X(D)) \text{ because } \alpha \wedge d\alpha \in H^0(X,\hat{\Omega}^3_X(D^{\otimes 2})) = 0.$

• **Twisted 1-forms** $\hat{\Omega}_X^1(D)$: $\alpha = \sum A_i(z) dz_i$ with $i_{R_j}(\alpha) = \sum a_i^j z_i A_i = 0$.

• (Homogeneous) Vector fields $TX(D + K_X)$: $[Y] = \sum B_j \frac{\partial}{\partial z_j} \pmod{\sum f_i R_i}$. Assume $H^1(X, O_X(D + K_X)) = 0$.

Rational pull-backs

For $F : \mathbb{P}^n \to X$ with a polynomial lifting of degree $\bar{e} = (e_i)$, then

$$\omega = F^*(\alpha) = \sum_i A_i(F) dF_i \in \mathcal{F}_1(\mathbb{P}^n, \overline{d} \cdot \overline{e}),$$

where $\alpha \in \mathcal{F}_1(X, D)$ ("generic") and $D = \sum d_i D_i \in Eff(X)$.

Pull-back of foliations of codimension one on surfaces.

Varieties of foliations given by pull-backs

Definition

$$\phi = \phi_{(\bar{e},D)} : \mathcal{F}_1(X,D) \times \left(\prod_{i=1}^m H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(e_i)) \setminus \tilde{Z} \right) / G \longrightarrow \mathcal{F}_1(\mathbb{P}^n, \bar{d} \cdot \bar{e})$$
$$(\alpha, (F_1, \dots, F_m)) \longmapsto \omega = F^*(\alpha).$$

and define $PB_1(n, X, D, \bar{e}) = \overline{Im(\phi_{(\bar{e},D)})}$ (Zariski closure)

*PB*₁(*n*, ℙ², *d*, *e*) irreducible component of 𝓕₁(ℙⁿ, *d* · *e*) (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D = -K_X$)

The variety $PB_1(n, X, -K_X, \bar{e})$ is contained in the variety of logarithmic foliations $\mathcal{L}_1(n, \bar{e})$. Moreover, $PB_1(n, X, -K_X, \bar{e})$ coincides with $\mathcal{L}_1(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

・ロト・西・・川田・三日・

Pull-back of foliations of codimension one on surfaces.

Varieties of foliations given by pull-backs

Definition

$$\phi = \phi_{(\bar{e},D)} : \mathcal{F}_1(X,D) \times \left(\prod_{i=1}^m H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(e_i)) \setminus \tilde{Z} \right) / G \longrightarrow \mathcal{F}_1(\mathbb{P}^n, \bar{d} \cdot \bar{e})$$
$$(\alpha, (F_1, \dots, F_m)) \longmapsto \omega = F^*(\alpha).$$

and define $PB_1(n, X, D, \bar{e}) = \overline{Im(\phi_{(\bar{e},D)})}$ (Zariski closure)

*PB*₁(*n*, ℙ², *d*, *e*) irreducible component of *F*₁(ℙⁿ, *d* · *e*) (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D = -K_X$)

The variety $PB_1(n, X, -K_X, \bar{e})$ is contained in the variety of logarithmic foliations $\mathcal{L}_1(n, \bar{e})$. Moreover, $PB_1(n, X, -K_X, \bar{e})$ coincides with $\mathcal{L}_1(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

Pull-back of foliations of codimension one on surfaces.

Varieties of foliations given by pull-backs

Definition

$$\phi = \phi_{(\bar{e},D)} : \mathcal{F}_1(X,D) \times \left(\prod_{i=1}^m H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(e_i)) \setminus \tilde{Z} \right) / G \longrightarrow \mathcal{F}_1(\mathbb{P}^n, \bar{d} \cdot \bar{e})$$
$$(\alpha, (F_1, \dots, F_m)) \longmapsto \omega = F^*(\alpha).$$

and define $PB_1(n, X, D, \bar{e}) = \overline{Im(\phi_{(\bar{e},D)})}$ (Zariski closure)

*PB*₁(*n*, P², *d*, *e*) irreducible component of *F*₁(Pⁿ, *d* · *e*) (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D = -K_X$)

The variety $PB_1(n, X, -K_X, \bar{e})$ is contained in the variety of logarithmic foliations $\mathcal{L}_1(n, \bar{e})$. Moreover, $PB_1(n, X, -K_X, \bar{e})$ coincides with $\mathcal{L}_1(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

Pull-back of foliations of codimension one on surfaces.

Varieties of foliations given by pull-backs

Definition

$$\phi = \phi_{(\bar{e},D)} : \mathcal{F}_1(X,D) \times \left(\prod_{i=1}^m H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(e_i)) \setminus \tilde{Z} \right) / G \longrightarrow \mathcal{F}_1(\mathbb{P}^n, \bar{d} \cdot \bar{e})$$
$$(\alpha, (F_1, \dots, F_m)) \longmapsto \omega = F^*(\alpha).$$

and define $PB_1(n, X, D, \bar{e}) = \overline{Im(\phi_{(\bar{e},D)})}$ (Zariski closure)

*PB*₁(*n*, P², *d*, *e*) irreducible component of *F*₁(Pⁿ, *d* · *e*) (Cerveau-Lins Neto-Edixhoven).

Proposition (GMV.) (Degree $D = -K_X$)

The variety $PB_1(n, X, -K_X, \bar{e})$ is contained in the variety of logarithmic foliations $\mathcal{L}_1(n, \bar{e})$. Moreover, $PB_1(n, X, -K_X, \bar{e})$ coincides with $\mathcal{L}_1(n, \bar{e})$ if and only if X is a weighted projective surface or a fake weighted projective surface.

Pull-back of foliations of codimension one on surfaces.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Genericity conditions

Notation:
$$\alpha = \sum_{i=1}^{m} A_i(z) dz_i \in H^0(X_T^2, \hat{\Omega}^1(D))$$
 and $F : \mathbb{P}^n \to X_T^2$.

Definition

The pair (F, α) is *generic* if the following holds:

- **1** The critical values of F, $C_V(F)$, are such that $C_V(F) \cap Sing(\alpha) = \emptyset$. Also, $Sing(\omega)$ is reduced along C(F) (the critical points of F).
- (1) $C(\alpha)$ is radical $(\sqrt{C(\alpha)} = C(\alpha))$ and has codimension ≥ 2 .
- **①** The affine variety associated to the ideal $C(d\alpha)$ has codimension ≥ 3 , that is $K(\alpha) = C(\alpha)$.

Kupka set of foliations on toric surfaces

A generic foliation on \mathbb{P}^2 has all of its singular points of Kupka type.

When a foliation on $\mathbb{P}^2(a_i)$ has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field $[Y] = [\sum_{j=0}^{2} B_j \frac{\partial}{\partial z_j}] \in H^0(\mathbb{P}^2(a_i), T\mathbb{P}^2(a_i) \otimes O(\ell))$ induces a foliation with all its singular points of Kupka type if and only if $\ell + a_0 \equiv 0(a_i)$ or $\ell + a_1 \equiv 0(a_i)$ or $\ell + a_2 \equiv 0(a_i) \forall i$. Moreover, in that case, $Sing(\alpha) = \mathcal{K}(\alpha)$.

Idea: In homogeneous coordinates, we can assume that div(Y) = 0. Then we use: $d(i_Y \Omega_{\mathbb{P}^2(a_0,a_1,a_2)}) = div(Y) \Omega_{\mathbb{P}^2(a_0,a_1,a_2)} + \ell(\iota_Y dz_0 \wedge dz_1 \wedge dz_2) = \ell(\iota_Y dz_0 \wedge dz_1 \wedge dz_2).$

Kupka set of foliations on toric surfaces

A generic foliation on \mathbb{P}^2 has all of its singular points of Kupka type.

When a foliation on $\mathbb{P}^2(a_i)$ has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field $[Y] = [\sum_{j=0}^{2} B_j \frac{\partial}{\partial z_j}] \in H^0(\mathbb{P}^2(a_i), T\mathbb{P}^2(a_i) \otimes O(\ell))$ induces a foliation with all its singular points of Kupka type if and only if $\ell + a_0 \equiv 0(a_i)$ or $\ell + a_1 \equiv 0(a_i)$ or $\ell + a_2 \equiv 0(a_i) \forall i$. Moreover, in that case, $Sing(\alpha) = \mathcal{K}(\alpha)$.

Idea: In homogeneous coordinates, we can assume that div(Y) = 0. Then we use: $d(i_Y \Omega_{\mathbb{P}^2(a_0,a_1,a_2)}) = div(Y) \Omega_{\mathbb{P}^2(a_0,a_1,a_2)} + \ell(\iota_Y dz_0 \wedge dz_1 \wedge dz_2) = \ell(\iota_Y dz_0 \wedge dz_1 \wedge dz_2).$

Kupka set of foliations on toric surfaces

A generic foliation on \mathbb{P}^2 has all of its singular points of Kupka type.

When a foliation on $\mathbb{P}^2(a_i)$ has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field $[Y] = [\sum_{j=0}^{2} B_j \frac{\partial}{\partial z_j}] \in H^0(\mathbb{P}^2(a_i), T\mathbb{P}^2(a_i) \otimes O(\ell))$ induces a foliation with all its singular points of Kupka type if and only if $\ell + a_0 \equiv 0(a_i)$ or $\ell + a_1 \equiv 0(a_i)$ or $\ell + a_2 \equiv 0(a_i) \forall i$. Moreover, in that case, $Sing(\alpha) = \mathcal{K}(\alpha)$.

Idea: In homogeneous coordinates, we can assume that div(Y) = 0. Then we use: $d(i_Y \Omega_{\mathbb{P}^2(a_0,a_1,a_2)}) = div(Y) \Omega_{\mathbb{P}^2(a_0,a_1,a_2)} + \ell(\iota_Y dz_0 \wedge dz_1 \wedge dz_2) = \ell(\iota_Y dz_0 \wedge dz_1 \wedge dz_2).$

▲□▶▲□▶▲□▶▲□▶ □ のQで

When a foliation in a regular toric surface has all of its singular points of Kupka type?

Theorem (GMV.)

Let *X* be a regular toric surface and $\mathcal{L} \in Pic(X)$ such that $TX(\mathcal{L})$ is generated on global sections. If $Y \in H^0(X, TX(\mathcal{L}))$ is generic, then

$$\alpha = i_Y i_{R_1} \dots i_{R_{m-2}} dz_1 \wedge \dots \wedge dz_m \in H^0(X, \hat{\Omega}^1_X(\mathcal{L} - K_X))$$

has all its singular points in X of Kupka type. Moreover $(C(\alpha) : I_Z^{\infty}) = (K(\alpha) : I_Z^{\infty})$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

When a foliation in a regular toric surface has all of its singular points of Kupka type?

Theorem (GMV.)

Let *X* be a regular toric surface and $\mathcal{L} \in Pic(X)$ such that $TX(\mathcal{L})$ is generated on global sections. If $Y \in H^0(X, TX(\mathcal{L}))$ is generic, then

$$\alpha = i_Y i_{R_1} \dots i_{R_{m-2}} dz_1 \wedge \dots \wedge dz_m \in H^0(X, \hat{\Omega}^1_X(\mathcal{L} - K_X))$$

has all its singular points in X of Kupka type. Moreover $(C(\alpha) : I_Z^{\infty}) = (K(\alpha) : I_Z^{\infty})$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

When a foliation in a regular toric surface has all of its singular points of Kupka type?

Theorem (GMV.)

Let *X* be a regular toric surface and $\mathcal{L} \in Pic(X)$ such that $TX(\mathcal{L})$ is generated on global sections. If $Y \in H^0(X, TX(\mathcal{L}))$ is generic, then

$$\alpha = i_Y i_{R_1} \dots i_{R_{m-2}} dz_1 \wedge \dots \wedge dz_m \in H^0(X, \hat{\Omega}^1_X(\mathcal{L} - K_X))$$

has all its singular points in X of Kupka type. Moreover $(C(\alpha) : I_Z^{\infty}) = (K(\alpha) : I_Z^{\infty})$.

Pull-back of foliations of codimension one on surfaces.

What about the singular scheme of $\omega = F^*(\alpha)$?

Lemma

Let (F, α) be an generic pair in X_T^2 . Then (if m > 3)

$$Sing_{set}(\omega) = \bigcup_{\substack{p_j \in Sing(\alpha)}} \overline{F^{-1}(p_j)} \cup \bigcup_{\substack{\text{certain}((k,l))\\ \mathcal{K}_{set}(\omega)}} \{F_k = F_l = 0\} \cup C(F, \alpha) \cup \bigcup_{\substack{\text{certain}\\(i,j)}} \{F_i = F_j = 0\}.$$

Theorem (GMV.)

Let (F, α) be an generic pair in X_T^2 , with $F^* : S_X \to S_{\mathbb{P}^n}$ flat. Then $K(\omega) = F^*(K(\alpha))$.

Corollary (GMV.)

Let (F, α) be a generic pair in X_T^2 with F flat. Then the Kupka ideal of $\omega = F^*(\alpha)$ is $K(\omega) = \langle A_1(F), \ldots, A_m(F) \rangle$. In addition, $Sing(\omega) = \mathcal{K}(\omega) \cup C(F, \alpha)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pull-back of foliations of codimension one on surfaces.

What about the singular scheme of $\omega = F^*(\alpha)$?

Lemma

Let (F, α) be an generic pair in X_T^2 . Then (if m > 3)

$$Sing_{set}(\omega) = \bigcup_{\substack{p_j \in Sing(\alpha)}} \overline{F^{-1}(p_j)} \cup \bigcup_{\substack{\text{certain}((k,l))\\ \mathcal{K}_{set}(\omega)}} \{F_k = F_l = 0\} \cup C(F, \alpha) \cup \bigcup_{\substack{\text{certain}\\(i,j)}} \{F_i = F_j = 0\}.$$

Theorem (GMV.)

Let (F, α) be an generic pair in X_T^2 , with $F^* : S_X \to S_{\mathbb{P}^n}$ flat. Then $K(\omega) = F^*(K(\alpha))$.

Corollary (GMV.)

Let (F, α) be a generic pair in X_T^2 with F flat. Then the Kupka ideal of $\omega = F^*(\alpha)$ is $K(\omega) = \langle A_1(F), \dots, A_m(F) \rangle$. In addition, $Sing(\omega) = \mathcal{K}(\omega) \cup C(F, \alpha)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ � � �

Pull-back of foliations of codimension one on surfaces.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Regarding deformations of $\omega = F^*(\alpha)$

Consider a first order deformation of $\omega = F^*(\alpha)$ of the following form: $(F + \varepsilon G)^*(\alpha + \varepsilon \beta) = F^*(\alpha) + \varepsilon \eta$:

Zariski derivative of the natural parametrization:

$$d\phi_{(\alpha,F)}(\beta,G) = \underbrace{\left(\sum_{i} \nabla A_i(F) \cdot GdF_i + \sum_{i} A_i(F)dG_i\right)}_{(\Gamma_i - GM_i - \Gamma_i(F))} + \underbrace{\sum_{\eta_2 = F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta)}_{\eta_2 = F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta)}_{(\Gamma_i - GM_i) = F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\alpha + \varepsilon\beta) = F^*(\alpha) + \varepsilon F^*(\beta) \sim (F)^*(\beta + \varepsilon\beta) = F^*(\beta) \sim (F)^*(\beta + \varepsilon\beta)$$

 $\eta_1 \sim (F + \varepsilon G)^*(\alpha) = F^*(\alpha) + \varepsilon \eta_1$

Remark

Since $\mathcal{F}_F \prec \mathcal{F}_{F^*\alpha}$ we have: $F^*(\Omega_X) \wedge F^*(\alpha) = 0$ and also

 $F^*(\Omega_X) \wedge \eta_2 = 0.$

These deformations preserve the subfoliation given by the fibers of F.

Pull-back of foliations of codimension one on surfaces.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Regarding deformations of $\omega = F^*(\alpha)$

Consider a first order deformation of $\omega = F^*(\alpha)$ of the following form: $(F + \varepsilon G)^*(\alpha + \varepsilon \beta) = F^*(\alpha) + \varepsilon \eta$:

Zariski derivative of the natural parametrization:

$$d\phi_{(\alpha,F)}(\beta,G) = \underbrace{\left(\sum_{i} \nabla A_i(F) \cdot GdF_i + \sum_{i} A_i(F)dG_i\right)}_{\eta_1 \sim (F + \varepsilon G)^*(\alpha) = F^*(\alpha) + \varepsilon \eta_1} + \underbrace{\sum_{i} B_i(F)dF_i}_{\eta_2 = F^*(\beta) \sim (F)^*(\alpha + \varepsilon \beta) = F^*(\alpha) + \varepsilon F^*(\beta)}$$

Remark

Since $\mathcal{F}_F \prec \mathcal{F}_{F^*\alpha}$ we have: $F^*(\Omega_X) \wedge F^*(\alpha) = 0$ and also

 $F^*(\Omega_X) \wedge \eta_2 = 0.$

These deformations preserve the subfoliation given by the fibers of F.

Pull-back of foliations of codimension one on surfaces.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Regarding deformations of $\omega = F^*(\alpha)$

Consider a first order deformation of $\omega = F^*(\alpha)$ of the following form: $(F + \varepsilon G)^*(\alpha + \varepsilon \beta) = F^*(\alpha) + \varepsilon \eta$:

Zariski derivative of the natural parametrization:

$$d\phi_{(\alpha,F)}(\beta,G) = \underbrace{\left(\sum_{i} \nabla A_i(F) \cdot GdF_i + \sum_{i} A_i(F)dG_i\right)}_{\eta_1 \sim (F + \varepsilon G)^*(\alpha) = F^*(\alpha) + \varepsilon \eta_1} + \underbrace{\sum_{i} B_i(F)dF_i}_{\eta_2 = F^*(\beta) \sim (F)^*(\alpha + \varepsilon \beta) = F^*(\alpha) + \varepsilon F^*(\beta)}$$

Remark

Since $\mathcal{F}_F \prec \mathcal{F}_{F^*\alpha}$ we have: $F^*(\Omega_X) \wedge F^*(\alpha) = 0$ and also

 $F^*(\Omega_X) \wedge \eta_2 = 0.$

These deformations preserve the subfoliation given by the fibers of F.

▲□▶▲□▶▲□▶▲□▶ □ のQで

We said that we wanted to solve this problem:

Problem

For (α, F) generic and $\omega = F^*(\alpha)$, when $D(\omega) = \text{Im}(d\phi_{(\alpha,F)})$? Meaning that $\eta \in D(\omega)$ is of the form $\eta = \eta_1 + \eta_2$ as before?

Theorem (GMV.)

Let $X = X_T^q$, $\alpha \in H^0(X, \hat{\Omega}_X^1(D))$ integrable, $F : \mathbb{P}^n \to X$ dominant and $\omega = F^*(\alpha)$. If $\eta \in D(\omega)$, then $F^*(\Omega_X) \land \eta = 0$ iff $\eta = F^*(\beta)$, meaning that η is of type η_2

▲□▶▲□▶▲□▶▲□▶ □ ● ●

We said that we wanted to solve this problem:

Problem

For (α, F) generic and $\omega = F^*(\alpha)$, when $D(\omega) = \text{Im}(d\phi_{(\alpha,F)})$? Meaning that $\eta \in D(\omega)$ is of the form $\eta = \eta_1 + \eta_2$ as before?

Theorem (GMV.)

Let $X = X_T^q$, $\alpha \in H^0(X, \hat{\Omega}_X^1(D))$ integrable, $F : \mathbb{P}^n \to X$ dominant and $\omega = F^*(\alpha)$. If $\eta \in D(\omega)$, then $F^*(\Omega_X) \land \eta = 0$ iff $\eta = F^*(\beta)$, meaning that η is of type η_2

イロト 不得 トイヨト イヨト ニヨー

Deformations from unfoldings in the pull-back case

Recall that:

$$0 \longrightarrow IF(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega)$$
$$(h, \eta) \longmapsto \eta$$

Theorem (GMV.)

Let
$$F : \mathbb{P}^n \dashrightarrow X_T^2$$
, $\alpha \in \mathcal{F}_1(X_T^2, D)$, and $\omega = F^*(\alpha)$.

Let (F, α) be a generic pair with F flat, then $\eta \in D(\omega)$ comes from a first order unfolding iff η is of type η_1 . Also:

 $I_U(F^*(\alpha)) = K(F^*(\alpha)) = \langle A_i(F) \rangle_i$

Deformations from unfoldings in the pull-back case

Recall that:

$$0 \longrightarrow IF(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega)$$
$$(h, \eta) \longmapsto \eta$$

Theorem (GMV.)

Let
$$F : \mathbb{P}^n \to X_T^2$$
, $\alpha \in \mathcal{F}_1(X_T^2, D)$, and $\omega = F^*(\alpha)$.

Let (F, α) be a generic pair with *F* flat, then $\eta \in D(\omega)$ comes from a first order unfolding iff η is of type η_1 . Also:

 $I_U(F^*(\alpha)) = K(F^*(\alpha)) = \langle A_i(F) \rangle_i$

Deformations from unfoldings in the pull-back case

Recall that:

$$0 \longrightarrow IF(\omega) \longrightarrow U(\omega) \longrightarrow D(\omega)$$
$$(h, \eta) \longmapsto \eta$$

Theorem (GMV.)

Let
$$F : \mathbb{P}^n \dashrightarrow X_T^2$$
, $\alpha \in \mathcal{F}_1(X_T^2, D)$, and $\omega = F^*(\alpha)$.

Let (F, α) be a generic pair with F flat, then $\eta \in D(\omega)$ comes from a first order unfolding iff η is of type η_1 . Also:

 $I_U(F^*(\alpha)) = K(F^*(\alpha)) = \langle A_i(F) \rangle_i$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Thanks!

Questions?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Thanks!

Questions?