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Motivation 1/3: associated curves to rational threefolds

I If X → Y is a birational map, we call centers that are blown up and
blown factorization centers

I If X is a rational threefold, then there is a birational map P3 → X
blowing up a curve C (or several curves)

I Example: X = Q ∩ Q ′ ⊂ P5 smooth intersection of two quadrics, then
it’s rational if X has a line, and the curve C is a genus two curve in P3

I In general, is C determined by X?
I Yes, if k = k (Clemens-Griffiths: intermediate Jacobian)
I No, in general over perfect fields!

I Same question for rational surfaces over perfect fields, or in higher
dimension over C.

I E.g. associated K3 surfaces to rational cubic fourfolds?
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Motivation 2/3: structure of the Cremona groups
The n-th Cremona group is Crn(k) = Bir(Pn

k).

Theorem (Noether)
Cremona group Cr2(C) is generated by PGL3(C) and the Cremona
involution [X : Y : Z ] 7→ [YZ : XZ : XY ].
In general Cremona groups are big and complicated. Using MMP and
Birkar’s boundedness, Blanc-Lamy-Zimmermann recently constructed
infinitely many homomorphisms Crn(k)→ Z/2 (n ≥ 3).

Dolgachev’s question
I Which Cremona groups are generated by involutions?
I Considered by Déserti and Blanc-Lamy-Zimmermann

This is not known even for n = 2 and most nonclosed fields, in spite of the
fully understood links, generators and relations in Cr2(k).

For Crn(C), n ≥ 3 no set of generators is explicitly presented.
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Motivation 3/3: structure of the Grothendieck ring
k field.

K0(Var/k), the Grothendieck ring of varieties:
I generators: [X ] for X/k
I relations: [X ] = [Z ] + [X \ Z ] for all closed Z ⊂ X

I product [X ] · [Y ] = [X ×k Y ]

I L = [A1]

Some open questions:

1. X , Y smooth projective, [X ] = [Y ]
?

=⇒ X ,Y birational?
(If char(k) = 0, Larsent-Lunts: X , Y stably birational.)
If X , Y smooth nonprojective, this is false (Borisov).

2. Describe Ann(Ln) and L-equivalence Ln([X ]− [Y ]) = 0. (Exists for
non-stably birational Calabi-Yau, K3 surfaces, genus one curves; no
general description known.)

3. Does K0(Var/k) contain torsion?
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Plan of this talk

1. Definition of the invariant c(φ)

2. Factorization centers for surfaces, threefolds and fourfolds,
with applications to the Grothendieck ring

3. Applications to Cremona groups
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1. Definition of the invariant
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Groupoid of birational types

Let Bir/k be the groupoid of birational types, that is:
I Objects = (smooth) projective varieties
I Morphisms = birational isomorphisms

Two different classical ways to generate all morphisms in Bir/k :
1. Weak Factorization in char. 0 [Abramovich-Karu-Matsuki-Wlodarczyk]:

blow ups with smooth centers and their inverses
2. Minimal Model Program [Iskovskikh, Sarkisov, Reid, Corti,

Hacon-McKernan]: Sarkisov links of type I , II , III , IV
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The invariant c(φ) defined
I Consider φ : X 99K Y birational isomorphism of smooth projective

n-dimensional varieties
I Let Ex(φ) be the set of exceptional divisors of φ
I Define

c(φ) =
∑

E ′∈Ex(φ−1)

[E ′] −
∑

E∈Ex(φ)

[E ] ∈ Z[Birn−1],

that is c counts the birational types of divisors created by φ minus
those contracted by φ. (Note: c(φ−1) = −c(φ).)

I For example, if φ : X̃ → X is a smooth blow up with connected center
Z of codimension c , then

c(φ) = −[Pc−1 × Z ], c(φ−1) = [Pc−1 × Z ]

I If φ is a biregular isomorphism, or at least an isomorphism in
codimension one, then c(φ) = 0
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Key Lemma
For any birational isomorphisms φ : X 99K X ′, ψ : X ′ 99K X ′′ we have

c(ψ ◦ φ) = c(ψ) + c(φ).

In particular we have a group homomorphism

c : Bir(X )→ Z[Birn−1].

Proof: Express Ex(ψ ◦ φ) and Ex((ψ ◦ φ)−1) in terms of Ex(φ), Ex(ψ),
Ex(φ−1), Ex(ψ−1).

Remark
Exceptional divisors are ruled, so that the image of c belongs to

Birn−2
×P1

→ Birn−1, however these maps are not injective (stable
birationality 6= birationality). To simplify the bookkeeping we sometimes
consider the composition

c : Bir(X ,Y )→ Z[Birn−1]→ Z[StBir].
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Simple examples

Example
Standard Cremona transformation

φ : P2 99K P2, [X : Y : Z ] 7→ [YZ : XZ : XY ]

can be decomposed as a blow up of 3 points followed by blow down of 3
lines so c(φ) = 3− 3 = 0. Here 1 ∈ StBir is the stable birational class of a
point.

More generally, let X , Y be smooth projective surfaces over algebraically
closed field k . Then for any φ : X 99K Y c(φ) is simply the number of
points blown up minus the number of divisors contracted, so that

c(φ) = rkNS(Y )− rkNS(X ),

in particular c is zero for self-maps, and no ambiguity takes place.
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2. Factorization centers for surfaces,
threefolds and fourfolds, with applications

to Grothendieck ring
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Surfaces over perfect fields
For surfaces over a perfect fields, exceptional divisors are all P1 × Z , where
Z is a (uniquely determined) smooth connected zero-dimensional scheme,
so we can think of

c : Bir(X ,Y )→ Z[Var0/k],

where Var0/k is the monoid of isomorphism classes of zero-dimensional
smooth varieties.

Theorem
For any birational k-surfaces X , Y , the value c(φ) is independent of the
choice of φ ∈ Bir(X ,Y ).

Corollary
For X = Y we get a zero map c : Bir(X )→ Z[Var0/k]. Explicitly this
means that for any choice of factorization of φ ∈ Bir(X ) into blow ups and
blow downs, centers of blow ups match the centers of blow downs up to
isomorphism.

E.Shinder Factorization centers 12 / 26



Proving the result for surfaces
k perfect field.

Proof
I We need to show that for any φ : X → Y , birational map of surfaces,

c(φ) depends only on X and Y , not on φ
I Use MMP for surfaces over perfect field
I Easy cases: KX nef, or X ruled over a curve of positive genus
I Interesting case: geometrically rational surfaces
I Manin-Iskovskikh: all such surfaces are del Pezzos and conic bundles
I Iskovskikh: all birational maps between such surfaces are compositions

of Sarkisov links
I Make a claim and check all types of links
I Use some cohomological tricks (Grothendieck ring, étale cohomology,

Gassmann triples) to reduce the number of links to check to just four,
e.g. dP6 − dP4 − dP6.
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Consequences for the Grothendieck ring
k field, d ≥ 0. Then K0(Var

≤d/k) defined by:
I generators: [X ] for X/k , dim(X ) ≤ d
I relations: [X ] = [Z ] + [X \ Z ] for all closed Z ⊂ X
I not a ring, but has partially defined product

Example 0. K0(Var
≤0/k) = Z[Var0/k],

Example 1. K0(Var
≤1/k) = Z[Var0/k]⊕ Z[SmProjCurves/k].

We have (in general non-injective!) maps K0(Var
≤d/k)→ K0(Var

≤d+1/k)
and K0(Var/k) is the colimit.

Corollary (equivalent to the result about c(φ) for surfaces)
For a perfect field k we have

0→ K0(Var
≤1/k)→ K0(Var

≤2/k)→ Z[Bir2/k]→ 0.

In particular, K0(Var
≤2/k) is torsion-free, equality means birationality and

L-equivalence is trivial; also K0(Var
≤2/k)→ K0(Var/k) non-injective.
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Factorization centers for complex threefolds

Proposition
If X is a smooth projective complex threefold, then
c : Bir(X )→ Z[Bir2/C] is a zero map.

Proof
I Use intermediate Jacobian J(X ) (Clemens-Griffiths) and weak

factorization: only need to consider blow ups of smooth connected
curves; blowing up a smooth curve C replaces J(X ) by J(X )× J(C )

I Decompositions of polarized abelian varieties into products of
indecomposables are unique (Debarre); all J(C ) are indecomposable.

I Torelli theorem recovers C from J(C ); thus we have cancellation for
curves of genus g > 0; plus a bit more work for points and P1’s blown
up

Consequence: full control over K0(Var
≤3/C).
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Factorization centers for threefolds over perfect fields
What is the same as for k = C
I Weak factorization works (in char. 0)
I Intermediate Jacobian J(X ) is defined [Deligne, Murre,

Achter–Casalaina-Martin–Vial]
I Torelli Theorem holds for curves with g ≥ 2 [Serre]

What is different
I Blown up curves of genus zero (conics) and genus one may contribute

nontrivially to c(φ), φ ∈ Bir(X )

I No known examples with curves of genus zero
I Only one known example for curves of genus one (L-equivalent and

D-equivalent elliptic quintics: next slide)
I No full classification of Sarkisov links known which played a key role in

dimension two
I Structure of K0(Var

≤3/k) unclear; L is a zero-divisor
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Elliptic quintics as factorization centers for threefolds
Let k be a nonclosed field which admits a normal degree 5 genus one curve
C ⊂ P4 with no rational points, e.g. k = Q.

Let C ′ = Pic2(C ), this is another elliptic quintic, and Ck ' C ′
k
, but over k ,

C ′ is not isomorphic to C (possibly except the case j(C ) = 1728).

Proposition
For every C there exists φ ∈ Cr3(k) such that c(φ) = [C ]− [C ′] (and
[C ] 6= [C ′] when C , C ′ are non-isomorphic)

Proof
I If γ : Q3 99K P3 is the standard projection, then c(γ) = 0

I There is the Mori-Mukai link ψ : Q3 − 24− P3 with c(ψ) = [C ]− [C ′]

I Thus for φ ∈ Cr3(k), φ = γ ◦ ψ, c(φ) = [C ]− [C ′]

Studying the image of c is a very interesting problem, but this concrete
simple nonvanishing already has applications to Cremona groups.
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More about elliptic quintics and L-equivalence
A related notion to absence of cancellation for factorization centers is
L-equivalence. Smooth projective varieties X , Y of non-negative Kodaira
dimension are called L-equivalent if

Ln · ([Y ]− [X ]) = 0

in the Grothendieck ring of varieties for some n ≥ 1 (here L = [A1]).

Known examples include some Calabi-Yaus [starting with Borisov] some K3
surfaces and elliptic quintics C , C ′; they satisfy L4([C ]− [C ′]) = 0
[Shinder–Zhang 2019]. All these pairs are also derived equivalent, but no
general implication is currently known.

Construction on the previous slide is improving Shinder–Zhang:

[Q3] + L[C ] = [P3] + L[C ′] =⇒ L([C ]− [C ′]) = 0,

(because [P3] = 1 + L+ L2 + L3 = [Q3]).
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Factorization centers in dimension 4
Let X be a K3 surface of degree 12 and Picard rank one. Such an X exists
over large enough number fields, and clearly over k = C. Then X has a
single derived equivalent partner, a K3 surface Y of the same type with
Db(X ) ' Db(Y ).
I Hassett–Lai, Ito-Miura-Okawa-Ueda: X and Y are L-equivalent.

Construction of Hassett–Lai:

W
BlX

{{

BlY

##
Bl3(P4)

{{

Bl3(P4)

##
P4 φ // P4

I We see that c(φ) = [X ]− [Y ] 6= 0. and L([X ]− [Y ]) = 0 [Hassett-Lai]
L-equivalence of K3 surfaces and relation to nonvanishing of c , and to
birational geometry of cubic fourfolds is very interesting.
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Factorization centers in dimension ≥ 4

Let φ ∈ Cr4(k) be as in the Hassett-Lai diagram.

For each j ≥ 0 we consider

φ× idPj ∈ Bir(P4 × Pj) ' Cr4+j(k)

It follows from definitions that

c(φ× idPj ) = [Pj × X ]− [Pj × Y ] 6= 0,

so c : Crn(k)→ Z[StBir] is nonzero for all n ≥ 4.

There are also more interesting examples of higher nonvanishing, such as
ψ ∈ Cr5(k) with c(ψ) = [T ]− [T ′], a pair of derived equivalent and
L-equivalent Calabi-Yau threefolds from the G2 Grassmannian roof of
Ito-Miura-Okawa-Ueda.
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3. Applications to Cremona groups

E.Shinder Factorization centers 21 / 26



Many homomorphisms Crn(k)→ Z (n ≥ 4)
Let k be a large enough field as above to ensure existence of a K3 surface
of degree 12 and Picard rank one. Recall that Crn(k) = Bir(Pn

k).

The Hasset-Lai construction depends on a family of parameters (K3 surface
of degree 12 and 3 points on it), hence:

Corollary
For all n ≥ 4 we get a surjective homomorphism

Crn(k)→
⊕
I

Z,

where cardinality of I is |k|. As a consequence Crn(k)
ab admits

⊕
I Z as a

direct summand.

Cr2(C)ab = 0 (Noether), Cr2(R)ab = ⊕IZ/2 (Zimmermann).
Crn(k)

ab ⊃ ⊕IZ/2 for n ≥ 3 (Blanc-Lamy-Zimmermann).
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Regularizable birational automorphisms

Definition
An element φ ∈ Crn(k) is regularizable if φ = α−1γα where
I α : Pn 99K X birational isomorphism
I γ ∈ Aut(X )

All elements of finite order are regularizable, but there exist non
regularizable elements.

Cheltsov’s question (2003)
Which groups of birational automorphisms are generated by regularizable
elements?

There are some positive results, mostly for surfaces and threefolds.
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Negative answer to Dolgachev’s and Cheltsov’s questions

Corollary (of the nonvanishing results for c)
Crn(k) is not generated by regularizable elements (in particular, by
PGLn+1(k) and any collection of elements of finite order, in particular,
involutions) in each of the following cases:
1. n = 3 and some nonclosed fields, e.g. k = Q
2. n ≥ 4, and most fields, e.g. k = C

(The Cr3(C) case is open.)

Proof
For every regularizable element

c(φ) = c(α−1) + c(γ) + c(α) = −c(α) + 0 + c(α) = 0,

so c is zero on the subgroup generated by regularizable elements.
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Conclusion

I The invariant c records factorization centers, or exceptional divisors,
for blow ups and blow downs for birational maps

I c is zero for surfaces over perfect fields and complex threefolds
I c is nonzero in more general contexts which has applications to our

understanding of Cremona groups
I Studying the image of c is a worthwhile task, useful in rationality

problems, understanding the Grothendieck ring, L-equivalence and
applications to Cremona groups

I In this talk I concentrated on c : Crn(k)→ Z[StBir], however similar
results will hold for Bir(X ) for nonrational X (X = Pn is the most
interesting and difficult case)

I This is work in progress; one dream would be to bound the image of
c , using higher-dimensional MMP, Sarkisov links and possibly Birkar’s
boundedness
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THE END / KONIEC

If you have questions or comments, please feel free to send me an e-mail:

e.shinder@sheffield.ac.uk
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