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Overview

Part | - Theorem

We study the derived category of coherent sheaves D?(X) on a toric
variety X. The derived category has semi-orthogonal decompositions
coming from wall-crossing to other birational models.

Theorem: these decompositions obey the Jordan-Holder property.

Part Il - Motivation and Conjecture

For a Calabi-Yau toric variety wall-crossing gives us many autoequivalences
of D?(X). Physics/mirror symmetry predicts that these together form an
action of the fundamental group of the FI parameter space - the
complement of the discriminant in the dual toric variety.

Conjecture: the multiplicities in our decompositions agree with intersection
multiplicities in the discriminant.



Semi-orthogonal decompositions

Definition

A semi-orthogonal decomposition of D?(X) is a sequence of full
triangulated subcategories Cy, ...,C, C DP(X) such that:

(i) together they generate D?(X), and

(ii) there are no morphisms from C; to C; if i > j.

@ Like a semi-direct product of groups, or an algebra of
block-upper-triangular matrices.

o Gives some control over D?(X) in terms of the smaller pieces,
e.g. K-theory and homology split.

o We write

Db(X)=(Cy, ..., C})



Semi-orthogonal decompositions

Example

Let Y be a 3-fold and X be the blow-up of Y at a smooth point.
Exceptional divisor is E = P2,

The sky-scraper sheaf Of is an exceptional object in D?(X):

EndDb(X)(OE) =C

— The subcategory generated by O is equivalent to D?(pt).
Have
D(X) = ( DY(Y), Db(pt), D(pt))

where the second and third subcategories are generated by Og(2E) and
Oc(E).
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Semi-orthogonal decompositions

Theorem (Orlov)
Let X be the blow-up of Y in a smooth subvariety Z. Then

DP(X)=(Y,Z,..,Z)

where the number of copies of Z is codim(Z) — 1.

So semi-orthogonal decompositions appear when we do blow-ups.

What about other birational transformations?



Abelian VGIT

Let C* act on C* with weights (1,1,1, —1).
The two GIT quotients are:

We know
Db(Xy) = (X_, pt, pt)
by blow-up formula.
@ The pt here is really the fixed point (the origin) in C*.
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Let C* act on C® with weights (1,1,1,1,-1,-1).
The two GIT quotients are:

We know
Db(Xy) = (X_, pt, pt)
by blow-up formula.
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Abelian VGIT

Let C* act on C® with weights (1,1,1,1,-1,-1).
The two GIT quotients are:

X+ = (9(—1)]?332

Xo= 0(71)314
Still true that
Db(X"r) = <X—7 pt, Pt>

@ The pt here is really the fixed point (the origin) in C*.

@ The number of copies of pt equals the sum of the weights.




Abelian VGIT

Theorem (Kawamata, Ballard—Favero—Katzarkov, Halpern-Leistner)

Let C* act on U. Assume Z = U™ connected and
r = weight(det(Nz,y)) > 0.
Then the two GIT quotients X+ obey

DP(Xy)=(X_, Z, .., Z)

where K copies of D®(Z) appear.

@ Implies Orlov's blow-up formula.
@ Could have X_ =@, e.g.

Db(P”) = <pt, e pt>

where kK = n+ 1 (Beilinson’s theorem).
o If K =0 we have a flop and derived categories are equivalent.



Toric varieties

Let (C*)" act on a vector space V.

@ There are many GIT quotients (“phases”). Each phase X; is a toric
variety.

@ The space of characters has a wall-and-chamber structure, the
secondary fan.

o A single wall crossing X; ~» Xj is a VGIT construction U/C* where
U C V is the semi-stable locus for a character on the wall.

@ We can decompose D?(X;) by wall-crossing repeatedly and applying
theorem from previous slide.

e If X; is compact then D?(X;) decomposes into copies of D?(pt), if
not there will be bigger pieces.



Toric varieties

| X=0Cvr

(4)
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Let (C*)? act on C® with weights:
11 -1 00 O
00 1 11 -1

Here P = P(O%2 @ O(—1))p. )




Toric varieties
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(1) ~ (2). Blows up the origin in A%,
Db(o(_l)P3) = <A4’ pt, pt, Pt>

(2) ~ (4). Blows up O(—1)p1.

Db(X):<(’)(—1)p3, O(—1)pm ) = (A*, pt, pt, pt, O(—1)p )




Toric varieties

| X=0Cvr
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Now go a different way. (1) ~ (3) blows up A2.
DP(O(-1)p x A%) = (A%, A?)

(3) ~ (4) blows up P1.

Db(X) = (O(-1)p x A%, P!, P') = (A% A? P!, P')




Toric varieties
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(1) ~ (2) ~ (4) gives DE(X) = (A%, pt, pt, pt, O(~1)p: ).

(1) ~ (3) ~ (4) gives DP(X) = ( A% A% P! P!).

But O(—1)p: and P! are toric varieties and their derived categories can
also be decomposed.




Toric varieties
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(1) ~ (2) ~ (4) gives DP(X) = (A*, pt, pt, pt, A? pt).

(1) ~ (3) ~ (4) gives DP(X) = (A%, A%, pt, pt, pt, pt).

But O(—1)p: and P! are toric varieties and their derived categories can
also be decomposed.




Toric varieties

Theorem (Kite-S.)

These semi-orthogonal decompositions of the derived categories of toric
varieties satisfy the Jordan-Hélder property: the ‘irreducible components’
and their multiplicities are independent of choices.

@ In the example we quotiented by (C*)? and the decomposition took 2
steps. For rank r it will take r steps.

@ Proof not very hard.

o Jordan-Holder property fails in general for semi-orthogonal
decompositions [Bondal, Kalck, Kuznetsov, Bohning-Graf von
Bothmer-Sosnal.



Calabi-Yau toric varieties

Suppose C* acts on U and Z = U®" is connected and x = 0. Then recall
D5(X,) = DP(X_). In fact the theory gives Z-many equivalences:

&y - DP(Xy) =5 DP(X)

Theorem (Halpern-Leistner-Shipman)

The autoequivalence d>1_1d>o is the twist around a spherical functor:
F: D°(Z) — DP(X,)

If D*(Z) has a semi-orthogonal decomposition then F has a corresponding
factorization.

v




Calabi-Yau toric varieties

Let (C*)" act on a vector space V through SL(V).
@ All phases are Calabi-Yau.
@ All phases are derived equivalent.
@ Wall-crossing gives many autoequivalences of each phase.

@ Physics/mirror symmetry predicts:

71 (Fayet-lliopoulos parameter space) ~ DP(X;) J

The FI parameter space is the base of the Hori-Vafa mirror
complexification of space of GIT stability conditions.
stringy Kahler moduli space of X;.

~
~
~
~



FI parameter space

Take the secondary toric variety XV defined by the secondary fan.
Observe:

Phases <— toric fixed points in XV.

Wall <  toric rational curve C;; connecting two fixed points.

The FI parameter space is the open set in XV obtained by deleting:
@ The toric boundary.

@ The GKZ discriminant locus, a non-toric hypersurface
A=NUMNU..UA, CXV

which may have several irreducible components.



FI parameter space

Loop from X; to X> and back again ~» the wall-crossing autoequivalence
of Db(Xy).

It should factor according to (i) the components of A, (ii) their
intersection multiplicities with G ».



FI parameter space

Recall that the wall-crossing autoequivalence is the twist around a
spherical functor D?(Z) — DP(Xi). Here Z is itself a toric variety
(probably not Calabi-Yau). So D?(Z) has a semi-orthogonal
decomposition = the autoequivalence factors.

Fact: the ‘irreducible components’ D?(Y;) that could occur in D*(2)
biject with the components of A.

Conjecture (Aspinwall-Plesser-Wang, Kite-S.)

The multiplicity of a component D®(Y;) C DP(Z) agrees with the
intersection multiplicity of A; with Cy 5.

Theorem (Kite-S.)

This is true in the rank 2 case.

THE END.



