Higher dimensional Calabi-Yau varieties of Kummer type

Dominik Burek

Faculty of Mathematics and Computer Science of the Jagiellonian University

dominik.burek@uj.edu.pl

April 9, 2021

Calabi-Yau manifold is a complex, smooth, projective (kähler) d-fold X satisfying

- $\bullet K_X = \mathcal{O}_X,$
- $e H^i \mathcal{O}_X = 0 \text{ for } 0 < i < d.$

Equivalently:

- **1** there are no global holomorphic i-forms on X,
- **2** there exists a nowhere vanishing holomorphic d-form on X.

Let X be a singular complex algebraic variety (with canonical line bundle) and (\widetilde{X}, π) a resolution of X with the map $\pi \colon \widetilde{X} \to X$. We say that that \widetilde{X} is a crepant resolution of X if

$$\pi^*(K_X) = K_{\widetilde{X}}.$$

Theorem (Klein)

Let G be any finite subgroup of $SL_2(\mathbb{C})$. Then surface \mathbb{C}^2/G admits a crepant resolution.

Surfaces $\mathbb{C}^2/_G$ are called Kleinian singularities or Du Val surface singularities. There is a 1–1 correspondence between non-trivial finite subgroups $G \subset SL_2(\mathbb{C})$ and Dynkin diagrams of type $A_k (k \ge 1)$, $D_k (k \ge 4)$, E_6 , E_7 and E_8 .

The correspondence between Kleinian singularities $\mathbb{C}^2/_G$, Dynkin diagrams and other areas of mathematics is known as the McKay correspondence.

Theorem (Roan)

Let G be a finite subgroup of $SL_3(\mathbb{C})$. Then $\mathbb{C}^3/_G$ admits a crepant resolution.

For a subgroup $\{-1,+1\} \subseteq SL_4(\mathbb{C})$, variety $\mathbb{C}^4/\{-1,+1\}$ does not admit any crepant resolution!

Cynk-Hulek's Kummer type construction

Let \mathbb{Z}_d be the cyclic group of order d.

Theorem (Cynk-Hulek)

Let E_d be an elliptic curve with an order d automorphism $\phi_d \colon E_d \mapsto E_d$, for d = 2, 3, 4. For any $n \in \mathbb{N}$, let

$$G_{d,n} := \{(m_1, m_2, \dots, m_n) \in \mathbb{Z}_d^n : m_1 + m_2 + \dots + m_n = 0\} \simeq \mathbb{Z}_d^{n-1}$$

acts on E_d^n by $\phi_d^{m_i}$ on the *i*-th factor. There exists a crepant resolution

Consequently, $X_{d,n} := \frac{\widetilde{E_d^n}}{G_{d,n}}$ is an *n*-dimensional Calabi-Yau manifold.

 S. Cynk, K. Hulek, Higher-dimensional modular Calabi-Yau manifolds, Canad. Math. Bull. 50 (2007), 486–503. Let X_1, X_2 be two Calabi-Yau manifolds with automorphisms $\eta_i \colon X_i \to X_i$ (for i = 1, 2) of order 6 such that

$$\eta_1^*\left(\omega_{X_1}\right) = \zeta_6 \omega_{X_1} \quad \text{and} \quad \eta_2^*\left(\omega_{X_2}\right) = \zeta_6^5 \omega_{X_2},$$

where ω_{X_i} denotes a chosen generator of $H^{n,0}(X_i)$, for i = 1, 2. Assume that:

- the fixed point locus $Fix(\eta_1)$ of η_1 is a disjoint union of smooth divisors, in particular η_1 has linearisation of the form $(\zeta_6, 1, 1, \ldots, 1)$ near any point of $Fix(\eta_1)$,
- Since (η_2) is a disjoint union of submanifolds of codimension at most 3. In particular η_2 has linearisation of the form
 - $(\zeta_6^5, 1, 1, \dots, 1)$ near a component of codimension one of $\operatorname{Fix}(\eta_2)$,
 - $(\zeta_6^4, \zeta_6, 1, 1, \dots, 1)$ or $(\zeta_6^3, \zeta_6^2, 1, 1, \dots, 1)$ near a component of codimension two of $Fix(\eta_2)$,

- Fix $(\eta_1^2) \setminus Fix(\eta_1)$ is a disjoint union of smooth divisors in particular η_1^2 has linearisation $(\zeta_3, 1, 1, ..., 1)$ along any component of Fix $(\eta_1^2) \setminus Fix(\eta_1)$,
- Fix $(\eta_1^3) \setminus Fix(\eta_1)$ is a disjoint union of smooth divisors in particular η_1^3 has linearisation (-1, 1, 1, ..., 1) along any component of Fix $(\eta_1^3) \setminus Fix(\eta_1)$,
- Fix $(\eta_2^2) \setminus Fix(\eta_2)$ is a disjoint union of smooth submanifolds of codimension at most 2, so η_2^2 has linearisation of the form $(\zeta_3^2, 1, 1, \ldots, 1)$ or $(\zeta_3, \zeta_3, 1, 1, \ldots, 1)$ along any component of $Fix(\eta_2^2) \setminus Fix(\eta_2)$,
- Fix $(\eta_2^3) \setminus \text{Fix}(\eta_2)$ is a disjoint union of smooth divisors, so η_2^3 has linearisation of the form (-1, 1, 1, ..., 1) along any component of Fix $(\eta_2^3) \setminus \text{Fix}(\eta_2)$,
- the automorphism η_2 has a local linearisation of the form $(\zeta_6^2, \zeta_6^2, \zeta_6, 1, 1, \ldots, 1)$ along any codimensional 3 component of $Fix(\eta_2)$.

Proposition

Under the above assumptions the quotient $X_1 \times X_2/\eta_1 \times \eta_2$ admits a crepant resolution of singularities $X_1 \times X_2/\eta_1 \times \eta_2$. Furthermore $\operatorname{id} \times \eta_2$ induces an automorphism of order 6 on $X_1 \times X_2/\eta_1 \times \eta_2$ that satisfies all assumption we put on η_2 .

The automorphism $\eta := \eta_1 \times \eta_2$ has a local linearisation around any fixed point of one of the following types:

- $(\zeta_6, \zeta_6^5, 1, 1, \dots, 1)$ which corresponds to singularity of type $\frac{1}{6}(1,5)$,
- 2 $(\zeta_6, \zeta_6, \zeta_6^4, 1, 1, \dots, 1)$ which corresponds to singularity of type $\frac{1}{6}(1, 1, 4)$,
- $(\zeta_6, \zeta_6^2, \zeta_6^3, 1, 1, \dots, 1)$ which corresponds to singularity of type $\frac{1}{6}(1, 2, 3)$,
- $(\zeta_6, \zeta_6, \zeta_6^2, \zeta_6^2, 1, 1, \dots, 1)$ which corresponds to singularity of type $\frac{1}{6}(1, 1, 2, 2)$.

• If η has a local linearisation given by $(\zeta_6, \zeta_6^5, 1, 1, \dots, 1)$ near $Fix(\eta)$, then in local coordinates, the map from $X_1 \times X_2$ to the resolution is given in affine charts by

$$\left(x^6, \frac{y}{x^5}\right), \ \left(\frac{x^5}{y}, \frac{y^2}{x^4}\right), \ \left(\frac{x^4}{y^2}, \frac{y^3}{x^3}\right), \ \left(\frac{x^3}{y^3}, \frac{y^4}{x^2}\right), \ \left(\frac{x^2}{y^4}, \frac{y^5}{x}\right) \text{ or } \left(\frac{x}{y^5}, y^6\right).$$

The action of $id \times \eta_2$ has a linearisation $(1, \zeta_6^5, 1, \ldots, 1)$, so it lifts to the resolution as $(1, \zeta_6^5)$, (ζ_6, ζ_6^4) , (ζ_6^2, ζ_6^3) , (ζ_6^3, ζ_6^2) , (ζ_6^4, ζ_6) and $(\zeta_6^5, 1)$, respectively.

Proof

2 If η has a local linearisation given by $(\zeta_6, \zeta_6, \zeta_6^4, 1, 1, \dots, 1)$ near $Fix(\eta)$, then we can use a toric resolution of $\frac{1}{6}(1, 1, 4)$ singularity.

A. Crew, M. Reid, *How to calculate* A-*Hilb* C³, Geometry of toric varieties, 129–154, Séminaires et Congrés 6, SMF, Paris, 2002.

Proof

2 If η has a local linearisation given by $(\zeta_6, \zeta_6, \zeta_6^4, 1, 1, \dots, 1)$ near $Fix(\eta)$, then we can use a toric resolution of $\frac{1}{6}(1, 1, 4)$ singularity.

A. Crew, M. Reid, How to calculate A-Hilb C³, Geometry of toric varieties, 129−154, Séminaires et Congrés 6, SMF, Paris, 2002. Thus the map from $X_1 \times X_2$ to the resolution is given in affine charts as

$$\begin{split} & \left(x^6, \frac{y}{x}, \frac{z}{x^4}\right), \quad \left(\frac{x^4}{z}, \frac{y}{x}, \frac{z^2}{x^2}\right), \quad \left(\frac{x^2}{z^2}, \frac{y}{x}, z^3\right), \quad \left(\frac{x}{y}, y^6, \frac{z}{y^4}\right), \\ & \left(\frac{x}{y}, \frac{y^4}{z}, \frac{z^2}{y^2}\right) \quad \text{or} \quad \left(\frac{x}{y}, \frac{y^2}{z^2}, z^3\right). \end{split}$$

Therefore the action of $id \times \eta_2$ lifts to the resolution as $(1, \zeta_6, \zeta_6^4)$, $(\zeta_6^2, \zeta_6, \zeta_6^2)$, $(\zeta_6^4, \zeta_6, 1)$, $(\zeta_6^5, 1, 1)$, $(\zeta_6^5, 1, 1)$, $(\zeta_6^5, 1, 1)$.

Proof

• If η has a local linearisation given by $(\zeta_6, \zeta_6^2, \zeta_6^3, 1, 1, \ldots, 1)$ near $Fix(\eta)$, then we use again toric resolution of $\frac{1}{6}(1, 2, 3)$ singularity. There are five different decompositions of junior simplex which give a toric resolution.

The map from $X_1 \times X_2$ to the resolution is given in affine charts as:

$$\begin{pmatrix} x^6, \frac{z}{x^3}, \frac{y}{x^2} \end{pmatrix}, \quad \left(\frac{x^3}{z}, z^2, \frac{y}{x^2}\right), \quad \left(\frac{x^2}{y}, z^2, \frac{y^2}{xz}\right), \quad \left(\frac{xz}{y^2}, z^2, \frac{y^3}{z^2}\right), \\ \left(\frac{z^2}{y^3}, y^3, \frac{xy}{z}\right) \quad \text{or} \quad \left(\frac{z}{xy}, y^3, \frac{x^2}{y}\right).$$

The action of $\mathrm{id} \times \eta_2$ has a local linearisation $(1, \zeta_6^2, \zeta_6^3, 1, \ldots, 1)$, hence it lifts to the resolution as $(1, \zeta_6^3, \zeta_6^2), \, (\zeta_6^3, 1, \zeta_6^2), \, (\zeta_6^4, 1, \zeta_6), \, (\zeta_6^5, 1, 1), \, (1, 1, \zeta_6^5), \, (\zeta_6, 1, \zeta_6^4),$ respectively.

• If η has a local linearisation given by $(\zeta_6, \zeta_6, \zeta_6^2, \zeta_6^2, 1, 1, \dots, 1)$ near $Fix(\eta_2)$.

• If η has a local linearisation given by $(\zeta_6, \zeta_6, \zeta_6^2, \zeta_6^2, 1, 1, \dots, 1)$ near $Fix(\eta_2)$.

• If η has a local linearisation given by $(\zeta_6, \zeta_6, \zeta_6^2, \zeta_6^2, 1, 1, \dots, 1)$ near $Fix(\eta_2)$.

Proof

The map is given by

$$\begin{pmatrix} x^6, \frac{y}{x}, \frac{z}{x^2}, \frac{t}{x^2} \end{pmatrix}, \quad \left(\frac{x^2}{z}, \frac{y}{x}, z^3, \frac{t}{z} \right), \quad \left(\frac{x^2}{t}, \frac{y}{x}, t^3, \frac{z}{t} \right), \quad \left(\frac{x}{y}, y^6, \frac{z}{y^2}, \frac{t}{y^2} \right),$$

$$\begin{pmatrix} \frac{x}{y}, \frac{y^2}{z}, z^3, \frac{t}{z} \end{pmatrix} \quad \text{or} \quad \left(\frac{x}{y}, \frac{y^2}{t}, \frac{z}{t}, t^3 \right).$$

The action of $id \times \eta_2$ has a local linearisation $(1, \zeta_6, \zeta_6^2, \zeta_6^2, 1, 1, \dots, 1)$, hence it lifts to the resolution as $(1, \zeta_6, \zeta_6^2, \zeta_6^2)$, $(\zeta_6^4, \zeta_6, 1, 1)$, $(\zeta_6^5, 1, 1, 1)$.

Finally near the points of $\operatorname{Fix}(\eta^2) \setminus \operatorname{Fix}(\eta)$ and $\operatorname{Fix}(\eta^3) \setminus \operatorname{Fix}(\eta)$ we first consider the quotient $X_1 \times X_2/\eta^2$ (resp. $X_1 \times X_2/\eta^3$), we construct crepant resolutions of

Cynk-Hulek's Kummer type construction for d = 6

Let X_1, X_2, \ldots, X_n be Calabi-Yau manifolds with automorphisms ϕ_i of order 6 such that

- $\phi_i^*(\omega_{X_i}) = \zeta_6 \omega_{X_i}$ where ω_{X_i} is a canonical form on X_i ,
- ϕ_1 satisfies the assumptions we put on η_1 in proposition,
- ϕ_i^5 satisfies, for $i=2,\ldots,n$, the assumptions we put on η_2 in proposition.

Proposition

The quotient of the product $X_1 \times X_2 \times \ldots \times X_n$ by the action of $G_{6,n}$ has a crepant resolution of singularities which is a Calabi-Yau manifold and such that the action of \mathbb{Z}_6^n on $X_1 \times X_2 \times \ldots \times X_n$ lifts to a purely non-symplectic action of \mathbb{Z}_6 on this resolution.

Theorem

There exists a crepant resolution

 $\widetilde{E_6^n}_{/G_6} \to \widetilde{E_6^n}_{/G_6.n}$

Theorem

Let S_d be a K3 surface admitting a purely non-symplectic automorphism α_S of order d = 2, 3, 4, 6. Let E_d be an elliptic curve admitting an automorphism α_{E_d} of order d. Then $S_d \times E_d / \alpha_{S_d} \times \alpha_{E_d}^{n-1}$, is a singular variety which admits a crepant resolution of singularities $S_d \times E_d / \alpha_{S_d} \times \alpha_{E_d}^{d-1}$. In particular $S_d \times E_d / \alpha_{S_d} \times \alpha_{E_d}^{d-1}$ is a Calabi-Yau threefold.

- C. Voisin, *Miroirs et involutions sur les surfaces* K3, Astérisque, (218):273–323, 1993. Journées de Géométrie Algébrique d'Orsay (Orsay, 1992).
- C. Borcea, K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, Mirror symmetry, II, 717–743, AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc. Providence, RI, 1997.
- A. Cattaneo, A. Garbagnati, *Calabi-Yau 3-folds of Borcea-Voisin type and elliptic fibrations*, Tohoku Math. J. **68** (2016), no. 4, 515–558.

Take $d \in \{2, 3, 4, 6\}$ and let S_d be a K3-surface with non-symplectic automorphism γ_d of order d. Moreover, let E_d be elliptic curves admitting automorphisms α_d of order d. The following group

$$G_{d,n} := \{(m_1, m_2, \dots, m_n) \in \mathbb{Z}_d^n : m_1 + m_2 + \dots + m_n = 0\} \simeq \mathbb{Z}_d^{n-1}$$

acts on $S_d \times E_d^{n-1}$ by $(\gamma_d)^{m_1}$ on the first factor and $\alpha_d^{m_i}$ on the *i*-th factor, where $2 \le i \le n$. Moreover $G_{d,n}$ preserves canonical bundle of $S_d \times E_d^{n-1}$.

Theorem

There exists crepant resolution $Y_{d,n}$ of the quotient variety $S_d \times E_d^{n-1}/G_{d,n}$. In particular $Y_{d,n}$ is (n+1)-dimensional Calabi-Yau variety.

For a variety $^{X/}{}_{G}$ define the Chen-Ruan cohomology by

$$H^{i,j}_{\mathrm{orb}}\left(X/_{G}\right) := \bigoplus_{[g]\in \mathrm{Conj}(G)} \left(\bigoplus_{U\in\Lambda(g)} H^{i-\mathrm{age}(g), \, j-\mathrm{age}(g)}(U)\right)^{\mathsf{C}(g)}$$

where $\operatorname{Conj}(G)$ is the set of conjugacy classes of G (we choose a representative g of each conjugacy class), C(g) is the centralizer of g, $\Lambda(g)$ denotes the set of irreducible connected components of the set fixed by $g \in G$ and $\operatorname{age}(g)$ is the age of the matrix of linearized action of g near a point of U.

The dimension of $H^{i,j}_{\mathrm{orb}}\left(X/_G\right)$ will be denoted by $h^{i,j}_{\mathrm{orb}}\left(X/_G\right)$ and it is called the orbifold Hodge number.

W. Chen, Y. Ruan, *A new cohomology theory of orbifold*, Comm. Math. Phys. **248(1)**, 1–31, 2004.

Consider $M \in GL_n(\mathbb{C})$ of finite order. Then M has eigenvalues $e^{2\pi i a_1}, e^{2\pi i a_2}, \ldots, e^{2\pi i a_m}$, where $a_1, a_2, \ldots, a_m \in [0, 1) \cap \mathbb{Q}$ are uniquely defined up to order. The value of the sum $a_1 + a_2 + \ldots + a_m$ is called the age of M and is denoted by age(M).

⁻heorem (Yasuda)

Let G be a finite group acting on an algebraic smooth variety X. If there exists a crepant resolution $X/_G$ of variety $X/_G$, then the following equality holds

$$h^{i,j}\left(\widetilde{X_{/G}}\right) = h^{i,j}_{\rm orb}\left(X_{/G}\right).$$

T. Yasuda, *Twisted jets, motivic measure and orbifold cohomology*, Compos. Math. **140** (2004), 396–422.

Consider $M \in GL_n(\mathbb{C})$ of finite order. Then M has eigenvalues $e^{2\pi i a_1}, e^{2\pi i a_2}, \ldots, e^{2\pi i a_m}$, where $a_1, a_2, \ldots, a_m \in [0, 1) \cap \mathbb{Q}$ are uniquely defined up to order. The value of the sum $a_1 + a_2 + \ldots + a_m$ is called the age of M and is denoted by age(M).

Theorem (Yasuda)

Let G be a finite group acting on an algebraic smooth variety X. If there exists a crepant resolution $\widetilde{X/_G}$ of variety $X/_G$, then the following equality holds

$$h^{i,j}\left(\widetilde{X_{/G}}\right) = h^{i,j}_{\rm orb}\left(X_{/G}\right).$$

T. Yasuda, *Twisted jets, motivic measure and orbifold cohomology*, Compos. Math. **140** (2004), 396–422.

Hodge numbers

Let X_i be a variety with automorphism $\phi_{i,d} \colon X_i \to X_i$ of order d for i = 1, 2, ..., n. Consider the following group

$$G_{d,n} := \{ (m_1, m_2, \dots, m_n) \in \mathbb{Z}_d^n : m_1 + m_2 + \dots + m_n = 0 \} \simeq \mathbb{Z}_d^{n-1}$$

which acts on $X_1 \times X_2 \times \ldots \times X_n$ by $\phi_{i,d}^{m_i}$ on the *i*-th factor. Suppose that there exists a crepant resolution $\widetilde{\mathcal{X}_{d,n}}$ of the quotient variety

$$\mathcal{X}_{d,n} := \frac{X_1 \times X_2 \times \ldots \times X_n}{\mathbb{Z}_d^{n-1}}.$$

Let

 $F_{X_i,k,j}(X,Y) :=$ Poincaré polynomial (in two variables X,Y) of $H^{**}\left(\operatorname{Fix}\left(\left(\phi_{i,d}\right)^k\right)_{\zeta_d^j}\right)$

for $i \in \{1, 2, \dots, n\}$ and $k, j \in \{0, 1, \dots, d-1\}$.

Assume that $\operatorname{Fix}(\phi_{i,d}^k)$ is a divisor. As

$$\operatorname{age}(\phi_{i,d}^{m_1} \times \phi_{i,d}^{m_2} \times \ldots \times \phi_{i,d}^{m_n}) = \frac{m_1 + m_2 + \ldots + m_n}{d}$$

we get the following

Theorem

$$h^{p,q}(\widetilde{\mathcal{X}_{d,n}}) = \sum_{j=0}^{d-1} \prod_{i=1}^{n} \left(\sum_{k=0}^{d-1} \sqrt[d]{(XY)^k} \cdot F_{X_i,k,j} \right) [X^p Y^q].$$

In order to compute $h^{p,q}(\widetilde{\mathcal{X}_{d,n}})$ we compute scalar product of vectors $v_{X_i,j}$ and

$$v_d := \left(1, \sqrt[d]{(XY)}, \sqrt[d]{(XY)^2}, \dots, \sqrt[d]{(XY)^{d-1}}\right)$$

for $1 \leq j \leq n$. Then we multiply all values of $v_{X_i,j} \circ v_d$ for $i \in \{1, 2, ..., n\}$ and add all products for $j \in \{0, 1, ..., d-1\}$.

Example – $X_{6,n}$

Let E_6 be an elliptic curve with the Weierstrass equation $y^2 = x^3 + 1$, and automorphism $\alpha_6(x, y) = (\zeta_6^2 x, -y)$, where ζ_6 denotes a fixed 6-th root of unity satisfying $\zeta_6^2 = \zeta_3$, then

$\frac{j}{k}$	0	1	2	3	4	5
0	$\boxed{1 + XY}$	X	0	0	0	Y
1	1	0	0	0	0	0
2	2	0	0	1	0	0
3	2	0	1	0	1	0
4	2	0	0	1	0	0
5	1	0	0	0	0	0

Table: $F_{E_6,k,j}(X,Y)$

$$\begin{split} h^{p,q}\left(\widetilde{E_{6}^{n}}/_{G_{6,n}}\right) &= \\ &= \left\{ \left((1+XY)\cdot\sqrt[6]{(XY)^{0}} + 1\cdot\sqrt[6]{XY} + 2\cdot\sqrt[6]{(XY)^{2}} + 2\cdot\sqrt[6]{(XY)^{3}} + 2\cdot\sqrt[6]{(XY)^{4}} + 1\cdot\sqrt[6]{(XY)^{5}}\right)^{n} + \right. \\ &+ \left(X\cdot\sqrt[6]{(XY)^{0}} + 0\cdot\sqrt[6]{XY} + 0\cdot\sqrt[6]{(XY)^{2}} + 0\cdot\sqrt[6]{(XY)^{3}} + 0\cdot\sqrt[6]{(XY)^{4}} + 0\cdot\sqrt[6]{(XY)^{5}}\right)^{n} + \\ &+ \left(0\cdot\sqrt[6]{(XY)^{0}} + 0\cdot\sqrt[6]{XY} + 0\cdot\sqrt[6]{(XY)^{2}} + 1\cdot\sqrt[6]{(XY)^{3}} + 0\cdot\sqrt[6]{(XY)^{4}} + 0\cdot\sqrt[6]{(XY)^{5}}\right)^{n} + \\ &+ \left(0\cdot\sqrt[6]{(XY)^{0}} + 0\cdot\sqrt[6]{XY} + 1\cdot\sqrt[6]{(XY)^{2}} + 0\cdot\sqrt[6]{(XY)^{3}} + 1\cdot\sqrt[6]{(XY)^{4}} + 0\cdot\sqrt[6]{(XY)^{5}}\right)^{n} + \\ &+ \left(0\cdot\sqrt[6]{(XY)^{0}} + 0\cdot\sqrt[6]{XY} + 0\cdot\sqrt[6]{(XY)^{2}} + 1\cdot\sqrt[6]{(XY)^{3}} + 0\cdot\sqrt[6]{(XY)^{4}} + 0\cdot\sqrt[6]{(XY)^{5}}\right)^{n} + \\ &+ \left(Y\cdot\sqrt[6]{(XY)^{0}} + 0\cdot\sqrt[6]{XY} + 0\cdot\sqrt[6]{(XY)^{2}} + 0\cdot\sqrt[6]{(XY)^{3}} + 0\cdot\sqrt[6]{(XY)^{4}} + 0\cdot\sqrt[6]{(XY)^{5}}\right)^{n} \right\} [X^{p}Y^{q}] = \\ &= \left\{ X^{n} + Y^{n} + \left(1 + XY + \sqrt[6]{XY} + 2\sqrt[6]{(XY)^{2}} + 2\sqrt[6]{(XY)^{3}} + 2\sqrt[6]{(XY)^{4}} + \sqrt[6]{(XY)^{5}}\right)^{n} + \\ &+ 2\cdot(XY)^{\frac{n}{2}} + \left(\sqrt[6]{(XY)^{2}} + \sqrt[6]{(XY)^{4}}\right)^{n} \right\} [X^{p}Y^{q}]. \end{split}$$

Example – $X_{6,n}$

Hodge numbers of $X_{d,n}$

Theorem

The Hodge number $h^{p,q}(X_{d,n}) = \left\{ F_{X_{d,n}}(X,Y) \right\} [X^p Y^q]$ of the manifold $X_{d,n}$ is equal to

$$\left\{ (X+Y)^n + \left(XY + 4\sqrt{XY} + 1 \right)^n \right\} [X^p Y^q] \qquad \qquad \text{if } d = 2,$$

$$\left\{X^n + Y^n + \left(1 + \sqrt[3]{XY}\right)^{3n}\right\} [X^p Y^q] \qquad \qquad \text{if } d = 3,$$

$$\begin{cases} X^{n} + Y^{n} + \left(1 + XY + 2\sqrt[4]{XY} + 3\sqrt[4]{(XY)^{2}} + 2\sqrt[4]{(XY)^{3}}\right)^{n} + \left(\sqrt[4]{(XY)^{2}}\right)^{n} \\ \\ \left\{X^{n} + Y^{n} + \left(1 + XY + \sqrt[6]{XY} + 2\sqrt[6]{(XY)^{2}} + 2\sqrt[6]{(XY)^{3}} + 2\sqrt[6]{(XY)^{4}} + \sqrt[6]{(XY)^{5}}\right)^{n} + 2 \cdot (XY)^{\frac{n}{2}} + \left(\sqrt[6]{(XY)^{2}} + \sqrt[6]{(XY)^{4}}\right)^{n} \\ \\ \right\} [X^{p}Y^{q}] \qquad \qquad \text{if } d = 6. \end{cases}$$

D. Burek, Higher-dimensional Calabi-Yau manifolds of Kummer type, Math. Nach. 4 (2020), 638–650. $X_{6,3}$

 $X_{6,4}$

Example – $Y_{3,n}$

- $S_3 K3$ surfaces with a non-symplectic automorphism $\gamma_3 \colon S_3 \to S_3$ of order 3,
- E_3 elliptic curve with the Weierstrass equation $y^2 = x^3 + 1$, and automorphism α_3 is given by $\alpha_3(x,y) = (\zeta_3 x, y)$,
- $r = \dim H^2(S_3, \mathbb{C})^{\gamma_3},$
- $m = \dim H^2(S_3, \mathbb{C})_{\zeta_3},$

• Fix
$$(\gamma_3)$$
 = Fix $(\gamma_3^2) = \{f_1, f_2, f_3\},\$

- Fix $(\gamma_3) = L_1 \cup L_2 \cup \ldots \cup L_{k-1} \cup C \cup \{P_1, P_2, \ldots, P_h\}$, where
 - the set $\{L_1, L_2, \ldots L_{k-1}\} \cup \{C\}$ consists of curves which are fixed by γ_3 together with the curve C of maximal genus g(C), in fact L_i are rational,
 - $\{P_1, P_2, \ldots, P_n\}$ is the set of points which are fixed by γ_3 .

In this case

$$\operatorname{age}(\phi_{i,d}^{m_1} \times \phi_{i,d}^{m_2} \times \ldots \times \phi_{i,d}^{m_n}) = \frac{m_1 + m_2 + \ldots + m_n}{d}$$

except the case of $m_1 = 1$ and an isolated fixed point when

$$age(\phi_{i,d}^{m_1} \times \phi_{i,d}^{m_2} \times \ldots \times \phi_{i,d}^{m_n}) = \frac{m_1 + m_2 + \ldots + m_n}{d} + 1$$

Example – $Y_{3,n}$

k j k	0	1	2
0	$(XY)^2 + r \cdot XY + 1$	$X^2 + (m-1) \cdot XY$	$Y^2 + (m-1) \cdot XY$
1	$k + h \cdot XY + g(C) \cdot (X + Y) + k \cdot XY$	0	0
2	$k + h + g(C) \cdot (X + Y) + k \cdot XY$	0	0

Table: $F_{S_3,k,j}(X,Y)$ with correction

k j	0	1	2			
0	1 + XY	X	Y			
1	3	0	0			
2	3	0	0			
Table: $F_{E_3,k,j}(X,Y)$						

$$\begin{split} & h^{p,q} \left(\overbrace{S_3 \times E_3^{n-1}/\mathbb{Z}_3^{n-1}} \right) = \left\{ \left(\left((XY)^2 + r \cdot XY + 1 \right) \cdot \sqrt[3]{(XY)^0} + \right. \\ & + \left(k + h \cdot XY + g(C) \cdot (X + Y) + k \cdot XY \right) \cdot \sqrt[3]{XY} + \left(k + h + g(C) \cdot (X + Y) + k \cdot XY \right) \cdot \sqrt[3]{(XY)^2} \right) \times \\ & \times \left((1 + XY) \cdot \sqrt[3]{(XY)^0} + 3 \cdot \sqrt[3]{XY} + 3 \cdot \sqrt[3]{(XY)^2} \right)^{n-1} + \\ & + \left((X^2 + (m-1) \cdot XY) \cdot \sqrt[3]{(XY)^0} + 0 \cdot \sqrt[3]{XY} + 0 \cdot \sqrt[3]{(XY)^2} \right) \cdot \left(X \cdot \sqrt[3]{(XY)^0} + 0 \cdot \sqrt[3]{XY} + 0 \cdot \sqrt[3]{(XY)^2} \right)^{n-1} + \\ & + \left((Y^2 + (m-1) \cdot XY) \cdot \sqrt[3]{(XY)^0} + 0 \cdot \sqrt[3]{XY} + 0 \cdot \sqrt[3]{(XY)^2} \right) \cdot \left(Y \cdot \sqrt[3]{(XY)^0} + 0 \cdot \sqrt[3]{XY} + 0 \cdot \sqrt[3]{(XY)^2} \right)^{n-1} + \\ & + \left((Y^2 + (m-1) \cdot XY) \cdot \sqrt[3]{(XY)^0} + 0 \cdot \sqrt[3]{XY} + 0 \cdot \sqrt[3]{(XY)^2} \right) \cdot \left(Y \cdot \sqrt[3]{(XY)^0} + 0 \cdot \sqrt[3]{XY} + 0 \cdot \sqrt[3]{(XY)^2} \right)^{n-1} \right\} [X^p Y^q] = \\ & = \left\{ \left((XY)^2 + r \cdot XY + 1 + \left(k + h \cdot XY + g(C) \cdot (X + Y) + k \cdot XY \right) \cdot \sqrt[3]{XY} + \left(k + h + g(C) \cdot (X + Y) + k \cdot XY \right) \cdot \sqrt[3]{(XY)^2} \right) \cdot \left(1 + XY + 3\sqrt[3]{XY} + 3\sqrt[3]{(XY)^2} \right)^{n-1} + \left(X^2 + (m-1) \cdot XY \right) \cdot X^{n-1} + \\ & + \left(Y^2 + (m-1) \cdot XY \right) \cdot Y^{n-1} \right\} [X^p Y^q] \end{split}$$

h^{1,1} = r + 3h + 6k + 1
h^{1,2} = m - 1 + 6g(C)

• $h^{1,1} = r + 6h + 21k + 20$ • $h^{2,2} = 2 + 42k + 30h + 20r$ • $h^{2,1} = 21g(C)$ • $h^{3,1} = m - 1$

1

1

Zeta functions

Let X_i be a variety with automorphism $\phi_{i,d} \colon X_i \to X_i$ of order d for i = 1, 2, ..., n. Consider the following group

$$G_{d,n} := \{(m_1, m_2, \dots, m_n) \in \mathbb{Z}_d^n : m_1 + m_2 + \dots + m_n = 0\} \simeq \mathbb{Z}_d^{n-1}$$

which acts on $X_1 \times X_2 \times \ldots \times X_n$ by $\phi_{i,d}^{m_i}$ on the *i*-th factor. Suppose that there exists a crepant resolution $\widetilde{\mathcal{X}_{d,n}}$ of the quotient variety

$$\mathcal{X}_{d,n} := \frac{X_1 \times X_2 \times \ldots \times X_n}{\mathbb{Z}_d^{n-1}}.$$

Let

$$Z_{X_i,k,j}(X,Y) := \prod_{\ell=0}^{2 \dim X_i} \det \left(1 - \operatorname{Frob}_q^* t \mid H^{**}\left(\operatorname{Fix}(\phi_{i,d}^k)_{\zeta_d^j}\right)\right)^{(-1)^{\ell+1}}$$
for $i \in \{1, 2, \dots, n\}$ and $k, j \in \{0, 1, \dots, d-1\}.$

Assume that $\operatorname{Fix}(\phi_{i,d}^k)$ is a divisor. Again using

$$\operatorname{age}(\phi_{i,d}^{m_1} \times \phi_{i,d}^{m_2} \times \ldots \times \phi_{i,d}^{m_n}) = \frac{m_1 + m_2 + \ldots + m_n}{d}$$

we get the following

Theorem

$$Z_q(\widetilde{\mathcal{X}_{d,n}}) = \left(\prod_{j=0}^{d-1} \bigotimes_{i=1}^n \left(\prod_{k=0}^{d-1} Z_{X_i,k,j}\left(q^{\frac{k}{d}}T\right)\right)\right)^{(-1)^{n+1}}$$

j	0	1	 j	 d-1
0	$Z_{X_i,0,0}$	$Z_{X_i,0,1}$	$Z_{X_i,0,j}$	$Z_{X_i,0,d-1}$
1	$Z_{X_{i},1,0}$	$Z_{X_{i},1,1}$	$Z_{X_i,1,j}$	$Z_{X_i,1,d-1}$
2	$Z_{X_{i},2,0}$	$Z_{X_i,2,1}$	 $Z_{X_i,2,j}$	 $Z_{X_i,2,d-1}$
÷	÷		÷	:
d-1	$Z_{X_i,d-1,0}$	$Z_{X_i,d-1,1}$	$Z_{X_i,d-1,j}$	$Z_{X_i,d-1,d-1}$

In order to compute $Z^q(\widetilde{\mathcal{X}_{d,n}})$ we evaluate vector $v_{X_i,j}$ on

$$v_d := \left(T, \sqrt[d]{q}T, \sqrt[d]{q^2}T, \dots, \sqrt[d]{q^{d-1}}T\right)$$

and multiply all its terms. Then we take tensor product for all $i \in \{1, 2, ..., n\}$ and take product over $j \in \{0, 1, ..., d-1\}$. Finally we take $(-1)^{n+1}$ power of the result.

Let S_6 be an elliptic K3 surface whose Weierstrass equation is

$$y^2 = x^3 + \lambda(z - 1)^2 z^5$$

with the following ζ_6 -action:

$$\alpha \colon (x,y,t) \to (\zeta_3^2 x,y,z).$$

Let E_6 be an elliptic curve E_6 with the Weierstrass equation $y^2 = x^3 + 1$ together with a non-symplectic automorphism of order 6.

Example

k j k	0	1	2	3	4	5
0	$\frac{1}{(1-T)(1-qT)}$	$1 - \alpha_q T$	1	1	1	$1 - \overline{\alpha_q}T$
1	$\frac{1}{1-T}$	1	1	1	1	1
2	$\frac{1}{(1-T)^2}$	1	1	$\frac{1}{1-T}$	1	1
3	$\frac{1}{(1-T)^2}$	1	$\frac{1}{1-T}$	1	$\frac{1}{1-T}$	1
4	$\frac{1}{(1-T)^2}$	1	1	$\frac{1}{1-T}$	1	1
5	$\frac{1}{1-T}$	1	1	1	1	1

Table: $Z_{E_6,,j}(T)$

Example

k j k	0	1	2	3	4	5
0	$\frac{1}{(1-T)(1-qT)^{19}(1-q^2T)}$	$\frac{1}{1-\beta_q T}$	1	$\frac{1}{1 - c_q q T}$	1	$\frac{1}{1-\overline{\beta_q}T}$
1	$\frac{1}{(1-T)^3(1-qT)^{18}}$	1	1	1	1	1
2	$\frac{1}{(1-T)^6(1-qT)^{15}}$	1	1	1	1	1
3	$\frac{1}{(1-T)^{10}(1-qT)^{10}}$	1	$1 - \delta_q T$	1	$1 - \overline{\delta_q}T$	1
4	$\frac{1}{(1-T)^{15}(1-qT)^6}$	1	1	1	1	1
5	$\frac{1}{(1-T)^{18}(1-qT)^3}$	1	1	1	1	1

Table: $Z_{S_6,k,j}(T)$ with correction

$$\begin{split} &Z_q\left(\overbrace{S_6\times E_6/\mathbb{Z}_6}\right) = \left[\left(\frac{1}{(1-T)(1-q\cdot T)}\cdot\frac{1}{(1-\sqrt[6]{q}\cdot T)}\cdot\frac{1}{(1-\sqrt[6]{q}^2\cdot T)^2}\cdot\frac{1}{(1-\sqrt[6]{q}^3\cdot T)^2}\cdot\frac{1}{(1-\sqrt[6]{q}^3\cdot T)^2}\cdot\right.\\ &\cdot \frac{1}{(1-\sqrt[6]{q}^4\cdot T)^2}\cdot\frac{1}{(1-\sqrt[6]{q}^5\cdot T)}\right) \otimes \left(\frac{1}{(1-T)(1-q\cdot T)^{19}(1-q^2\cdot T)}\cdot\frac{1}{(1-\sqrt[6]{q}^2\cdot T)^3(1-\sqrt[6]{q}\cdot q\cdot T)^{18}}\cdot\right.\\ &\cdot \frac{1}{(1-\sqrt[6]{q}^2\cdot T)^6(1-\sqrt[6]{q}^2\cdot q\cdot T)^{15}}\cdot\frac{1}{(1-\sqrt[6]{q}^3\cdot T)^{10}(1-\sqrt[6]{q}^3\cdot q\cdot T)^{10}}\cdot\frac{1}{(1-\sqrt[6]{q}^3\cdot q\cdot T)^{15}(1-\sqrt[6]{q}^4\cdot q\cdot T)^6}\cdot\\ &\cdot \frac{1}{(1-\sqrt[6]{q}^5\cdot T)^{18}(1-\sqrt[6]{q}^5\cdot q\cdot T)^3}\right) \right] \times \left[(1-\alpha_q T) \otimes \left(\frac{1}{1-\beta_q T}\right) \right] \times \left[\left(\frac{1}{1-\sqrt[6]{q}^3\cdot T}\right) \otimes (1-\sqrt[6]{q}^3\cdot \delta_q\cdot T) \right] \times\\ &\times \left[\left(\frac{1}{1-\sqrt[6]{q}^2\cdot T}\cdot\frac{1}{1-\sqrt[6]{q}^4\cdot T}\right) \otimes \left(\frac{1}{1-c_q\cdot q\cdot T}\right) \right] \times \left[\left(\frac{1}{1-\sqrt[6]{q}^3\cdot T}\right) \otimes (1-\sqrt[6]{q}^3\cdot \delta_q\cdot T) \right] \times\\ &\times \left[(1-\overline{\alpha_q}\cdot T) \otimes \left(\frac{1}{1-\overline{\beta_q}\cdot T}\right) \right]^{-1} = \frac{(1-\alpha_q\beta_q T)(1-\delta_q T)(1-\overline{\delta_q} T)(1-\overline{\alpha_q}\overline{\beta_q} T)}{(1-T)(1-q^2T)^{103}(1-q^3T)}. \end{split}$$

 $Y_{6,2}$

$$\begin{split} Z_q \left(\overbrace{S_6 \times E_6^3/\mathbb{Z}_6}^{2} \right) &= \frac{1}{\left(1 - T \right) \left(1 - qT \right)^{340} \left(1 - \overline{\alpha_q}^2 \overline{\beta_q} T \right) \left(1 - \alpha_q^2 \beta_q T \right) \left(1 - q^2 T \right)^{1402} \left(1 - q^3 T \right)^{340} \left(1 - q^2 c_q T \right)^2 \left(1 - q^4 T \right)} \right)} \\ Z_q \left(\overbrace{S_6 \times E_6^3/\mathbb{Z}_6}^{3} \right) &= \frac{\left(1 - \alpha_q^3 \beta_q T \right) \left(1 - q^2 \delta_q T \right) \left(1 - q^2 \overline{\delta_q} T \right) \left(1 - \overline{\alpha_q}^3 \overline{\beta_q} T \right)}{\left(1 - T \right) \left(1 - qT \right)^{868} \left(1 - q^2 T \right)^{9548} \left(1 - q^2 c_q T \right) \left(1 - q^3 c_q T \right) \left(1 - q^3 T \right)^{9548} \left(1 - q^4 T \right)^{868} \left(1 - q^5 T \right)} \right)} \end{split}$$

 $Y_{6,3}$

An algebraic variety X of dimension n, over an algebraically closed field of characteristic p is called a *Zariski variety* if there exists a purely inseparable dominant rational map $\mathbb{P}^n \longrightarrow X$ of degree p.

T. Katsura and M. Schütt, Zariski K3 surfaces, Rev. Mat. Iberoam. 43 (2019), 869–894.

Let $E_{3,i}$ be the elliptic curve given by the equation $y_i^2 + y_i = x_i^3$, for $i \in \{1, 2, ..., n\}$ with the ζ_3 action $\tau_3 \colon (x, y) \mapsto (\zeta_3 x, y)$ and consider groups

$$F_i := \left\langle (\tau_3, 1, \dots, 1, \tau_3^i), (1, \tau_3, 1, \dots, 1, \tau_3^i), \dots, (1, \dots, 1, \tau_3, \tau_3^i) \right\rangle \simeq \mathbb{Z}_3^{n-1} \simeq G_{3,n},$$

for i = 1, 2.

Lemma

The quotient variety $Z_{3,n}:= E_{3,1} imes E_{3,2} imes \ldots imes E_{3,n}/_{F_1}$ is rational.

Proof

The monomial $x_1^{i_1}x_2^{i_2} \cdot \ldots \cdot x_n^{i_n}y_1^{j_1}y_2^{j_2} \cdot \ldots \cdot y_n^{j_n}$ is invariant under F_1 iff $3 \mid i_n + i_k$ for $1 \leq k < n$, thus

$$\mathbb{C}[Z_{3,n}] \simeq \mathbb{C}[y_1, y_2, \dots, y_n, x_1 x_2 \dots x_{n-1} x_n^2, x_1^2 x_2^2 \dots x_{n-1}^2 x_n].$$

Now let $z := \frac{x_1 x_2 \dots x_{n-1}}{x_n}$ and observe that $\mathbb{C}(Z_{3,n}) = \mathbb{C}(y_1, y_2, \dots, y_n, z)$, since $x_1 x_2 \dots x_{n-1} x_n^2 = z(y_n^2 + y_n)$ and $x_1^2 x_2^2 \dots x_{n-1}^2 x_n = z^2(y_n^2 + y_n)$.

Moreover we have the following relation

$$(y_1^2 + y_1)(y_2^2 + y_2) \cdot \ldots \cdot (y_{n-1}^2 + y_{n-1}) = z^3(y_n^2 + y_n).$$

Taking $\alpha := \frac{y_n}{y_{n-1}}$, we get the equation $(y_1^2 + y_1)(y_2^2 + y_2) \cdot \ldots \cdot (y_{n-2}^2 + y_{n-2})(y_{n-1} + 1) = z^3 \alpha (\alpha y_{n-1} + 1),$

from which we can compute y_{n-1} and $y_n = \alpha y_{n-1}$ as rational functions in $y_1, y_2, \ldots, y_{n-2}, z, \alpha$. Hence the variety $Z_{3,n}$ is rational.

Now, consider a prime number $p \equiv 2 \pmod{3}$ and the supersingular elliptic curve E_3 over a field k, such that $\zeta_3 \in k$ and char k = p, defined by equation $y^2 + y = x^3$, and with the ζ_3 action $\tau_3 \colon (x, y) \mapsto (\zeta_3 x, y)$. The endomorphism ring of E_3 may be represented as

End(E₃) =
$$\mathbb{Z} \oplus \mathbb{Z}F \oplus \mathbb{Z}\tau_3 \oplus \mathbb{Z}\frac{(1+F)(2+\tau_3)}{3}$$
,

where F is a Frobenius morphism of E_3 , with the relation $F\tau_3 = \tau_3^2 F$ (Katsura).

T. Katsura, *Generalized Kummer surfaces and their unirationality in characteristic* p, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34 (1987), 1–41.

The following diagram

leads to purely inseparable rational map $E_3^n/_{F_1} \longrightarrow E_3^n/_{F_2}$ of degree p. Therefore

Theorem

The Calabi-Yau manifold
$$\widetilde{E_3^n}/_{F_2} = X_{3,n}$$
 is a Zariski manifold.

Zariski Calabi-Yau manifolds

Taking a supersingular elliptic curve E_4 defined by the equation $y^2 = x^3 - x$ with order 4 automorphism $\tau_4(x, y) = (-x, iy)$ and supersingular elliptic curve E_6 defined by the equation $y^2 + y = x^3$, with order 6 automorphism $\tau_6(x, y) = (\zeta_3 x, -y - 1)$ we have an analogous theorem

Theorem

The Calabi-Yau manifolds

$$\widetilde{E_4^n}_{/\mathbb{Z}_4^{n-1}} = X_{4,n}$$
 and $\widetilde{E_6^n}_{/\mathbb{Z}_6^{n-1}} = X_{6,r}$

are Zariski manifolds.

Corollary

In any odd characteristic $p \not\equiv 1 \pmod{12}$ there exists a unirational Calabi-Yau manifold of arbitrary dimension.