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Abstract

This purely expository article is a summary of the author’s lec-
tures on topological, algebraic, and geometric properties of the zero
schemes of sections of vector bundles. These lectures were delivered
at the seminar Impanga at the Banach Center in Warsaw (2006), and
at the METU in Ankara (December 11-16. 2006). A special empha-
sis is put on the connectedness of zero schemes of sections, and the
“point” and “diagonal” properties in algebraic geometry and topology.
An overview of recent results by V. Srinivas, V. Pati, and the author
on these properties is given.

1 The role of global equations in algebraic geom-
etry and topology

Algebraic objects like polynomials enable us to present geometric objects like
varieties via equations. However, when we consider projective (compact)
varieties there is a problem: every global polynomial function is constant.
To overcome this problem, we can “glue” local polynomial equations with
the help of some global objects: vector bundles, which are families of vector
spaces over a base variety, with transition functions from full linear groups.

For a motivating example, consider the complex projective n-space Pn =
Pn(V ) – the set of lines l through zero in the (n + 1)-dimensional complex
vector space V =

⊕n
i=0 Cei. Over this variety we have a subbundle of the

trivial vector bundle:

O(−1) = {(l, x) : x ∈ l} .
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This bundle is called the tautological line bundle or the Hopf bundle. The
dual bundle O(1) = OPn(1) = O(−1)∗ is called the Grothendieck bundle.
Note that the space of global sections of this bundle, Γ(Pn(V ),O(1)), is
isomorphic to S•(V ∗). So homogeneous polynomials in the dual coordinates
xi = e∗i can be identified with the global sections of O(1). This – most
classical example of “global equations” – admits a natural generalization to
sections of any vector bundle.

Suppose that s is a section of a vector bundle E → X. Consider the zero
scheme of s

Z(s) = {x ∈ X : s(x) = 0} .

We wish to discuss the following question:

Which properties of Z(s) can be deduced from those of E?

Apart from this question (and also in connection with it), we shall study
the following two properties of varieties: We will say that a variety X has
the

Weak point property if for some point x ∈ X there exist a vector bundle E
on X of rank dimX, and a section s of E such that {x} = Z(s).

Diagonal property if there exist a vector bundle E on X×X of rank dimX,
and a section s of E such that ∆ = Z(s), where ∆ denotes the diagonal
in X ×X.

We shall write (D) for the diagonal property and (P) for the week point
property. Notice that (D) implies (P) – in fact, for any point x ∈ X – via
restriction from X ×X to X × {x}.

To the best of our knowledge, (P) was a popular topic neither in algebraic
geometry nor topology. It appears that a stronger variant1 of (P) was studied
in algebra and arithmetics. Let A be a finitely generated reduced algebra
over an algebraically closed field k with Krull dimension d. Recall that
a point x of X = SpecA is a complete intersection if the corresponding
maximal ideal has height d, and is generated by d elements of A. In this case
x is a regular point, but not conversely. We record the following problem:

Characterize reduced affine k-varieties such that all smooth points are
complete intersections.

This problem is discussed in detail by V. Srinivas in his paper [10] in the
present volume. For instance, we have the following “Affine Bloch - Belinson
conjecture”:

Let k = Q. Then for any finitely generated smooth k-algebra of dimen-
sion greater than 1 every maximal ideal is a complete intersection.

1The word “stronger” means here that we want (P) for any point x ∈ X, and the
bundle involved in (P) should be trivial.
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(Note that this conjecture is confirmed yet by no nontrivial example (!) )

It appears that also (D) was not studied systematically before. First
examples of varieties with (D) are curves. When X is a smooth curve, the
diagonal ∆ is a Cartier divisor in X × X, so (D) holds. If (D) holds for
varieties X1 and X2 then (D) holds for X1×X2 too. Other known examples
having (D) are Pn, Grassmannians and, in general, flag varieties of the type
SLn/P , where P is any parabolic subbroup of SLn. Though this is well
known to experts, we sketch a simple argument, since we could not find it in
the literature. The argument in the Grassmannian case, given below, is well
known. Also, (D) for the variety of complete flags was the starting point for
the theory of Schubert polynomials of Lascoux and Schützenberger [6]. In
[2], this property was proved and used to compute the fundamental classes
of flag degeneracy loci. In fact, the argument for an arbitrary flag variety,
follows closely that given in [2].

Let V be an n-dimensional vector space. Fix an increasing sequence of
integers

d• : 0 < d1 < d2 < . . . < dk−1 < dk = n .

Then by a d•-flag we mean an increasing sequence of linear subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 ⊂ Vk = V

of V such that dimVi = di for i = 1, . . . , k. The set of all d•-flags forms the
flag variety F`d• . For example, the sequence

d1 = r < d2 = n

gives rise to the Grassmannian Gr(V ) parametrizing r-dimensional linear
subspaces of V .

In analogy to the Hopf bundle O(−1) on the projective space, we have
a rank r vector bundle on Gr(V ). Consider the subbundle S of the trivial
vector bundle VGr(V ) of rank r for which the fiber Sg over g ∈ Gr(V ) is just
the r-dimensional subspace corresponding to g. This bundle is called the
rank r tautological subbundle and is denoted by S. We have the tautological
vector bundle sequence over Gr(V ):

0→ S → VGr(V ) → Q→ 0 ,

where Q is the rank (n − r) tautological quotient. Let G1 and G2 be two
copies of Gr(V ). Let S1 be the tautological subbundle on G1, and let Q2 be
the tautological quotient bundle on G2. Moreover, let

pi : G1 ×G2 → Gi

denote the projection for i = 1, 2. Then the composition

p∗1S1 ↪→ p∗1(VG1) = p∗2(VG2)→ p∗2Q2
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gives rise to the section of the vector bundle

Hom(p∗1S1, p
∗
2Q2)

over G1 × G2 which vanishes precisely on the diagonal. We conclude that
Gr(V ) has (D).

In the case of arbitary d•-flags, the tautological sequence takes the form:

S1 ↪→ S2 ↪→ · · · ↪→ Sk−1 ↪→ Sk = V
q1
� Q1

q2
� Q2

q3
� · · ·

qk
� Qk ,

where rank(Si) = di for i = 1, . . . , k, and Qi is the quotient of V by Si , so
that rank(Qi) = n− di.

Let F1 and F2 be two copies of F`d• and

pi : F1 × F2 → Fi

denote the projection for i = 1, 2. Consider the map

ϕ :
k−1⊕
i=1

Hom(p∗1Si, p∗2Qi)→
k−2⊕
i=1

Hom(p∗1Si, p∗2Qi+1)

defined by

ϕ(
k−1∑
i=1

fi) =
k−2∑
i=1

(fi+1|Si − qi+1 ◦ fi) .

One checks that ϕ is surjective. Set K = Kerϕ . Then the compositions

p∗1Si ↪→ p∗1(VF1) = p∗2(VF2)→ p∗2Qi

for i = 1, . . . , k, give rise to a section s of K such that ∆ = Z(s).

Note that

rankK =

k−1∑
i=1

(n− di)(di − di−1) = dimF`d• .

Summing up, we conclude that the flag variety F`d• has (D).

2 Connectedness of the zero schemes of sections
of vector bundles

In this section, we shall discuss the connectedness properties of the zero
schemes. A prototype of all results here is

Theorem 1 (Lefschetz) The hypersurface defined by a single homogeneous
polynomial equation in Pn is connected provided n ≥ 2.
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One should be carefull with generalizations of this simple result: one
cannot – in general – replace Pn by Cn, a hypersurface in Pn by a hyper-
surface in another smooth projective variety, and single equation by several
equations (these issues are discussed in detail in [11]).

Recall that a line bundle L → X is called very ample if L ∼= OPn(1)|X
for some embedding of X into Pn. A line bundle L is called ample if there
exists m ≥ 0 such that L⊗m is very ample.

Theorem 2 (Lefschetz) Let X be a smooth projective irreducible variety
over C. Let L be an ample line bundle over X and s be a section of L.
Then Hq(Z(s),Z)→ Hq(X,Z) is an isomorphism for q < dimX − 1 and is
a surjection when q = dimX − 1.

This theorem is called the Lefschetz hyperplane theorem. Let us record its
simple consequence.

Corollary 3 Under the assumptions of the theorem, if dimX ≥ 2, then
Z(s) is connected.

A vector bundle E → X is called ample if the vector bundle O(1) on
P(E∗) is ample.

Proposition 4 (Sommese) If E is a rank e vector bundle on X and s ∈
Γ(X, E), then P(E∗) \ Z(s∗) is an affine-space bundle with fiber Ce−1 over
X \ Z(s). So H0(P(E∗) \ Z(s∗),Z) = H0(X \ Z(s),Z).

Indeed, if x ∈ Z(s) then s(x)∗ vanishes on entire E∗x . If x /∈ Z(s) then s(x)∗

vanishes on a hyperplane in E∗x . Therefore, the fiber at x of

P(E∗) \ Z(s∗)→ X \ Z(s)

is
P(E∗) \H = Ce−1 ,

where H is a hyperplane (cf. [9]).

Theorem 5 (Griffiths, Sommese) Let X be an irreducible smooth pro-
jective variety over C. Let E be a rank e vector bundle over X, and s
a section of E. Then Hq(Z(s),Z) → Hq(X,Z) is an isomorphism for
q < dimX − e, and is a surjection when q = dimX − e.

(Cf. [4], [9].)

Corollary 6 Under the assumptions of the last theorem, if dimX ≥ e+ 1,
then Z(s) is connected.

For a more detailed account to this theory, we refer the reader to the
Tu’s article [11]. In this article, the author also discusses the conectedness
of degeneracy loci which provide natural generalizations of the zero schemes
of sections of vector bundles.
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3 Cohomologically trivial line bundles

We start with two simple consequences of (D). Consider the ideal sheaf
J∆ ⊂ OX×X . The diagonal property (D) implies that

E∗|∆ = J∆/J 2
∆
∼= Ω1

X

(the last isomorphism uses the isomorphism ∆ ∼= X). Therefore, Ω1
X is

locally free of rank equal to dimension of X. Hence X is smooth. Also,
by the Grothendieck formula [5], we obtain the following expression for the
fundamental class of ∆:

[∆] = cdimX(E) .

From now on – unless otherwise is explicitly stated – all results and
conjectures surveyed here come from the paper [8], written by the author,
V. Srinivas, and V. Pati.

Definition 7 A line bundle L over X is called cohomologically trivial (we
shall write “c.t.”) if H i(X,L) = 0 for all i ≥ 0.

Example 8 Any smooth projective curve supports a c.t. line bundle (this
should be well known to experts – for a written account, cf. [8]). Any
abelian variety supports a c.t. line bundle [7].

Theorem 9 (i) Let p1, p2 : X × X → X be the two projections. If X has
(D), and moreover, the following isomorphism holds:

Pic(X ×X) ∼= p∗1 Pic(X)⊕ p∗2 Pic(X), (1)

then there exists a c.t. line bundle L over X such that

det(E) = p∗1L−1 ⊗ p∗2(L ⊗ ω−1
X ) .

(ii) If dimX = 2 and there exists a c.t. line bundle on X, then X has (D).

This theorem was proved in [8]. We give now a sketch of this proof.
Apply to the exact sequence

0→ I∆ → OX×X → O∆ → 0 .

and any line bundle L on X × X, the functor Hom(−,L) (and its derived
functors) to get the sequence of global ExtX×X ’s :

Extn−1(I∆,L)→ Extn(O∆,L)
α→ Hn(X ×X,L) . (2)

We shall need the following cohomological result (cf. [8] and the refer-
ences there):
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Proposition 10 Let L be a line bundle on X ×X whose restriction to ∆
is isomorphic to ω∆. Assume that there exist a rank n vector bundle E on
X×X with det(E∗) = L, and s ∈ Γ(X×X, E) satisfying Im(s∗) = I∆ . Then
α in the exact sequence (2) vanishes. The converse holds if n = dim(X) = 2.

Suppose that there exists a vector bundle E on X × X of rank n such
that the diagonal is the zero scheme of its section s. Let L = det(E∗), and
form the corresponding exact sequence (2). From the proposition, we have
α = 0. Consider the dual linear map to α:

α∗ : Hn(X ×X,L)∗ → Extn(O∆,L)∗ ∼= Hn(∆, ω∆) = k .

Using (1) choose M∈ Pic(X) such that

L = det(E∗) ∼= p∗1(M)⊗ p∗2(M−1 ⊗ ωX) .

By Serre duality on X ×X, we get that

Hn(X×X,L)∗ ∼= Hn(X×X,L−1⊗ωX×X) ∼= Hn(X×X, p∗1(M−1⊗ωX)⊗p∗2M).

From the Künneth formula, we have

Hn(X×X, p∗1(M−1⊗ωX)⊗p∗2(M)) =

n⊕
i=0

H i(X,M−1⊗ωX)⊗Hn−i(X,M) .

(3)
Further, on any summand on the right, the induced map

H i(X,M−1 ⊗ ωX)⊗Hn−i(X,M) ↪→

Hn(X ×X, p∗1(M−1 ⊗ ωX)⊗ p∗2(M))
α∗
→ Hn(∆, ω∆) = k

coincides with the Serre duality pairing on cohomology of X, and is hence a
non-degenerate bilinear form, for each 0 ≤ i ≤ n. Thus, α∗ vanishes if and
only if all the summands on the RHS of (3) vanish, which says that M is
c.t.

Conversely, if M is c.t., then in the exact sequence (2) determined by

L = p∗1M⊗ p∗2(M−1 ⊗ ωX),

the map α is the zero map, by reversing the above argument. Hence, if
n = 2, we deduce that X ×X supports a vector bundle E of rank 2 and a
section s with zero scheme ∆, by the n = 2 case of the proposition.

This ends our sketch of the proof from [8].

Corollary 11 Suppose that the isomorphism (1) holds for X, and X sup-
ports no c.t. bundle. Then X has not (D).

Let X be a smooth proper variety over an algebraic closed field. The
isomorphism (1) holds for X if and only if PicX is a finitely generated
abelian group. Also, if H1(X,OX) = 0 then (1) holds for X.
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4 When a smooth projective surface has (D)?

We remind that for a surface to have (D) is almost equivalent to the existence
of a c.t. line bundle on it. In [8], the following results were proved for a
smooth projective surface X over an algebraically closed field:

1. There exists a surface Y having (D), and a birational proper map
f : Y → X.

2. If f : Y → X is a birational map, X has (D) and PicX is finitely
generated then Y has (D).

3. If X is birational to one of the following: a ruled or an abelian surface
or a K3 surface with 2 disjoint smooth rational curves or an elliptic
surface with a section or a complex Enriques or hyperelliptic surface,
then X has (D).

4. If PicX = Z, Γ(X,OX(1)) 6= 0 and X has (D), then X = P2.

More precisely, the first item says that any surface – after blowing up
sufficiently many points – becomes a surface having (D).

The last item implies that (D) fails for general K3 surfaces or general
hypersurfaces in P3 of degree greater than 3.

5 When a higher dimensional variety has (D)?

In this section, we consider varieties of dimension ≥ 3. We first consider the
varieties with Picard group Z.

Proposition 12 Let X be a smooth projective variety of dimension d ≥ 3
over a field with PicX = Z. If X has (D) and H0(X,OX(1)) 6= 0 then X
is a Fano variety and ωX ∼= OX(−n) for some n ≥ 2.

This result has two useful consequences.
LetX ⊂ Pn be a smooth complete intersection of multidegree (d1, . . . , dr)

such that r < n− 3 and
∑
di ≥ n. Then X has not (D). In particular, the

non-Fano hypersurfaces in the projective spaces have not (D).
Also, let X be a smooth projective Fano variety such that b2(X) = 1

and ωX = OX(−1) (i.e. X is of index 1). Then X has not (D).
Let X be a scheme and L be a line bundle over X. We say that X has

the

L-point property if for every point x ∈ X there exists a vector bundle F
over X such that d = rankF = dimX, det(F) = L, and there exists
a section s of F such that {x} = Z(s).
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Note that in this case c1(F) = c1(L) and cd(F) = [x].

Theorem 13 Let X be a smooth proper variety over an algebraically closed
field. If PicX is finitely generated and X has (D), then there exists a c.t.
line bundle L on X such that
(i) X has the L−1-point property, and
(ii) X has the L ⊗ ω−1

X -point property.

Corollary 14 Let X be a scheme as in Theorem 13 with finitely generated
PicX. If for any c.t. line bundle L, either L−1-point property fails or
L ⊗ ω−1

X -point property fails then X has not (D).

For example, if X is a smooth complex projective quadric of dimension 3,
then OX(−1) and OX(−2) are the unique c.t. line bundles on X. One
checks – with the help of the corollary – that X has not (D).

Sometimes, (D) boils down to (P). For instance, we have

Proposition 15 Let X be a group variety over an algebraically closed field.
Then X has (D) if and only if X has (P).

Indeed, assume that X has (P). Let E be a vector bundle over X such that
rank E = dimX, and let s ∈ Γ(X, E) be such that Z(s) = {x} for some
x ∈ X. Since X is a group variety we have the morphisms µ : X ×X → X
of multiplication and i : X → X of inverse. Consider the morphism

f : X ×X → X

defined by
f(u, v) = µ(µ(u, i(v)), x) .

Since f−1(x) = ∆, the vector bundle f∗E , together with section f∗s, implies
(D) for X.

In particular, an abelian variety has (D) if and only if it has (P). Recently
O. Debarre [1] has proved that the Jacobian of a smooth projective connected
curve has (P), and that there exist non-principally polarized abelian varieties
in dimension greater than 2, which fail to have (P). Moreover, he suggests
that (P) may characterize Jacobians among all principally polarized abelian
varieties with Picard number 1.

6 Affine case

Let k be an algebraically closed field and A be a finitely generated k-algebra.
Let X = SpecA. If dimX = 2, then X has (D) by Serre’s construction.
What about higher dimensions?

9



Theorem 16 An affine algebraic group over an algebraically closed field has
(D).

Indeed, M. Kumar and M.P. Murthy proved that an affine algebraic group
over an algebraically closed field has (P). It suffices then to invoke Proposi-
tion 15.

Conjecture 17 There exists smooth complex varieties of any dimension
greater than 2 for which (D) fails.

This conjecture leads to the following question:

Let k be an algebraically closed field and A be a regular k-algebra. Let K
be an extension field of k (not necessarily algebraically closed), AK := A⊗kK
and let M ⊂ AK be a maximal ideal with residue field K. Does there exist
a projective AK-module P of rank n = dimA such that there is a surjection
P �M?

The question has a positive answer by M.P. Murthy when K is an alge-
braically closed extension of k. If X = SpecA has (D), then the question
has a positive answer for any field extension K. So a negative answer to the
question would produce counterexamples to (D).

7 Diagonal property in topology

In this section, we use mostly the notation used by topologists. Let M be
a compact connected oriented smooth manifold of real dimension n, and ∆
be the diagonal submanifold of M ×M . We say that M has property (Dr)
if there exist a smooth real vector bundle E over M ×M with rank(E) = n
and a smooth section s of E such that s is transverse to the zero section 0E
of E and s−1(0E) = ∆. If the vector bundle E is orientable then we say that
M has the property (Do). If dimRM = 2m and the vector bundle E is a
smooth complex vector bundle of rankC(E) = m then we say that M has
the property (Dc). We have the following relation between these properties:

(D)⇒ (Dc)⇒ (Do)⇒ (Dr).

Take a Riemannian metric on M . It induces a Riemannian metric on
M ×M , on the tangent bundle τM , and on all its subbundles. Let U be
a closed ε-tubular neighborhood of ∆ in M × M . Then, by the tubular
neighborhood theorem, we have a diffeomorphism

φ : (U, ∂U)
∼→ (D(ν), S(ν)),

where D(ν) is the ε-disc bundle of the normal bundle ρ : ν → ∆ of ∆ in
M ×M and S(ν) is the ε-sphere bundle. Then r := ρ ◦ φ : U → ∆ is a
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strong deformation retraction of U to ∆. So we have the following bundle
diagram:

r∗(ν) −−−−→ ρ∗(ν)

ρ

y yρ
U

φ−−−−→ D(ν).

The bundle ρ∗(ν)|S(ν) → S(ν) has a tautological section s given by v 7→ v,
which satisfies ‖s(v)‖ = ε for all v ∈ S(ν). So

ρ∗(ν)|S(ν) = ξ ⊕ L,

where L is the trivial line subbundle spanned by s and ξ is its orthogonal
complement. Under the identification ∆ ∼= M , ν → ∆ is isomorphic to
τM →M . Since M is orientable, so is ξ, and it is isomorphic to the quotient
bundle

ρ∗(τM )/L → S(τM ).

Let F := φ∗(ξ). F is a rank (n−1) subbundle of r∗(ν)|∂U , and is isomorphic
to ρ∗(τM )/L → S(τM ). Moreover, F → ∂U is orientable.

Note that the restriction of ξ to each fiber S(νx) of ρ : S(ν)→M is the
tangent bundle τn−1 of the sphere S(νx). Consequently, the bundle F when
restricted to the fiber r−1(x) of the bundle r : ∂U → ∆ is isomorphic to
τn−1. The following result is a key tool in analyzing the topological diagonal
properties:

Lemma 18 Let M,∆ and U be as above. Set X := M ×M \ Int(U). Then
M has (Dr) if and only if the rank (n − 1) bundle F → ∂U is isomorphic
to the restriction to ∂U = ∂X of a smooth rank (n − 1) bundle G on X.
Moreover, M has (Do) if and only if the bundle G can be chosen to be
orientable.

We list here some results from [8]:

1. Sn has (Dr) if and only if n = 1, 2, 4 or 8 (all except the first have
(Do)).

2. Let M be an almost complex manifold of dimCM = 2. Then M has
(Dc). (This is in contrast with the algebraic situation.)

3. Let M be an almost complex manifold of dimCM = 3. Assume that
H1(M,Z) = 0 and H2(M,Z) = Z. Then if M satisfies (Dc), the second
Stiefel-Whitney class w2(M) vanishes (i.e. M is spin).

4. Let M ⊂ CPN be a smooth projective variety of dimCM = 3. Assume
that M is a strict complete intersection or a set-theoretically complete
intersection with H1(M,Z) = 0. Then M has (Dc) if and only if M is
spin.
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5. Let M be a smooth strict complete intersection of dimCM = 3 in
CPn with M = X1 ∩ · · · ∩Xn−3 where Xi is a smooth hypersurfaces
of degree di. Then M has (Dc) only if (n + 1 −

∑
di) is even. In

particular, a smooth hypersurface M in CP4 has (Dc) only if it is of
odd degree.

6. Let m ≥ 2. Then a smooth quadric hypersurface Q2m−1 ⊂ P2m has
not (Dc).

Note that the converse of the third item is not true. For example, S6

is an almost complex manifold which has a spin structure but fails to have
(Dc) by the first item.

From the last item one can deduce that a smooth quadric hypersurface
Q2m−1 ⊂ P2m over any algebraically closed field, has not (D).

Conjecture 19 Let Qn be a smooth quadric hypersurface in Pn+1 (over an
algebraically closed field). Then Qn has (D) if and only if n = 1, 2 or 4.

8 Three other conjectures

1. From the results on surfaces, it follows that any smooth projective toric
surface has (D). We conjecture that any smooth toric variety has (D).

2. The Grassmannian of Lagrangian 2-planes in C4 is identified with the
quadric Q3, which has not (D). We conjecture that, in general, the homoge-
neous spaces Spn/P and SO(n)/P (P being any parabolic subgroup) have
not (D).2

3. We conjecture that (D) fails for a general cubic threefold X, though X
has (P) and even the OX(1)-point property (OX(−1) is the unique c.t. line
bundle on X) – cf. [8] for details.
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