Discriminants and semi-orthogonal decompositions

Ed Segal

joint with Alex Kite

arXiv:2102.08412

Overview

Part I - Theorem

We study the derived category of coherent sheaves $D^{b}(X)$ on a toric variety X. The derived category has semi-orthogonal decompositions coming from wall-crossing to other birational models.

Theorem: these decompositions obey the Jordan-Hölder property.

Part II - Motivation and Conjecture

For a Calabi-Yau toric variety wall-crossing gives us many autoequivalences of $D^{b}(X)$. Physics/mirror symmetry predicts that these together form an action of the fundamental group of the FI parameter space - the complement of the discriminant in the dual toric variety.

Conjecture: the multiplicities in our decompositions agree with intersection multiplicities in the discriminant.

Semi-orthogonal decompositions

Definition

A semi-orthogonal decomposition of $D^{b}(X)$ is a sequence of full triangulated subcategories $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r} \subset D^{b}(X)$ such that:
(i) together they generate $D^{b}(X)$, and
(ii) there are no morphisms from \mathcal{C}_{i} to \mathcal{C}_{j} if $i>j$.

- Like a semi-direct product of groups, or an algebra of block-upper-triangular matrices.
- Gives some control over $D^{b}(X)$ in terms of the smaller pieces, e.g. K-theory and homology split.
- We write

$$
D^{b}(X)=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right\rangle
$$

Semi-orthogonal decompositions

Example

Let Y be a 3-fold and X be the blow-up of Y at a smooth point. Exceptional divisor is $E \cong \mathbb{P}^{2}$.
The sky-scraper sheaf \mathcal{O}_{E} is an exceptional object in $D^{b}(X)$:

$$
\text { End }_{D^{b}(X)}\left(\mathcal{O}_{E}\right)=\mathbb{C}
$$

\Longrightarrow The subcategory generated by \mathcal{O}_{E} is equivalent to $D^{b}(p t)$. Have

$$
D^{b}(X)=\left\langle D^{b}(Y), D^{b}(p t), D^{b}(p t)\right\rangle
$$

where the second and third subcategories are generated by $\mathcal{O}_{E}(2 E)$ and $\mathcal{O}_{E}(E)$.

Semi-orthogonal decompositions

Example

Let Y be a 3-fold and X be the blow-up of Y at a smooth point. Exceptional divisor is $E \cong \mathbb{P}^{2}$.
The sky-scraper sheaf \mathcal{O}_{E} is an exceptional object in $D^{b}(X)$:

$$
\operatorname{End}_{D^{b}(X)}\left(\mathcal{O}_{E}\right)=\mathbb{C}
$$

\Longrightarrow The subcategory generated by \mathcal{O}_{E} is equivalent to $D^{b}(p t)$. Have

$$
D^{b}(X)=\langle Y, p t, p t\rangle
$$

where the second and third subcategories are generated by $\mathcal{O}_{E}(2 E)$ and $\mathcal{O}_{E}(E)$.

Semi-orthogonal decompositions

Theorem (Orlov)
Let X be the blow-up of Y in a smooth subvariety Z. Then

$$
D^{b}(X)=\langle Y, Z, \ldots, Z\rangle
$$

where the number of copies of Z is $\operatorname{codim}(Z)-1$.
So semi-orthogonal decompositions appear when we do blow-ups.
What about other birational transformations?

Abelian VGIT

Example

Let \mathbb{C}^{*} act on \mathbb{C}^{4} with weights $(1,1,1,-1)$.
The two GIT quotients are:

$$
\begin{gathered}
X_{+} \cong \mathcal{O}(-1)_{\mathbb{P}^{2}} \\
X_{-} \cong \mathbb{A}^{3}
\end{gathered}
$$

We know

$$
D^{b}\left(X_{+}\right)=\left\langle X_{-}, p t, p t\right\rangle
$$

by blow-up formula.

- The $p t$ here is really the fixed point (the origin) in \mathbb{C}^{4}.

Abelian VGIT

Example

Let \mathbb{C}^{*} act on \mathbb{C}^{6} with weights $(1,1,1,1,-1,-1)$.
The two GIT quotients are:

$$
\begin{gathered}
X_{+} \cong \mathcal{O}(-1)_{\mathbb{P}^{2}} \\
X_{-} \cong \mathbb{A}^{3}
\end{gathered}
$$

We know

$$
D^{b}\left(X_{+}\right)=\left\langle X_{-}, p t, p t\right\rangle
$$

by blow-up formula.

- The $p t$ here is really the fixed point (the origin) in \mathbb{C}^{4}.

Abelian VGIT

Example

Let \mathbb{C}^{*} act on \mathbb{C}^{6} with weights $(1,1,1,1,-1,-1)$.
The two GIT quotients are:

$$
\begin{aligned}
& X_{+} \cong \mathcal{O}(-1)_{\mathbb{P}^{3}}^{\oplus 2} \\
& X_{-} \cong \mathcal{O}(-1)_{\mathbb{P}^{1}}^{\oplus 4}
\end{aligned}
$$

Still true that

$$
D^{b}\left(X_{+}\right)=\left\langle X_{-}, p t, p t\right\rangle
$$

- The $p t$ here is really the fixed point (the origin) in \mathbb{C}^{4}.
- The number of copies of $p t$ equals the sum of the weights.

Abelian VGIT

Theorem (Kawamata, Ballard-Favero-Katzarkov, Halpern-Leistner)

Let \mathbb{C}^{*} act on U. Assume $Z=U^{\mathbb{C}^{*}}$ connected and

$$
\kappa=\operatorname{weight}\left(\operatorname{det}\left(N_{Z / U}\right)\right) \geq 0 .
$$

Then the two GIT quotients $X_{ \pm}$obey

$$
D^{b}\left(X_{+}\right)=\left\langle X_{-}, Z, \ldots, Z\right\rangle
$$

where κ copies of $D^{b}(Z)$ appear.

- Implies Orlov's blow-up formula.
- Could have $X_{-}=\varnothing$, e.g.

$$
D^{b}\left(\mathbb{P}^{n}\right)=\langle p t, \ldots, p t\rangle
$$

where $\kappa=n+1$ (Beilinson's theorem).

- If $\kappa=0$ we have a flop and derived categories are equivalent.

Toric varieties

Let $\left(\mathbb{C}^{*}\right)^{r}$ act on a vector space V.

- There are many GIT quotients ("phases"). Each phase X_{i} is a toric variety.
- The space of characters has a wall-and-chamber structure, the secondary fan.
- A single wall crossing $X_{i} \rightsquigarrow X_{j}$ is a VGIT construction U / \mathbb{C}^{*} where $U \subset V$ is the semi-stable locus for a character on the wall.
- We can decompose $D^{b}\left(X_{i}\right)$ by wall-crossing repeatedly and applying theorem from previous slide.
- If X_{i} is compact then $D^{b}\left(X_{i}\right)$ decomposes into copies of $D^{b}(p t)$, if not there will be bigger pieces.

Toric varieties

$\mathcal{O}(-1)_{\mathbb{P}^{3}}$	
(2)	$X=\mathcal{O}(-1)_{P}$
	(4)
(1)	(3)
\mathbb{A}^{4}	$\mathcal{O}(-1)_{\mathbb{P}^{1}} \times \mathbb{A}^{2}$

Example

Let $\left(\mathbb{C}^{*}\right)^{2}$ act on \mathbb{C}^{6} with weights:

$$
\left(\begin{array}{cccccc}
1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right)
$$

Here $P=\mathbb{P}\left(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(-1)\right)_{\mathbb{P}^{1}}$.

Toric varieties

$\mathcal{O}(-1)_{\mathbb{P}^{3}}$	$X=\mathcal{O}(-1)_{P}$ (4)
\mathbb{A}^{4}	(3) $\mathcal{O}(-1)_{\mathbb{P}^{1}} \times \mathbb{A}^{2}$

Example

$(1) \rightsquigarrow(2)$. Blows up the origin in \mathbb{A}^{4}.

$$
D^{b}\left(\mathcal{O}(-1)_{\mathbb{P}^{3}}\right)=\left\langle\mathbb{A}^{4}, p t, p t, p t\right\rangle
$$

$(2) \rightsquigarrow(4)$. Blows up $\mathcal{O}(-1)_{\mathbb{P}^{1}}$.

$$
D^{b}(X)=\left\langle\mathcal{O}(-1)_{\mathbb{P}^{3}}, \mathcal{O}(-1)_{\mathbb{P}^{1}}\right\rangle=\left\langle\mathbb{A}^{4}, p t, p t, p t, \mathcal{O}(-1)_{\mathbb{P}^{1}}\right\rangle
$$

Toric varieties

$\mathcal{O}(-1)_{\mathbb{P}^{3}}$	$X=\mathcal{O}(-1)_{P}$ (4)
\mathbb{A}^{4}	(3) $\mathcal{O}(-1)_{\mathbb{P}^{1}} \times \mathbb{A}^{2}$

Example

Now go a different way. $(1) \rightsquigarrow(3)$ blows up \mathbb{A}^{2}.

$$
D^{b}\left(\mathcal{O}(-1)_{\mathbb{P}}^{1} \times \mathbb{A}^{2}\right)=\left\langle\mathbb{A}^{4}, \mathbb{A}^{2}\right\rangle
$$

$(3) \rightsquigarrow(4)$ blows up \mathbb{P}^{1}.

$$
D^{b}(X)=\left\langle\mathcal{O}(-1)_{\mathbb{P}}^{1} \times \mathbb{A}^{2}, \mathbb{P}^{1}, \mathbb{P}^{1}\right\rangle=\left\langle\mathbb{A}^{4}, \mathbb{A}^{2}, \mathbb{P}^{1}, \mathbb{P}^{1}\right\rangle
$$

Toric varieties

$\mathcal{O}(-1)_{\mathbb{P}^{3}}$	$X=\mathcal{O}(-1)_{P}$ \mathbb{A}^{4}
	(3) $\mathcal{O}(-1)_{\mathbb{P}^{1}} \times \mathbb{A}^{2}$

Example

$(1) \rightsquigarrow(2) \rightsquigarrow(4)$ gives $D^{b}(X)=\left\langle\mathbb{A}^{4}, p t, p t, p t, \mathcal{O}(-1)_{\mathbb{P}^{1}}\right\rangle$.
$(1) \rightsquigarrow(3) \rightsquigarrow(4)$ gives $D^{b}(X)=\left\langle\mathbb{A}^{4}, \mathbb{A}^{2}, \mathbb{P}^{1}, \mathbb{P}^{1}\right\rangle$.
But $\mathcal{O}(-1)_{\mathbb{P}^{1}}$ and \mathbb{P}^{1} are toric varieties and their derived categories can also be decomposed.

Toric varieties

$\mathcal{O}(-1)_{\mathbb{P}^{3}}$	$X=\mathcal{O}(-1)_{P}$ (4)
\mathbb{A}^{4}	(3) $\mathcal{O}(-1)_{\mathbb{P}^{1}} \times \mathbb{A}^{2}$

Example

$(1) \rightsquigarrow(2) \rightsquigarrow(4)$ gives $D^{b}(X)=\left\langle\mathbb{A}^{4}, p t, p t, p t, \mathbb{A}^{2}, p t\right\rangle$.
$(1) \rightsquigarrow(3) \rightsquigarrow(4)$ gives $D^{b}(X)=\left\langle\mathbb{A}^{4}, \mathbb{A}^{2}, p t, p t, p t, p t\right\rangle$.
But $\mathcal{O}(-1)_{\mathbb{P}^{1}}$ and \mathbb{P}^{1} are toric varieties and their derived categories can also be decomposed.

Toric varieties

Theorem (Kite-S.)

These semi-orthogonal decompositions of the derived categories of toric varieties satisfy the Jordan-Hölder property: the 'irreducible components' and their multiplicities are independent of choices.

- In the example we quotiented by $\left(\mathbb{C}^{*}\right)^{2}$ and the decomposition took 2 steps. For rank r it will take r steps.
- Proof not very hard.
- Jordan-Hölder property fails in general for semi-orthogonal decompositions [Bondal, Kalck, Kuznetsov, Böhning-Graf von Bothmer-Sosna].

Calabi-Yau toric varieties

Suppose \mathbb{C}^{*} acts on U and $Z=U^{\mathbb{C}^{*}}$ is connected and $\kappa=0$. Then recall $D^{b}\left(X_{+}\right) \cong D^{b}\left(X_{-}\right)$. In fact the theory gives \mathbb{Z}-many equivalences:

$$
\Phi_{k}: D^{b}\left(X_{+}\right) \xrightarrow{\sim} D^{b}\left(X_{-}\right)
$$

Theorem (Halpern-Leistner-Shipman)

The autoequivalence $\Phi_{1}^{-1} \Phi_{0}$ is the twist around a spherical functor:

$$
F: D^{b}(Z) \longrightarrow D^{b}\left(X_{+}\right)
$$

If $D^{b}(Z)$ has a semi-orthogonal decomposition then F has a corresponding factorization.

Calabi-Yau toric varieties

Let $\left(\mathbb{C}^{*}\right)^{r}$ act on a vector space V through $S L(V)$.

- All phases are Calabi-Yau.
- All phases are derived equivalent.
- Wall-crossing gives many autoequivalences of each phase.
- Physics/mirror symmetry predicts:

$$
\pi_{1} \text { (Fayet-Iliopoulos parameter space) } \curvearrowright D^{b}\left(X_{i}\right)
$$

The FI parameter space is the base of the Hori-Vafa mirror \approx complexification of space of GIT stability conditions.
\approx stringy Kähler moduli space of X_{i}.

Fl parameter space

Take the secondary toric variety X^{\vee} defined by the secondary fan.
Observe:
Phases \longleftrightarrow toric fixed points in X^{\vee}.
Wall \longleftrightarrow toric rational curve $C_{i, j}$ connecting two fixed points.

The FI parameter space is the open set in X^{\vee} obtained by deleting:
(1) The toric boundary.
(2) The GKZ discriminant locus, a non-toric hypersurface

$$
\Delta=\Delta_{0} \cup \Delta_{1} \cup \ldots \cup \Delta_{r} \quad \subset X^{\vee}
$$

which may have several irreducible components.

Fl parameter space

Loop from X_{1} to X_{2} and back again \rightsquigarrow the wall-crossing autoequivalence of $D^{b}\left(X_{1}\right)$.

It should factor according to (i) the components of Δ, (ii) their intersection multiplicities with $C_{1,2}$.

FI parameter space

Recall that the wall-crossing autoequivalence is the twist around a spherical functor $D^{b}(Z) \rightarrow D^{b}\left(X_{1}\right)$. Here Z is itself a toric variety (probably not Calabi-Yau). So $D^{b}(Z)$ has a semi-orthogonal decomposition \Longrightarrow the autoequivalence factors.
Fact: the 'irreducible components' $D^{b}\left(Y_{i}\right)$ that could occur in $D^{b}(Z)$ biject with the components of Δ.

Conjecture (Aspinwall-Plesser-Wang, Kite-S.)

The multiplicity of a component $D^{b}\left(Y_{i}\right) \subset D^{b}(Z)$ agrees with the intersection multiplicity of Δ_{i} with $C_{1,2}$.

Theorem (Kite-S.)

This is true in the rank 2 case.

THE END.

