Moduli of twisted K3 surfaces and cubic fourfolds

Emma Brakkee

Korteweg-de Vries Institute
University of Amsterdam

IMPANGA
February 19, 2021

Overview

Goal:

Construct moduli spaces of twisted K3 surfaces, suitable for studying their Hodge-theoretic relation with cubic fourfolds (everything over \mathbb{C}).

Plan:

(1) Twisted K3 surfaces and their Hodge structures
(2) (Twisted) K3 surfaces and cubic fourfolds
(3) Non-existence result for moduli spaces
(9) Modification of Brauer group \& relation to cubic fourfolds
(5) Construction of moduli spaces
(0) Back to cubics once more.

Reminder on K3 surfaces

Definition

A complex algebraic $K 3$ surface is a 2-dimensional smooth complete variety S over \mathbb{C} such that $\mathrm{H}^{1}\left(S, \mathcal{O}_{S}\right)=0$ and $\Omega_{S}^{2} \cong \mathcal{O}_{S}$.
E.g. quartic hypersurfaces in \mathbb{P}^{3}, Kummer surfaces, ...

Hodge diamond:

	0	1		
1		20		1

Cohomology lattice: $\mathrm{H}^{*}(S, \mathbb{Z})+$ pairing $(\alpha, \beta):=\int_{S} \alpha \smile \beta \in 2 \mathbb{Z}$, isomorphic to a fixed lattice of rank 24.
Picard group: The map c_{1} : Pic $S \rightarrow \mathrm{H}^{2}(S, \mathbb{Z})$ is injective. Hence, $\operatorname{Pic}(S) \cong \mathbb{Z}^{\oplus \rho(S)}$ with $1 \leq \rho(S) \leq 20$; all numbers occur.

A polarization on a K 3 surface S is a primitive ample class $L \in \mathrm{H}^{2}(S, \mathbb{Z})$. Its degree is $d=(L, L) \in 2 \mathbb{Z}$.

Moduli of polarized K3 surfaces

Let \mathcal{M}_{d} be the moduli functor for polarized K 3 s of degree d :

$$
\begin{aligned}
\mathcal{M}_{d}:(\mathrm{Sch} / \mathbb{C})^{\mathrm{op}} & \rightarrow \text { Sets } \\
T & \mapsto\{(f: S \rightarrow T, L)\} / \cong
\end{aligned}
$$

with f a smooth proper morphism and $L \in \mathrm{H}^{0}\left(T, R^{1} f_{*} \mathbb{G}_{\mathrm{m}}\right)$ s.t. $\left(S_{t}, L_{t}\right)$ is a polarized K 3 of degree d for all $t \in T(\mathbb{C})$.

Facts:

- \mathcal{M}_{d} has a coarse moduli space $\Phi: \mathcal{M}_{d} \rightarrow \mathrm{M}_{d}$. That is, $\Phi(\mathbb{C})$ is a bijection, and morphisms $\mathcal{M}_{d} \rightarrow T$ with T a finite type \mathbb{C}-scheme factor uniquely over M_{d}.
- M_{d} is an irreducible quasi-projective variety of dimension 19 with only finite quotient singularities.
- The locus of (S, L) with $\rho(S) \geq k$ is a countably infinite union of codim. $k-1$ subvarieties of M_{d}.

Twisted K3 surfaces

Definition

The (cohomological) Brauer group of a K 3 surface S is

$$
\operatorname{Br}(S):=\mathrm{H}_{\text {ett }}^{2}\left(S, \mathbb{G}_{\mathrm{m}}\right) \cong \mathrm{H}^{2}\left(S, \mathcal{O}_{S}^{*}\right)_{\text {tors }} .
$$

A twisted K3 surface is a pair (S, α) with $S \mathrm{~K} 3$ and $\alpha \in \operatorname{Br}(S)$.

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{NS}(S) \longrightarrow \mathrm{H}^{2}(S, \mathbb{Z}) \longrightarrow \mathrm{H}^{2}\left(S, \mathcal{O}_{S}\right) \xrightarrow{\exp } \mathrm{H}^{2}\left(S, \mathcal{O}_{S}^{*}\right) \longrightarrow 0 \\
& \cap \mathbb{R} \\
& \mathrm{H}^{2}(S, \mathbb{C}) \longrightarrow \mathrm{H}^{0,2}(S) \oplus \mathrm{H}^{1,1}(S) \oplus \mathrm{H}^{2,0}(S)
\end{aligned}
$$

Any $\alpha \in \operatorname{Br}(S)$ equals $\exp \left(B^{0,2}\right)$ for some $B \in \mathrm{H}^{2}(S, \mathbb{Q})$, unique up to $\mathrm{H}^{2}(S, \mathbb{Z})$ and $\mathrm{NS}(S) \otimes \mathbb{Q}$. This is called a B-field lift of α. Let $T(S):=\mathrm{NS}(S)^{\perp} \subset \mathrm{H}^{2}(S, \mathbb{Z})$. There is an isomorphism

$$
\begin{aligned}
\operatorname{Br}(S) & \cong \operatorname{Hom}(T(S), \mathbb{Q} / \mathbb{Z}), \alpha \mapsto(B,-) \\
& \cong(\mathbb{Q} / \mathbb{Z})^{\oplus 22-\rho(S)}
\end{aligned}
$$

Twisted Hodge structure

Hodge structure $\widetilde{\mathrm{H}}(S, B, \mathbb{Z})$ of K 3 type on $\mathrm{H}^{*}(S, \mathbb{Z})$:

$$
\widetilde{\mathrm{H}}^{2,0}(S, B):=\mathbb{C}[\exp (B) \sigma] \subset \mathrm{H}^{*}(S, \mathbb{C})
$$

σ nowhere degenerate holomorphic 2-form; $\exp (B) \sigma:=\sigma+B \wedge \sigma$. Independent of lift $B \Rightarrow$ define $\mathrm{H}(S, \alpha, \mathbb{Z}):=\mathrm{H}(S, B, \mathbb{Z})$.
The Picard group of (S, α) is

$$
\operatorname{Pic}(S, \alpha):=\widetilde{\mathrm{H}}^{1,1}(S, \alpha) \cap \widetilde{\mathrm{H}}(S, \alpha, \mathbb{Z})
$$

and its transcendental lattice:

$$
T(S, \alpha):=\operatorname{Pic}(S, \alpha)^{\perp} \subset \widetilde{\mathrm{H}}(S, \alpha, \mathbb{Z})
$$

When α is trivial, we have $\operatorname{Pic}(S, \alpha)=\left(\mathrm{H}^{0} \oplus \mathrm{H}^{1,1} \oplus \mathrm{H}^{4}\right)(S, \mathbb{Z})$ and $T(S, \alpha)=T(S)$. In general, there is an isomorphism of lattices

$$
T(S, \alpha) \cong \operatorname{ker}(\alpha: T(S) \rightarrow \mathbb{Q} / \mathbb{Z})
$$

in fact $T(S, \alpha)=\exp (B) \operatorname{ker}(\alpha)$.

K3 surfaces and cubic fourfolds

Let $X \subset \mathbb{P}_{\mathbb{C}}^{5}$ be a smooth cubic fourfold. Let $h^{2} \in \mathrm{H}^{4}(X, \mathbb{Z})$ be the square of the hyperplane class.

Definition

X is special if X contains a surface T whose cohomology class is not a multiple of h^{2}. Let $K_{d}:=\operatorname{sat}\left\langle h^{2}, T\right\rangle$ (here $d=\operatorname{disc} K_{d}$).

Hassett (2000): Special cubics form an infinite union of irreducible divisors \mathcal{C}_{d} in the 20-dimensional moduli space \mathcal{C} of cubic fourfolds. Here $d \equiv 0,2 \bmod 6$ and $d>6$.

Definition

A polarized K 3 surface (S, L) is associated to $X \in \mathcal{C}_{d}$ if

$$
\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}:=L^{\perp} \subset \mathrm{H}^{2}(S, \mathbb{Z})
$$

is Hodge isometric to $K_{d}^{\perp} \subset \mathrm{H}^{4}(X, \mathbb{Z})$, up to a sign and a Tate twist. Then $\operatorname{deg} L=d$.

K3 surfaces and cubic fourfolds

Theorem (Hassett)

A cubic X has an associated K3 surface if and only if $X \in \mathcal{C}_{d}$ with $(* *) d$ is even and not divisible by 4, 9 , or any odd prime $p \equiv 2(3)$.

Conjecture X is rational $\Leftrightarrow X$ has an associated K 3 surface. Huybrechts: associated twisted K3 surfaces (based on AddingtonThomas). When $\rho(S)=1$, so Pic $S=\mathbb{Z} L$ and $T(S)=\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}$:
(S, α) is associated to $X \in \mathcal{C}_{d^{\prime}}$ if $T(S, \alpha)$ is Hodge isometric to $K_{d^{\prime}}^{\perp} \subset \mathrm{H}^{4}(X, \mathbb{Z})$, up to a sign and a Tate twist. Then $d^{\prime}=\operatorname{deg}(L) \cdot \operatorname{ord}(\alpha)^{2}$.
X has an associated twisted K 3 if and only if $X \in \mathcal{C}_{d^{\prime}}$ with $\left(* *^{\prime}\right) d^{\prime}=d r^{2}$ for some integers d and r, where d satisfies $(* *)$.

K3s and cubics in families

Hassett: When $(* *)$ holds, there is a surjective rational map
$\varphi: \mathrm{M}_{d} \rightarrow \mathcal{C}_{d}$ so that (S, L) is associated to $\varphi(S, L)$. It has degree
1 when $d \equiv 2(6)$ and degree 2 when $d \equiv 0(6)$.
Goal: generalize this to twisted K3 surfaces.
First step: generalize M_{d}.

- A polarized twisted K3 surface of degree d and order r is a triple (S, L, α) with S a K 3 surface, L a polarization on S of degree d and $\alpha \in \operatorname{Br}(S)$ of order r.
- (S, L, α) and $\left(S^{\prime}, L^{\prime}, \alpha^{\prime}\right)$ are isomorphic if there is an isomorphism $f: S \rightarrow S^{\prime}$ such that $f^{*} L^{\prime}=L$ and $f^{*} \alpha^{\prime}=\alpha$.

Claim: There is no coarse moduli space for polarized twisted K3 surfaces of fixed degree and order which is a locally noetherian scheme.

Non-existence result for moduli spaces

Consider the moduli functor

$$
\begin{aligned}
\mathcal{N}_{d}[r]:(\mathrm{Sch} / \mathbb{C})^{\mathrm{op}} & \rightarrow \text { Sets } \\
T & \mapsto\{(f: S \rightarrow T, L, \alpha)\} / \cong
\end{aligned}
$$

where $(f: S \rightarrow T, L)$ is a family of polarized K 3 s of degree d and $\alpha \in \mathrm{H}^{0}\left(T, R^{2} f_{*} \mathbb{G}_{\mathrm{m}}\right)$ s.t. $\alpha_{t} \in \mathrm{H}^{2}\left(S_{t}, \mathbb{G}_{\mathrm{m}}\right)[r]$ for $t \in T(\mathbb{C})$.

Suppose there is a coarse moduli space $\mathcal{N}_{d}[r] \rightarrow \mathrm{N}_{d}[r]$. Consider

$$
\begin{array}{ccc}
(S \rightarrow T, L, \alpha) & \mathcal{N}_{d}[r] \longrightarrow & \mathrm{N}_{d}[r] \\
\xi(T) \\
& \xi & \vdots \\
(S \rightarrow T, L) & \mathcal{M}_{d} \longrightarrow & \vdots \exists!\pi \\
& \mathrm{M}_{d}
\end{array}
$$

For $y \in \mathrm{~N}_{d}[r](\mathbb{C})$ corresponding to $(S, L, \alpha), x=\pi(y)$ corresponds to (S, L). Hence,

$$
\left(\mathrm{N}_{d}[r]\right)_{x}=\{(S, L, \alpha) \mid \alpha \in \operatorname{Br}(S)[r]\} / \operatorname{Aut}(S, L)
$$

Non-existence result for moduli spaces

- If $d>2$, let $U \subset M_{d}$ be the open subset where $\operatorname{Aut}(S, L)$ is trivial. Then for $x \in U$,

$$
\begin{aligned}
\left(\mathrm{N}_{d}[r]\right)_{x} & =\operatorname{Br}(S)[r] \\
& \cong \operatorname{Hom}\left(T(S), \frac{1}{r} \mathbb{Z} / \mathbb{Z}\right) \cong(\mathbb{Z} / r \mathbb{Z})^{\oplus 22-\rho(S)}
\end{aligned}
$$

Hence $\left.\pi\right|_{N_{d}[r] \times_{M_{d}}}$ U is ramified over the locus where $\rho(S)>1$. This is not closed, so $N_{d}[r]$ is not locally noetherian.

- When $d=2$, let $U \subset M_{2}$ be the open subset where $\operatorname{Aut}(S, L)=\mathbb{Z} / 2 \mathbb{Z}$. Then $\left.\pi\right|_{N_{d}[r] \times{ }_{M_{d}}} u$ is ramified over the locus where $\rho(S)>2$, which is not closed.

By a similar argument, there is no locally noetherian coarse moduli space for polarized K3 surfaces of degree d and order exactly r.

Modification of Brauer group

- Recall: $\operatorname{Br}(S) \cong \operatorname{Hom}(T(S), \mathbb{Q} / \mathbb{Z}) \cong(\mathbb{Q} / \mathbb{Z})^{\oplus 22-\rho(S)}$.
- Define: $\widetilde{\operatorname{Br}}(S):=\operatorname{Hom}\left(\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}, \mathbb{Q} / \mathbb{Z}\right) \cong(\mathbb{Q} / \mathbb{Z})^{\oplus 21}$. Have a surjection $\pi_{\mathrm{Br}}: \widetilde{\operatorname{Br}}(S) \rightarrow \operatorname{Br}(S)$, isomorphism iff $\rho(S)=1$.

Theorem 1 (B.)

There exists a coarse moduli space M_{d}^{r} for triples (S, L, α) with (S, L) a polarized K3 surface of deg. d and $\alpha \in \widetilde{\operatorname{Br}}(S)$ of order r, which is a finite disjoint union of 19-dimensional irreducible quasi-projective varieties with at most finite quotient singularities.

The Kummer sequence induces a map $q: \mathrm{H}^{1}\left(S, \mathbb{G}_{\mathrm{m}}\right) \rightarrow \mathrm{H}^{2}\left(S, \mu_{r}\right)$. One can show that $\widetilde{\operatorname{Br}}(S)[r] \cong \mathrm{H}^{2}\left(S, \mu_{r}\right) / q(L)$.
Compare Bragg (2019): moduli stack \mathcal{B}_{d}^{r} of triples (S, L, α) with S $\mathrm{K} 3, L$ ample line bundle on S of deg. d and $\alpha \in \mathrm{H}^{2}\left(S, \mu_{r}\right)$. If B_{d}^{r} is its coarse moduli space, M_{d}^{r} is an open subspace of $\mathrm{B}_{d}^{r} \otimes \mathbb{C}$.

Relation with cubic fourfolds

Take α in

$$
\widetilde{\operatorname{Br}}(S)[r]=\operatorname{Hom}\left(\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}, \frac{1}{r} \mathbb{Z} / \mathbb{Z}\right) \cong \frac{1}{r} \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}^{\vee} / \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}^{\vee}
$$

Let $w \in \frac{1}{r} \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}^{\vee} \subset \mathrm{H}^{2}(S, \mathbb{Q})$ be a representative of α; this is a B-field lift of $\pi_{\mathrm{Br}}(\alpha)$. We set $\widetilde{\mathrm{H}}(S, \alpha, \mathbb{Z}):=\widetilde{\mathrm{H}}(S, w, \mathbb{Z})$.
Recall:
$\left(* *^{\prime}\right) d^{\prime}=d r^{2}$ for some integers d and r, where d satisfies $(* *)$.

Theorem 2 (B.)

Condition $\left(* *^{\prime}\right)$ holds if and only if for all $X \in \mathcal{C}_{d^{\prime}}$ and all d, r as in $\left(* *^{\prime}\right)$, there is a triple (S, L, α) with (S, L) a polarized $K 3$ of degree d and $\alpha \in \widetilde{\operatorname{Br}}(S)$ of order r, and a Hodge isometry

$$
\mathrm{H}^{4}(X, \mathbb{Z}) \supset K_{d^{\prime}}^{\perp} \cong \exp (w) \operatorname{ker}(\alpha) \subset \widetilde{\mathrm{H}}(S, \alpha, \mathbb{Z})
$$

up to a sign and a Tate twist.

Construction of M_{d}^{r}

Recall the construction of M_{d} :

- For any polarized $\mathrm{K} 3(S, L)$ of degree $d, \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}$ is isomorphic to a fixed lattice Λ_{d}. An isomorphism $\varphi: \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \rightarrow \Lambda_{d}$ is called a marking.
- There is a fine (analytic) moduli space $\mathrm{M}_{d}^{\text {mar }}$ of marked polarized K3 surfaces (S, L, φ) of degree d. It is an open submanifold of

$$
\mathcal{D}\left(\Lambda_{d}\right):=\left\{x \in \mathbb{P}\left(\Lambda_{d} \otimes \mathbb{C}\right) \mid(x)^{2}=0,(x, \bar{x})>0\right\}
$$

- M_{d} is the quotient of $\mathrm{M}_{d}^{m a r}$ by $\widetilde{\mathrm{O}}\left(\Lambda_{d}\right)=\operatorname{ker}\left(\mathrm{O}\left(\Lambda_{d}\right) \rightarrow\right.$ Disc $\left.\Lambda_{d}\right)$. It is a Zariski open subset of $\mathcal{D}\left(\Lambda_{d}\right) / \widetilde{O}\left(\Lambda_{d}\right)$, a quasi-projective variety (Bailey-Borel).
Note: a marking $\varphi: \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}} \rightarrow \Lambda_{d}$ induces an isomorphism $\widetilde{\operatorname{Br}}(S)=\operatorname{Hom}\left(\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{pr}}, \mathbb{Q} / \mathbb{Z}\right) \cong \operatorname{Hom}\left(\Lambda_{d}, \mathbb{Q} / \mathbb{Z}\right)$.

Construction of M_{d}^{r}

Define the following spaces:

- $\mathrm{M}_{d}^{\text {mar }}[r]:=\mathrm{M}_{d}^{\text {mar }} \times \operatorname{Hom}\left(\Lambda_{d}, \frac{1}{r} \mathbb{Z} / \mathbb{Z}\right)$. This is a coarse moduli space for tuples (S, L, φ, α) with (S, L, φ) a marked polarized K3 of degree d and $\alpha \in \widetilde{\operatorname{Br}}(S)[r]$.
- $\mathrm{M}_{d}[r]:=\mathrm{M}_{d}^{\text {mar }}[r] / \widetilde{\mathrm{O}}\left(\Lambda_{d}\right)$. This is a coarse moduli space for triples (S, L, α) with $(S, L) \in \mathrm{M}_{d}$ and $\alpha \in \widetilde{\operatorname{Br}}(S)[r]$.
The space $M_{d}[r]$ is a finite disjoint union of components

$$
\mathrm{M}_{v}:=\left(\mathrm{M}_{d}^{\operatorname{mar}} \times\{v\}\right) / \operatorname{Stab}(v)
$$

where $v \in \operatorname{Hom}\left(\Lambda_{d}, \frac{1}{r} \mathbb{Z} / \mathbb{Z}\right)$ and $\operatorname{Stab}(v) \subset \widetilde{O}\left(\Lambda_{d}\right)$ is the stabilizer of v. Each M_{v} is a 19-dimensional irreducible quasi-projective variety with at most finite quotient singularities.

- Let M_{d}^{r} be the union of the components M_{v} where $v \in \operatorname{Hom}\left(\Lambda_{d}, \frac{1}{r} \mathbb{Z} / \mathbb{Z}\right)$ has order r.

Analogue of Hassett's map

One can show that d^{\prime} satisfies $\left(* *^{\prime}\right)$ if and only if there exist

- $v \in \operatorname{Hom}\left(\Lambda_{d}, \frac{1}{r} \mathbb{Z} / \mathbb{Z}\right)$
- a finite cover $\widetilde{M}_{v} \xrightarrow{f} M_{v}$
- a surjective rational map $\varphi: \widetilde{\mathrm{M}}_{v} \rightarrow \mathcal{C}_{d^{\prime}}$ (degree 1 or 2) such that $f(S, L, \widetilde{\alpha})$ is associated to $\varphi(S, L, \widetilde{\alpha})$.
Example: $d^{\prime}=8$, so $d=r=2$. The space M_{2}^{2} has 3 components.
For one of them, $\mathrm{M}_{v_{0}}$, there exist f and φ as above; f is an isomorphism and φ is birational. So get $\varphi: \mathrm{M}_{\mathrm{v}_{0}} \xrightarrow{1: 1} \mathcal{C}_{8}$.
If $X \in \mathcal{C}_{8}$, then $X \subset \mathbb{P}\left(V_{6}\right)$ contains a plane $\mathbb{P}(A)$. For X generic:

Then (S, α) is associated to X (Kuznetsov).

