Moduli of twisted K3 surfaces and cubic fourfolds

Emma Brakkee

Korteweg-de Vries Institute University of Amsterdam

IMPANGA February 19, 2021

Goal:

Construct moduli spaces of twisted K3 surfaces, suitable for studying their Hodge-theoretic relation with cubic fourfolds (everything over \mathbb{C}).

Plan:

- Twisted K3 surfaces and their Hodge structures
- (Twisted) K3 surfaces and cubic fourfolds
- In Non-existence result for moduli spaces
- Modification of Brauer group & relation to cubic fourfolds
- Onstruction of moduli spaces
- Back to cubics once more.

Definition

A complex algebraic K3 surface is a 2-dimensional smooth complete variety S over \mathbb{C} such that $H^1(S, \mathcal{O}_S) = 0$ and $\Omega_S^2 \cong \mathcal{O}_S$.

E.g. quartic hypersurfaces in \mathbb{P}^3 , Kummer surfaces, ...

Hodge diamond: 1 0 0 1 20 1

Cohomology lattice: $H^*(S, \mathbb{Z})$ + pairing $(\alpha, \beta) := \int_S \alpha \smile \beta \in 2\mathbb{Z}$, isomorphic to a fixed lattice of rank 24.

Picard group: The map c_1 : Pic $S \to H^2(S, \mathbb{Z})$ is injective. Hence, Pic $(S) \cong \mathbb{Z}^{\oplus \rho(S)}$ with $1 \le \rho(S) \le 20$; all numbers occur.

A polarization on a K3 surface S is a primitive ample class $L \in H^2(S, \mathbb{Z})$. Its degree is $d = (L, L) \in 2\mathbb{Z}$.

Let \mathcal{M}_d be the moduli functor for polarized K3s of degree d:

$$\mathcal{M}_d \colon (\mathsf{Sch}/\mathbb{C})^{\mathsf{op}} o \mathsf{Sets}$$

 $\mathcal{T} \mapsto \{(f \colon S \to \mathcal{T}, L)\}/\cong$

with f a smooth proper morphism and $L \in H^0(T, R^1 f_* \mathbb{G}_m)$ s.t. (S_t, L_t) is a polarized K3 of degree d for all $t \in T(\mathbb{C})$.

Facts:

- \mathcal{M}_d has a coarse moduli space $\Phi \colon \mathcal{M}_d \to \mathsf{M}_d$. That is, $\Phi(\mathbb{C})$ is a bijection, and morphisms $\mathcal{M}_d \to T$ with T a finite type \mathbb{C} -scheme factor uniquely over M_d .
- M_d is an irreducible quasi-projective variety of dimension 19 with only finite quotient singularities.
- The locus of (S, L) with ρ(S) ≥ k is a countably infinite union of codim. k − 1 subvarieties of M_d.

Twisted K3 surfaces

Definition

The (cohomological) Brauer group of a K3 surface S is

$$\mathsf{Br}(S):=\mathsf{H}^2_{ ext{\'et}}(S,\mathbb{G}_{\mathsf{m}})\cong\mathsf{H}^2(S,\mathcal{O}_S^*)_{\mathsf{tors}}.$$

A twisted K3 surface is a pair (S, α) with S K3 and $\alpha \in Br(S)$.

Any $\alpha \in Br(S)$ equals $exp(B^{0,2})$ for some $B \in H^2(S, \mathbb{Q})$, unique up to $H^2(S, \mathbb{Z})$ and $NS(S) \otimes \mathbb{Q}$. This is called a *B*-field lift of α . Let $T(S) := NS(S)^{\perp} \subset H^2(S, \mathbb{Z})$. There is an isomorphism $Br(S) \cong Hom(T(S), \mathbb{Q}/\mathbb{Z}), \ \alpha \mapsto (B, -)$ $\cong (\mathbb{Q}/\mathbb{Z})^{\oplus 22 - \rho(S)}$

Twisted Hodge structure

Hodge structure
$$\widetilde{H}(S, B, \mathbb{Z})$$
 of K3 type on $H^*(S, \mathbb{Z})$:
 $\widetilde{H}^{2,0}(S, B) := \mathbb{C}[\exp(B)\sigma] \subset H^*(S, \mathbb{C}),$

 σ nowhere degenerate holomorphic 2-form; $\exp(B)\sigma := \sigma + B \wedge \sigma$. Independent of lift $B \Rightarrow$ define $\widetilde{H}(S, \alpha, \mathbb{Z}) := \widetilde{H}(S, B, \mathbb{Z})$.

The *Picard group* of (S, α) is

$$\mathsf{Pic}(S, \alpha) := \widetilde{\mathsf{H}}^{1,1}(S, \alpha) \cap \widetilde{\mathsf{H}}(S, \alpha, \mathbb{Z})$$

and its transcendental lattice:

$$T(S, \alpha) := \operatorname{Pic}(S, \alpha)^{\perp} \subset \widetilde{H}(S, \alpha, \mathbb{Z}).$$

When α is trivial, we have $\operatorname{Pic}(S, \alpha) = (\operatorname{H}^0 \oplus \operatorname{H}^{1,1} \oplus \operatorname{H}^4)(S, \mathbb{Z})$ and $T(S, \alpha) = T(S)$. In general, there is an isomorphism of lattices

$$T(S, \alpha) \cong \ker(\alpha \colon T(S) \to \mathbb{Q}/\mathbb{Z}),$$

in fact $T(S, \alpha) = \exp(B) \ker(\alpha)$.

K3 surfaces and cubic fourfolds

Let $X \subset \mathbb{P}^5_{\mathbb{C}}$ be a smooth cubic fourfold. Let $h^2 \in H^4(X, \mathbb{Z})$ be the square of the hyperplane class.

Definition

X is special if X contains a surface T whose cohomology class is not a multiple of h^2 . Let $K_d := \operatorname{sat} \langle h^2, T \rangle$ (here $d = \operatorname{disc} K_d$).

Hassett (2000): Special cubics form an infinite union of irreducible divisors C_d in the 20-dimensional moduli space C of cubic fourfolds. Here $d \equiv 0, 2 \mod 6$ and d > 6.

Definition

A polarized K3 surface (S, L) is *associated* to $X \in C_d$ if

$$\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}} := L^{\perp} \subset \mathsf{H}^2(S,\mathbb{Z})$$

is Hodge isometric to $K_d^{\perp} \subset H^4(X, \mathbb{Z})$, up to a sign and a Tate twist. Then deg L = d.

Theorem (Hassett)

A cubic X has an associated K3 surface if and only if $X \in C_d$ with (**) d is even and not divisible by 4, 9, or any odd prime $p \equiv 2(3)$.

Conjecture X is rational \Leftrightarrow X has an associated K3 surface.

Huybrechts: associated *twisted* K3 surfaces (based on Addington–Thomas). When $\rho(S) = 1$, so Pic $S = \mathbb{Z}L$ and $T(S) = H^2(S, \mathbb{Z})_{pr}$:

 (S, α) is associated to $X \in C_{d'}$ if $T(S, \alpha)$ is Hodge isometric to $K_{d'}^{\perp} \subset H^4(X, \mathbb{Z})$, up to a sign and a Tate twist. Then $d' = \deg(L) \cdot \operatorname{ord}(\alpha)^2$.

X has an associated twisted K3 if and only if $X \in C_{d'}$ with (**') $d' = dr^2$ for some integers d and r, where d satisfies (**).

K3s and cubics in families

Hassett: When (**) holds, there is a surjective rational map $\varphi \colon M_d \dashrightarrow C_d$ so that (S, L) is associated to $\varphi(S, L)$. It has degree 1 when $d \equiv 2$ (6) and degree 2 when $d \equiv 0$ (6).

Goal: generalize this to twisted K3 surfaces.

First step: generalize M_d .

- A polarized twisted K3 surface of degree d and order r is a triple (S, L, α) with S a K3 surface, L a polarization on S of degree d and α ∈ Br(S) of order r.
- (S, L, α) and (S', L', α') are isomorphic if there is an isomorphism f: S → S' such that f*L' = L and f*α' = α.

Claim: There is no coarse moduli space for polarized twisted K3 surfaces of fixed degree and order which is a locally noetherian scheme.

Non-existence result for moduli spaces

Consider the moduli functor

$$\mathcal{N}_d[r] \colon (\mathsf{Sch}/\mathbb{C})^{\mathsf{op}} o \mathsf{Sets}$$

 $T \mapsto \{(f \colon S \to T, L, \alpha)\}/\cong$

where $(f: S \to T, L)$ is a family of polarized K3s of degree d and $\alpha \in H^0(T, R^2 f_* \mathbb{G}_m)$ s.t. $\alpha_t \in H^2(S_t, \mathbb{G}_m)[r]$ for $t \in T(\mathbb{C})$.

Suppose there is a coarse moduli space $\mathcal{N}_d[r] o \mathsf{N}_d[r]$. Consider

$$\begin{array}{ccc} (S \to T, L, \alpha) & \mathcal{N}_d[r] \longrightarrow \mathsf{N}_d[r] \\ \begin{matrix} \xi(T) \\ & \xi \\ & & \xi \\ & & \downarrow \\ (S \to T, L) & \mathcal{M}_d \longrightarrow \mathsf{M}_d \end{array}$$

For $y \in N_d[r](\mathbb{C})$ corresponding to (S, L, α) , $x = \pi(y)$ corresponds to (S, L). Hence,

$$(\mathsf{N}_d[r])_x = \{(S, L, \alpha) \mid \alpha \in \mathsf{Br}(S)[r]\} / \mathsf{Aut}(S, L).$$

Non-existence result for moduli spaces

 If d > 2, let U ⊂ M_d be the open subset where Aut(S, L) is trivial. Then for x ∈ U,

$$(\mathsf{N}_d[r])_x = \mathsf{Br}(S)[r]$$

$$\cong \mathsf{Hom}(T(S), \frac{1}{r}\mathbb{Z}/\mathbb{Z}) \cong (\mathbb{Z}/r\mathbb{Z})^{\oplus 22 - \rho(S)}.$$

Hence $\pi|_{N_d[r] \times_{M_d} U}$ is ramified over the locus where $\rho(S) > 1$. This is not closed, so $N_d[r]$ is not locally noetherian.

• When d = 2, let $U \subset M_2$ be the open subset where $\operatorname{Aut}(S, L) = \mathbb{Z}/2\mathbb{Z}$. Then $\pi|_{\operatorname{N}_d[r] \times_{\operatorname{M}_d} U}$ is ramified over the locus where $\rho(S) > 2$, which is not closed.

By a similar argument, there is no locally noetherian coarse moduli space for polarized K3 surfaces of degree d and order exactly r.

Modification of Brauer group

- Recall: $Br(S) \cong Hom(T(S), \mathbb{Q}/\mathbb{Z}) \cong (\mathbb{Q}/\mathbb{Z})^{\oplus 22 \rho(S)}$.
- Define: $\widetilde{\mathrm{Br}}(S) := \mathrm{Hom}(\mathrm{H}^2(S,\mathbb{Z})_{\mathrm{pr}},\mathbb{Q}/\mathbb{Z}) \cong (\mathbb{Q}/\mathbb{Z})^{\oplus 21}.$

Have a surjection $\pi_{\mathsf{Br}} \colon \widetilde{\mathsf{Br}}(S) \to \mathsf{Br}(S)$, isomorphism iff $\rho(S) = 1$.

Theorem 1 (B.)

There exists a coarse moduli space M_d^r for triples (S, L, α) with (S, L) a polarized K3 surface of deg. d and $\alpha \in \widetilde{Br}(S)$ of order r, which is a finite disjoint union of 19-dimensional irreducible quasi-projective varieties with at most finite quotient singularities.

The Kummer sequence induces a map $q \colon H^1(S, \mathbb{G}_m) \to H^2(S, \mu_r)$. One can show that $\widetilde{Br}(S)[r] \cong H^2(S, \mu_r)/q(L)$.

Compare Bragg (2019): moduli stack \mathcal{B}_d^r of triples (S, L, α) with S K3, L ample line bundle on S of deg. d and $\alpha \in H^2(S, \mu_r)$. If B_d^r is its coarse moduli space, M_d^r is an open subspace of $B_d^r \otimes \mathbb{C}$.

Relation with cubic fourfolds

Take α in

$$\widetilde{\mathsf{Br}}(S)[r] = \mathsf{Hom}(\mathsf{H}^2(S,\mathbb{Z})_{\mathsf{pr}}, \tfrac{1}{r}\mathbb{Z}/\mathbb{Z}) \cong \tfrac{1}{r}\mathsf{H}^2(S,\mathbb{Z})^{\vee}_{\mathsf{pr}}/\operatorname{H}^2(S,\mathbb{Z})^{\vee}_{\mathsf{pr}}.$$

Let $w \in \frac{1}{r} H^2(S, \mathbb{Z})_{\text{pr}}^{\vee} \subset H^2(S, \mathbb{Q})$ be a representative of α ; this is a *B*-field lift of $\pi_{\text{Br}}(\alpha)$. We set $\widetilde{H}(S, \alpha, \mathbb{Z}) := \widetilde{H}(S, w, \mathbb{Z})$.

Recall:

(**') $d' = dr^2$ for some integers d and r, where d satisfies (**).

Theorem 2 (B.)

Condition (**') holds if and only if for all $X \in C_{d'}$ and all d, r as in (**'), there is a triple (S, L, α) with (S, L) a polarized K3 of degree d and $\alpha \in Br(S)$ of order r, and a Hodge isometry

$$\mathrm{H}^{4}(X,\mathbb{Z})\supset \mathsf{K}_{d'}^{\perp}\cong \exp(w)\ker(\alpha)\subset \widetilde{\mathrm{H}}(\mathcal{S},\alpha,\mathbb{Z})$$

up to a sign and a Tate twist.

Recall the construction of M_d :

- For any polarized K3 (S, L) of degree d, H²(S, Z)_{pr} is isomorphic to a fixed lattice Λ_d. An isomorphism φ: H²(S, Z)_{pr} → Λ_d is called a *marking*.
- There is a fine (analytic) moduli space M^{mar}_d of marked polarized K3 surfaces (S, L, φ) of degree d. It is an open submanifold of

$$\mathcal{D}(\Lambda_d) := \{ x \in \mathbb{P}(\Lambda_d \otimes \mathbb{C}) \mid (x)^2 = 0, \ (x, \overline{x}) > 0 \}.$$

• M_d is the quotient of M_d^{mar} by $\widetilde{O}(\Lambda_d) = \ker(O(\Lambda_d) \rightarrow \text{Disc } \Lambda_d)$. It is a Zariski open subset of $\mathcal{D}(\Lambda_d)/\widetilde{O}(\Lambda_d)$, a quasi-projective variety (Bailey-Borel).

Note: a marking $\varphi \colon H^2(S, \mathbb{Z})_{\text{pr}} \to \Lambda_d$ induces an isomorphism $\widetilde{\operatorname{Br}}(S) = \operatorname{Hom}(\operatorname{H}^2(S, \mathbb{Z})_{\text{pr}}, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}(\Lambda_d, \mathbb{Q}/\mathbb{Z}).$

Construction of M_d^r

Define the following spaces:

- M_d^{mar}[r] := M_d^{mar} × Hom(Λ_d, ¹/_rℤ/ℤ). This is a coarse moduli space for tuples (S, L, φ, α) with (S, L, φ) a marked polarized K3 of degree d and α ∈ Br(S)[r].
- M_d[r] := M_d^{mar}[r]/Õ(Λ_d). This is a coarse moduli space for triples (S, L, α) with (S, L) ∈ M_d and α ∈ Br(S)[r].

The space $M_d[r]$ is a finite disjoint union of components

$$\mathsf{M}_{v} := \left(\mathsf{M}_{d}^{\mathsf{mar}} \times \{v\}\right) / \operatorname{Stab}(v)$$

where $v \in \text{Hom}(\Lambda_d, \frac{1}{r}\mathbb{Z}/\mathbb{Z})$ and $\text{Stab}(v) \subset \widetilde{O}(\Lambda_d)$ is the stabilizer of v. Each M_v is a 19-dimensional irreducible quasi-projective variety with at most finite quotient singularities.

• Let M_d^r be the union of the components M_v where $v \in \text{Hom}(\Lambda_d, \frac{1}{r}\mathbb{Z}/\mathbb{Z})$ has order r.

Analogue of Hassett's map

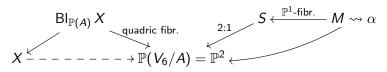
One can show that d' satisfies (**') if and only if there exist

- $v \in \operatorname{Hom}(\Lambda_d, \frac{1}{r}\mathbb{Z}/\mathbb{Z})$
- \bullet a finite cover $\widetilde{\mathsf{M}}_{v} \xrightarrow{f} \mathsf{M}_{v}$

• a surjective rational map $\varphi \colon \widetilde{\mathsf{M}}_{v} \dashrightarrow \mathcal{C}_{d'}$ (degree 1 or 2) such that $f(S, L, \widetilde{\alpha})$ is associated to $\varphi(S, L, \widetilde{\alpha})$.

Example: d' = 8, so d = r = 2. The space M_2^2 has 3 components. For one of them, M_{v_0} , there exist f and φ as above; f is an isomorphism and φ is birational. So get $\varphi \colon M_{v_0} \xrightarrow{1:1} C_8$.

If $X \in \mathcal{C}_8$, then $X \subset \mathbb{P}(V_6)$ contains a plane $\mathbb{P}(A)$. For X generic:



Then (S, α) is associated to X (Kuznetsov).