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Codimension 1 foliations in Pn

A codimension one foliation in Pn is given by a 1-differential form

ω ∈ H0(Ω1
Pn (e))

that verifies the Frobenius integrability condition

ω ∧ dω = 0.

Such forms define a projective variety (the moduli (or parameter) space of
foliations)

F 1(Pn)(e).
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How do you define this parameter space of foliations?

Just consider the development of ω in terms of its scalar coefficients ai,α:

ω =

n∑
i=0

Aidxi =
∑

i=0,|α|=e−1

ai,αxαdxi

and compute the equation ω ∧ dω = 0.

This equation will return many homogeneous (degree two) equations in the
coefficients ai,α:

ω∧ dω =
∑
i,j,k

Ai(
∂Ak

∂xj
−
∂Aj

∂xk
) dxi ∧ dxj ∧ dxk =

∑
i,j,k

Eqijk(ai,αi , aj,αj , ak,αk ) dxi ∧ dxj ∧ dxk

Then you have that

F 1(Pn)(e) = 〈Eqijk(ai,αi , aj,αj , ak,αk ) = 0〉 ⊂ PN ,

where N is N = (n + 1)
(

n+e−1
e−1

)
.
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We are intereseted in knowing how is this variety made: F 1(Pn)(e).

Meaning: what are its irreducible components?

What do we know? Not much.

• degree 0 = e-2 : 1 component (of rational type)
• degree 1 : 2 components, one of rational type and one of logarithmic type
• degree 2 : 6 componentes, 2 rationals, 2 logarithmic, 1 pull-back form P2,

exceptional component [Cerveau, D. and Lins Neto, A., 1996]
• degree 3: a recent article from Jorge Vitorio Pereira, Ruben Lizarbe and Raphael

Constant they shows that it has at least 24 components.
• degree ≥ 4: ?!?!
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What are the components that appear in degrees ≤ 2?

Rational foliations R(n, (r, s)) ⊂ F 1(Pn)(e)

ωR = rF dG − sG dF

where F,G are homogeneous polynomials of degrees r and s respectively and
r + s = e.

Logarithmic foliations L(n, (d1, . . . , ds)) ⊂ F 1(Pn)(e)

ωL =

 s∏
i=1

fi

  s∑
i=1

λi
dfi
fi

 =
∑

λiFidfi

where fi is homogeneous of degree di,
∑

di = e y
∑

diλi = 0. We denote Fi =
∏

j,i fj.
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Exceptional componente E(n) ⊂ F 1(Pn)(e).

Obtained as the particular action of the affine Lie algebra C on P3.

Linear Pullbacks from P2 L(e, n) ⊂ F 1(Pn)(e).

Let F be a foliation of degree e in P2 and L : Pn //P2 a rational map induced by a
linear submersion Cn+1 //C3 . Then L∗(F ) ∈ F 1(Pn, e).
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How can you prove that a family of foliations define an irreducible component of
F 1(Pn, e)?

One idea is as follows: you consider a generic element of your family and look at it
first order deformations. If you can parametrize your family in such a way that the
differential of the parametrization is surjective, then you just discover an irreducible
component of your space.

For example: a Rational Foliation ωR is of the form ωR = r F dG − s G dF
where F,G are homogeneous polynomials of degrees r and s respectively and
r + s = e.

You can parametrize such foliations as

H0(OPn (r) ⊕ OPn (s))
φ // R(n, (r, s))

(F,G) � // rFdG − sGdF
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How is a first order deformation of ωR = r F dG − s G dF? Is of the form

ω′R = rF′ dG − sGdF′ or ω′R = rFdG′ − sG′ dF

where F′ is a polynomial of degree r and G′ a polynomial of degree s.

Since the differential of the parametrization map is surjective, then we have an
irreducible component of F 1(Pn, e).



Review of Foliations Toric varieties, foliations and rational maps. Pull-back of foliations of codimension one on surfaces.

How is a first order deformation of ωR = r F dG − s G dF? Is of the form

ω′R = rF′ dG − sGdF′ or ω′R = rFdG′ − sG′ dF

where F′ is a polynomial of degree r and G′ a polynomial of degree s.

Since the differential of the parametrization map is surjective, then we have an
irreducible component of F 1(Pn, e).



Review of Foliations Toric varieties, foliations and rational maps. Pull-back of foliations of codimension one on surfaces.

Regarding the component of Linear Pullbacks, Cervau, Lins-Neto, Edixhoven,
extended the result obtained in the paper of 1996, showing in 2001 that the pullback
from P2 by any rational map to Pn defines an irreducible component of F 1(Pn, e).

How did they do this?

The proof use analytic methods (it’s not algebraic).

So, we tried to make an algebraic proof of that statement. We couldn’t do that, but by
taking that path we acquired a lot of insight in what’s going on.
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What exactly we were trying to do?

We tried to prove the stability of pullback foliations from P2 to Pn by rational maps

Pn F
P2 and also we were considering maps Pn F //X to toric surfaces X to see

if we were able to discover some new irreducible component.

How did we thought we could do that?

Let’s consider a rational map with a polynomial lifting F : Pn d X, where X is a toric
surface. And consider α ∈ H0(Ω1

X(D)) whereD is a Weild divisor of X.

If you could prove that an infinitesimal perturbation of the pullback foliation
ω = F∗(α) is given by:

i) a deformation of the map F

ii) a deformation of the differential form α
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Then we would be ok. Because we were able to classify the deformations of the map
F and of the differential form α.

How did we do that?

We did that by considering first order deformations and first order unfoldings of a
foliation.

What are those?
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There are two ways of making a first order perturbation of ω ∈ Ω1
Pn |C(e) such that

ω ∧ dω = 0:

Deformations Unfoldings

D(ω) = TωF 1(Pn)(e) U(ω)

Pn

ω
i //

��

Pn × D

��

ωε ∈ Ω1
Pn×D|D(e)�i∗oo

Spec(C) // D

Pn

ω
i //

��

Pn × D

��

ω̃ε ∈ Ω1
Pn×D|C(e)�i∗oo

Spec(C) // Spec(C)

where D = Spec(C[ε]/ε2) and ωε ∧ dωε = 0 and ω̃ε ∧ ω̃ε = 0.

The geometric idea is that a deformation defines a foliation for every fixed parameter
ε and an unfolding is a foliation in Pn × Spec(D).
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ω ∧ dω = 0:

Deformations Unfoldings

D(ω) = TωF 1(Pn)(e) U(ω)

Pn

ω
i //

��

Pn × D

��

ωε ∈ Ω1
Pn×D|D(e)�i∗oo

Spec(C) // D

Pn

ω
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��

Pn × D

��

ω̃ε ∈ Ω1
Pn×D|C(e)�i∗oo

Spec(C) // Spec(C)

where D = Spec(C[ε]/ε2) and ωε ∧ dωε = 0 and ω̃ε ∧ ω̃ε = 0.

The geometric idea is that a deformation defines a foliation for every fixed parameter
ε and an unfolding is a foliation in Pn × Spec(D).
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Both types of perturbations can be written as:

ωε = ω + εη (deformations)
ω̃ε = ω + εη + hdε (unfoldings)

The integrability condition applied to ωε and ω̃ε allows to parametrize D(ω) and
U(ω) as

D(ω) =
{
η ∈ H0(Ω1

Pn (e)) : ω ∧ dη + dω ∧ η = 0
}
/C.ω

U(ω) =
{
(h, η) ∈ H0((OPn ×Ω1

Pn )(e)) : hdω = ω ∧ (η − dh)
}
/C.(0, ω)

In particular we have:

0 // IF(ω) // U(ω) // D(ω)
(h, η) � // η

So, when a first order deformation comes from a first order unfolding?
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The theory of unfoldings of codimension one foliations was developed in the 80’s by
Tatsuo Suwa in a local analytic setting

For $ ∈ Ω1
Cn+1,p a germ of an integrable differential 1-form, we have

Uh($) =
{
(h, η) ∈ OCn+1,p ×Ω1

Cn+1,p : h d$ = $ ∧ (η − dh)
} /
C.(0, $).

The projection to the first coordinate

Uh($)
π1 // OCn+1,p

(h, η) � // h

defines an ideal Ih($) of OCn+1,p.
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For a generic $ there is an isomorphism between,

Uh($) ' Ih($).

This fact was used by T. Suwa to classify unfoldings of rational and logarithmic
foliations.

More or less the same can be reproduced in the algebraic setting (A. M.). I mean, we
can also define a graded ideal I(ω) ⊂ S = C[x0, . . . , xn] such that

U(ω) ' I(ω)(e).

and deal with the perturbations defined by unfoldings in terms of an ideal instead of
pairs verifying a differential equation

(h, η) : hdω = ω ∧ (η − dh)
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What about the singular locus of a codimension 1 foliation in Pn?

As you may know, every global differential form has singular points in Pn (Jouanolou,
Equations de Pfaff algebriques). The integrability condition ω ∧ dω = 0 makes that
set to have codimension ≥ 2. Why?

Because of the Koszul complex associated to ω:

K•(ω) : S ω∧ // Ω1
S

ω∧ // Ω2
S

ω∧ // . . .

We clearly have that dω ∈ Z2(K•(ω)) and, by a matter of degrees, we also have that
[dω] , 0 in H2(K•(ω)).

Our statement comes from:

The following are equivalent (Malgrange, Frobenius avec singularites, I):
i) codim(Sing(ω)) ≥ k

ii) H`(K•(ω)) = 0,∀` < k
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What can you have in the singular locus in codimension 2?

There is the Kupka set, defined as

Kset(ω) = {p ∈ Sing(ω) : dω(p) , 0}

That set has the following properties:
i) It is generically smooth of codimension 2

ii) It is stable under deformations
iii) Locally, around p ∈ Kset(ω), ω has a normal form. It can be written as the

pullback of a differential form in C2
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In a work with C. Massri and F. Quallbrunn (The Kupka scheme and unfoldings) we
gave a scheme structure to (the clousure of) the Kupka set.

Let us denote as C(η) the ideal defined by the polynomial coefficients of the given
differential form. Then, C(ω) is the ideal of the singular locus of ω.

Writing ω as

ω =

n∑
i=0

Ai dxi ⇒ C(ω) = (A0, . . . ,An) .

We defined the Kupka scheme as the projective variety defined by the following
homogeneous ideal:

K(ω) = (C(ω) : C(dω)) .
And we proved:
• If ω is ‘generic’ then √

I(ω) =
√

K(ω)
• If the singular locus of ω is radical then

K(ω) = Kset(ω) , ∅ .

(which was the first existence theorem for the Kupka set)
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Toric varieties

Xq
T a simplicial complete toric variety of dimension q.

Definition

A toric variety is an algebraic variety X which contains a torus T ' (C∗)q as a Zariski open set,
in such way that the natural action of T on itself extends to an algebraic action of T on X.
Examples: Pn, Pn(ā), Pn1 × · · · × Pnq ,Hr, ...

Guiding principle:

• Xq
T “geometric object”! Σ fan “simplicial and combinatorial object” .

• Xq
T ! S ring of homogeneous coordinates
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Cox ring

Ingredients for Xq
T :

1 Σ(1) = {v1, . . . , vm} ⊂ Z
q, m = |Σ(1)| (skeleton).

2 a = {aj = (aj
1, . . . , a

j
m)}m−q

j=1 basis of relations among the rays:
∑m

i=1 aj
ivi = 0

 (charge matrix).
3 Σ(d)... d ≥ 2 (rest of the fan, exceptional set Z).

There is S = C[z1, . . . , zm] homogeneous coordinate ring such that:

a vi ∈ Σ(1) we have Di a T-invariant divisor (zi = 0).
b Cl(X) ' Zm−q×H, deg(zi) = [Di] 7→ (ai = (a1

i , . . . , a
m−q
i ), hi) ∈ Zm−q×H.

c S =
⊕

D∈Cl(X) SD is Cl(X)-graded (Cox ring).
d A quasi coherent sheaf of OXq

T
is given by a graded S-module M. A subvariety of

Xq
T by an homogeneous ideal I ⊂ S.
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How to describe foliations on Xq
T?

Let X be normal variety. A singular foliation of dimension t (or codimension
k = q − t) on X is a nonzero coherent subsheaf F ⊂ TX of generic rank t which is
closed under [, ] and saturated: TX/F torsion free.

Idea: “Dualizing we need a line bundle and a twisted differential form on the
regular part of Xq

T”
• j : Xr ↪→ X, codim(X − Xr) ≥ 2 and has finite quotient singularities.
• Ω̂•X := (Ω•X)∨∨ = j∗(Ω•Xr

) (Zariski forms).

Toric Euler sequence:

0→ Ω̂1
X → ⊕

m
i=1OX(−Di)→ Cl(X) ⊗ OX → 0

Radial Euler fields

Rj =
∑m

i=1 aj
izi

∂
∂zi

with j = 1, . . . ,m − q.

We consider: α ∈ H0(X, Ω̂k
X × OX(D)) satisfying certain equations

 Ker(α) = F ⊂ TX .
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Idea: “Dualizing we need a line bundle and a twisted differential form on the
regular part of Xq

T”
• j : Xr ↪→ X, codim(X − Xr) ≥ 2 and has finite quotient singularities.
• Ω̂•X := (Ω•X)∨∨ = j∗(Ω•Xr

) (Zariski forms).

Toric Euler sequence:

0→ Ω̂1
X → ⊕

m
i=1OX(−Di)→ Cl(X) ⊗ OX → 0

Radial Euler fields

Rj =
∑m

i=1 aj
izi

∂
∂zi

with j = 1, . . . ,m − q.

We consider: α ∈ H0(X, Ω̂k
X × OX(D)) satisfying certain equations

 Ker(α) = F ⊂ TX .
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Parameter spaces of singular toric foliations

Conditions in Cox coordinates for α ∈ H0(X, Ω̂k
X(D)) with D =

∑
diDi:

1 α =
∑

AIdzi1 ∧ · · · ∧ dzik ∈ Ωk
S of degree D 7→

∑
diai (Multi-homogeneity)

2 iRj (α) = 0 (∀j = 1, . . . ,m − q) (Descent conditions)

3 iv(α) ∧ α = 0 (∀v ∈
∧k−1 Cm) (Plücker’s decomposability conditions)

4 iv(α) ∧ dα = 0 (∀v ∈
∧k−1 Cm) (Integrability conditions)

Parameter spaces for toric foliations

Fk(X,D) = {[α] ∈ P(H0(X, Ω̂k
X(D))) : α satisfies (3), (4) and codim(S(α)) ≥ 2}
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Rational maps. What about F : Pn d Xq
T ?

Rational maps in Cox coordinates:

Let e1v1 + · · · + emvm = 0 be a relation among the rays of X = Xq
T . Every F = (F1, . . . ,Fm) ∈ C[x0, . . . , xn]m

such that Fi is homogeneous of degree ei, induces a rational map F̃ : Pn d X that fits in the diagram

Cn+1 − {0}

π

��

F // Cm − Z

πX

��
Pn F̃ // X

• (Cox) If X is smooth, every regular map F̃ : Pn → X arises from
F : Cn+1 − {0} → Cm − Z.

• (Brown-Buczyński) Every rational map φ : Y d X between two toric varieties
admits a complete description in Cox coordinates (formal roots).

• (GMV.) If Xq
T is a smooth variety with a cone of maximal dimension, then every

dominant rational φ : Pn d Xq
T admits a complete polynomial lifting:

F : Cn+1 − {0}d Cm − Z. In other cases, we need codim(φ−1(Sing(Xq
T ))) ≥ 2.
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• (Brown-Buczyński) Every rational map φ : Y d X between two toric varieties
admits a complete description in Cox coordinates (formal roots).

• (GMV.) If Xq
T is a smooth variety with a cone of maximal dimension, then every

dominant rational φ : Pn d Xq
T admits a complete polynomial lifting:

F : Cn+1 − {0}d Cm − Z. In other cases, we need codim(φ−1(Sing(Xq
T ))) ≥ 2.



Review of Foliations Toric varieties, foliations and rational maps. Pull-back of foliations of codimension one on surfaces.

What does complete means?

It means that the lifting has the right base locus. That is:

Reg(φ) = Pn\π({F−1(Z)})

How did we do this?

Proposition (GMV)

If X is a smooth variety with a cone of maximal dimension, then every dominant rational
φ : Pn d X admits a complete polynomial lifting: F : Cn+1 − {0}d Cm − Z.

By considering the cone of maximal dimension we get that exists an open set
Uσ ' C

q. Then we just dehomogenize and homogenize there and we get the
polynomial lifting F : Cn\{0}d Cm\Z.

To see that the lifting is complete is more tricky.
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For that (following Brown-Buczyński):

suppose F′ is a polynomial lifting wich is not defined along V(f ), where f is an
irreducible polynomial.

Let ui = multf (F′i ) be the multiplicity of F′i along f and τ = Cone(vi1 , . . . , vik ) ∈ ΣX be
the cone of minimal dimension satisfying

∑m
i=1 uivi ∈ τ. Let u′ ∈ Qm

+ satisfy u′k = 0 for
k < {i1, . . . , ik} and

∑m
i=1 uivi =

∑k
j=1 u′ij vij . By construction,

F1 =
(
f u′1−u1 , . . . , f u′m−um

)
· F′

is a multi-valued lifting.

Moreover, F1 does not have a general point of V(f ) in its base locus. Since τ is a
smooth cone, we can assume that u′ ∈ Nm and therefore F1 is polynomial. Applying
this algorithm a finite number of times we get a complete polynomial lifting F as
claimed.
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An example:

consider the map P2 d P(1, 1, 2) defined in homogeneous coordinates by
F = (z2

0, z0z1, z0z3
2).

Then if we consider the polynomial f = z0 we get that the multiplicities are given by
the vector u = (2, 1, 1).

Since we can generate the fan of P2(1, 1, 2) with the rays: v0 = (−2,−1)! z0,
v1 = (0, 1)! z1 and v2 = (1, 0)! z2. We get that the vector
2.v0 + 1.v1 + 1.v2+ = (−3,−1) ∈ τ. Then we can write τ with v0 and v1 as
τ = 3

2 v0 + 1
2 v1.

With this, we have that u′ = (3/2, 1/2, 0) and u′ − u = (−1/2,−1/2,−1). Finally

F1 = (z−1/2
0 , z−1/2

0 , z−1
0 ) (z2

0, z0z1, z0z3
2) = (z3/2

0 , z1/2
0 z1, z3

2) .

We see that F contracts the divisor {z0 = 0} into the singular point [0 : 0 : 1] and does
not admit a complete polynomial lifting.
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Then, for the other statement we need:

Proposition (GMV)

Let X be a simplicial complete toric variety and φ : Pn d X be a dominant rational map such
that codim(φ−1(Sing(X))) ≥ 2. Then φ admits a complete polynomial lifting.
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Foliations induced by fibers of rational maps

Canonical sheaf

For a toric variety Xq
T , the canonical sheaf is given by ωXT = OXT (−

∑m
i=1 Di) reflexive sheaf of

rank 1 [−
∑

Di] = KX ∈ Cl(XT ) canonical Weil divisor class.

Volume form

The volume form ΩX in Xq
T can be described in homogeneous coordinates as:

ΩX = iR1 . . . iRm−q dz1 ∧ · · · ∧ dzm =
∑
|I|=q bI ẑIdzI ∈ H0(Xq

T , Ω̂
q
XT

(−KX)).

Definition

Let F : Pn d Xq
T be a rational map with a complete lifting of degree ē. Write FF for the

foliation given by the fibers of F:

• FF is a singular projective foliation of codimension q.

• FF is represented by the twisted q-form F∗(ΩX).
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Varieties of foliations given by fibers

We consider the following rational map:

φē,X :
m⊕

i=1

P(H0(Pn,O(ei))d Fq(Pn,
∑

ei)

(F1, . . . ,Fm) 7→ ω = F∗ΩX .

Define Rq(n,X, ē) ⊂ Fq(Pn,
∑

ei) as the Zariski closure of the image of φē,X .

Weighted projective case

If X = Pq(ē), then Rq(n,X, ē) determines an irreducible and generically reduced component of
Fq(Pn,

∑
ei) (Cukierman-Pereira-Vainsencher).

Proposition (GMV.)

Let Xq
T be a complete simplicial toric variety. Then Rq(n,Xq

T , ē) fills an irreducible
component of Fq(Pn,

∑
ei) if and only if Xq

T is a weighted projective space or a fake
weighted projective space.
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Definitions

Focus on the situtation where X = X2
T a complete simplicial toric surface:

F1(X,D) ⊂
open
PH0(X, Ω̂1

X(D)) because α ∧ dα ∈ H0(X, Ω̂3
X(D⊗2)) = 0.

• Twisted 1-forms Ω̂1
X(D): α =

∑
Ai(z)dzi with iRj (α) =

∑
aj

iziAi = 0.

• (Homogeneous) Vector fields TX(D + KX): [Y] =
∑

Bj
∂
∂zj

(mod
∑

fiRi). Assume
H1(X,OX(D + KX)) = 0.

Rational pull-backs

For F : Pn d X with a polynomial lifting of degree ē = (ei), then

ω = F∗(α) =
∑

i

Ai(F)dFi ∈ F1(Pn, d̄ · ē),

where α ∈ F1(X,D) (“generic”) and D =
∑

diDi ∈ Eff (X).
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Varieties of foliations given by pull-backs

Definition

φ = φ(ē,D) : F1(X,D) ×

 m∏
i=1

H0(Pn,OPn (ei))\Z̃

 /G − −→ F1(Pn, d̄ · ē)

(α, (F1, . . . ,Fm)) 7−→ ω = F∗(α).

and define PB1(n,X,D, ē) = Im(φ(ē,D)) (Zariski closure)

• PB1(n,P2, d, e) irreducible component of F1(Pn, d · e) (Cerveau-Lins
Neto-Edixhoven).

Proposition (GMV.) (Degree D = −KX)

The variety PB1(n,X,−KX , ē) is contained in the variety of logarithmic foliations
L1(n, ē). Moreover, PB1(n,X,−KX , ē) coincides with L1(n, ē) if and only if X is a
weighted projective surface or a fake weighted projective surface.
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Genericity conditions

Notation: α =
∑m

i=1 Ai(z)dzi ∈ H0(X2
T , Ω̂

1(D)) and F : Pn d X2
T .

Definition

The pair (F, α) is generic if the following holds:

I The critical values of F, CV (F), are such that CV (F) ∩ Sing(α) = ∅. Also, Sing(ω) is
reduced along C(F) (the critical points of F).

II C(α) is radical (
√
C(α) = C(α)) and has codimension ≥ 2.

III The affine variety associated to the ideal C(dα) has codimension ≥ 3, that is K(α) = C(α).
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Kupka set of foliations on toric surfaces

A generic foliation on P2 has all of its singular points of Kupka type.

When a foliation on P2(ai) has all of its singular points of Kupka type?

Theorem (GMV.)

A generic vector field [Y] = [
∑2

j=0 Bj
∂
∂zj

] ∈ H0(P2(ai),TP2(ai) ⊗ O(`)) induces a foliation with
all its singular points of Kupka type if and only if ` + a0 ≡ 0(ai) or ` + a1 ≡ 0(ai) or
` + a2 ≡ 0(ai) ∀i. Moreover, in that case, Sing(α) = K(α).

Idea: In homogeneous coordinates, we can assume that div(Y) = 0. Then we use:
d
(
iYΩP2(a0,a1,a2)

)
= div(Y)ΩP2(a0,a1,a2) + `(ıYdz0 ∧ dz1 ∧ dz2) = `(ıYdz0 ∧ dz1 ∧ dz2).
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When a foliation in a regular toric surface has all of its singular points of Kupka
type?

Theorem (GMV.)

Let X be a regular toric surface and L ∈ Pic(X) such that TX (L) is generated on global
sections. If Y ∈ H0(X,TX (L)) is generic, then

α = iY iR1 . . . iRm−2 dz1 ∧ . . . ∧ dzm ∈ H0(X, Ω̂1
X(L − KX))

has all its singular points in X of Kupka type. Moreover (C(α) : I∞Z ) = (K(α) : I∞Z ).
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What about the singular scheme of ω = F∗(α)?

Lemma

Let (F, α) be an generic pair in X2
T . Then (if m > 3)

Singset(ω) =
⋃

pj∈Sing(α)

F−1(pj) ∪
⋃

certain((k,l))

{Fk = Fl = 0}

︸                                              ︷︷                                              ︸
Kset(ω)

∪ C(F, α) ∪
⋃
certain

(i,j)

{Fi = Fj = 0}.

Theorem (GMV.)

Let (F, α) be an generic pair in X2
T , with F∗ : SX → SPn flat. Then K(ω) = F∗(K(α)).

Corollary (GMV.)

Let (F, α) be a generic pair in X2
T with F flat. Then the Kupka ideal of ω = F∗(α) is

K(ω) = 〈A1(F), . . . ,Am(F)〉. In addition, Sing(ω) = K(ω) ∪ C(F, α).
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Regarding deformations of ω = F∗(α)

Consider a first order deformation of ω = F∗(α) of the following form:
(F + εG)∗(α + εβ) = F∗(α) + ε η :

Zariski derivative of the natural parametrization:

dφ(α,F)(β,G) =

∑
i

∇Ai(F) · GdFi +
∑

i

Ai(F)dGi

︸                                        ︷︷                                        ︸
η1 ∼ (F+εG)∗(α)=F∗(α)+εη1

+
∑

Bi(F)dFi︸         ︷︷         ︸
η2=F∗(β)∼ (F)∗(α+εβ)=F∗(α)+εF∗(β)

Remark

Since FF ≺ FF∗α we have: F∗(ΩX) ∧ F∗(α) = 0 and also

F∗(ΩX) ∧ η2 = 0.

These deformations preserve the subfoliation given by the fibers of F.
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We said that we wanted to solve this problem:

Problem

For (α,F) generic and ω = F∗(α), when D(ω) = Im(dφ(α,F)) ? Meaning that η ∈ D(ω)
is of the form η = η1 + η2 as before?

Theorem (GMV.)

Let X = Xq
T , α ∈ H0(X, Ω̂1

X(D)) integrable, F : Pn d X dominant and ω = F∗(α). If
η ∈ D(ω), then F∗(ΩX) ∧ η = 0 iff η = F∗(β), meaning that η is of type η2
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Deformations from unfoldings in the pull-back case

Recall that:

0 // IF(ω) // U(ω) // D(ω)
(h, η) � // η

Theorem (GMV.)

Let F : Pn d X2
T , α ∈ F1(X2

T ,D), and ω = F∗(α).

Let (F, α) be a generic pair with F flat, then η ∈ D(ω) comes from a first order
unfolding iff η is of type η1. Also:

IU(F∗(α)) = K(F∗(α)) = 〈Ai(F)〉i
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