On some properties of the Łojasiewicz exponent

Christophe Eyral
Joint work with Tadeusz Mostowski and Piotr Pragacz

- Any pair of closed analytic subsets $X, Y \subset \mathbb{C}^{m}$ satisfies so-called Łojasiewicz regular separation property at any point of $X \cap Y$:
$\forall x^{0} \in X \cap Y, \exists c, \nu>0$ such that for some neighbourhood U of x^{0} we have

$$
\begin{equation*}
\rho(x, X)+\rho(x, Y) \geq c \rho(x, X \cap Y)^{\nu} \quad \text { for } \quad x \in U \tag{1}
\end{equation*}
$$

where ρ is the distance induced by the standard Hermitian norm on \mathbb{C}^{m} (Łojasiewicz)

- If $x^{0} \notin \operatorname{int}(X \cap Y)$, then $\nu \geq 1$
- X and Y satisfy (1) with a constant $\nu \geq 1$ if and only if there exist a neighbourhood U^{\prime} of x^{0} and a constant $c^{\prime}>0$ such that

$$
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } \quad x \in U^{\prime} \cap X
$$

(Łojasiewicz, Cygan-Tworzewski, Denkowski)

- Any exponent ν satisfying (1) is called a regular separation exponent of X and Y at x^{0}. The infimum of such exponents is called the Łojasiewicz exponent of X and Y at x^{0} and is denoted by $\mathcal{L}\left(X, Y ; x^{0}\right)$; it is a regular separation exponent itself (Spodzieja).

Łojasiewicz exponent and hyperplane sections

Theorem Let X and Y be closed analytic subsets in \mathbb{C}^{m} and $x^{0} \in X \cap Y$ such that $\mathcal{L}\left(X, Y ; x^{0}\right) \geq 1$. Then for a general hyperplane H_{0} through x^{0} :

$$
\mathcal{L}\left(X \cap H_{0}, Y \cap H_{0} ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right) .
$$

Proposition Let X be a closed analytic subset in \mathbb{C}^{m} and $x^{0} \in X$. Then for a general hyperplane H_{0} through x^{0}, there exist $c>0$ and a neighbourhood U of x^{0} such that:

$$
\rho\left(x, X \cap H_{0}\right) \leq c \rho(x, X) \quad \text { for } x \in U \cap H_{0} .
$$

Proof of the theorem We may assume $x^{0}=0$. If ν is a regular separation exponent for X and Y at 0 , then $\nu \geq \mathcal{L}(X, Y ; 0) \geq 1$, and for some $c^{\prime}>0$ we have:

$$
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in X \text { near } 0 .
$$

By the proposition, for a general H_{0}, there exists $c>0$ such that:

$$
\rho\left(x, X \cap Y \cap H_{0}\right)^{\nu} \leq c \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in H_{0} \text { near } 0 .
$$

Combining these relations gives

$$
\rho\left(x, Y \cap H_{0}\right) \geq \rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \geq\left(c^{\prime} / c\right) \rho\left(x, X \cap Y \cap H_{0}\right)^{\nu}
$$

for $x \in X \cap H_{0}$ near 0 .

Proof of the proposition We work in a small neighbourhood of $x^{0} \equiv 0$

- $\breve{\mathbb{P}}^{m-1}$ set of all hyperplanes of \mathbb{C}^{m} through 0
- The distance between $H, K \in \check{\mathbb{P}}^{m-1}$ is the angle

$$
\Varangle(H, K):=\arccos (|\langle v, w\rangle| /(|v||w|)) \in[0, \pi / 2]
$$

- v and w normal vectors to H and K respectively
$\cdot\langle-,-\rangle$ standard Hermitian product on \mathbb{C}^{m}
- Consider the set $\mathcal{X}:=\left\{(H, x) \in \breve{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid x \in H \cap X\right\}$. By a theorem of Mostowski, in a neighbourhood of a generic $\left(H_{0}, 0\right)$, say in

$$
\mathcal{U}:=\left\{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid \Varangle\left(H_{0}, H\right)<a \text { and }|x|<b\right\},
$$

\mathcal{X} is Lipschitz equisingular over $\check{\mathbb{P}}^{m-1} \times\{0\}$, i.e., for any $(H, 0) \in \mathcal{U} \cap\left(\check{\mathbb{P}}^{m-1} \times\{0\}\right)$, there is a (germ of) Lipschitz homeomorphism

$$
\varphi:\left(\check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m},(H, 0)\right) \rightarrow\left(\check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m},(H, 0)\right)
$$

(with a Lipschitz inverse) such that $p \circ \varphi=p$ and $\varphi(\mathcal{X})=\breve{\mathbb{P}}^{m-1} \times(H \cap X)$, where p is the projection on the first factor.

Actually, if $h=\left(h_{1}, \ldots, h_{m-1}\right)$ are coordinates in $\check{\mathbb{P}}^{m-1}$ around H_{0} such that

$$
h_{1}\left(H_{0}\right)=\cdots=h_{m-1}\left(H_{0}\right)=0,
$$

and if $x=\left(x_{1}, \ldots, x_{m}\right)$ are Cartesian coordinates in \mathbb{C}^{m}, then, locally near $\left(H_{0}, 0\right)$, the standard "constant" vector fields $\partial_{h_{j}}$ on $\breve{\mathbb{P}}^{m-1} \times\{0\}$ can be lifted to Lipschitz vector fields v_{j} on $\breve{\mathbb{P}}^{m-1} \times \mathbb{C}^{m}$ such that the flows of v_{j} preserve \mathcal{X}. So, v_{j} is of the form

$$
v_{j}(h, x)=\partial_{h_{j}}(h, x)+\sum_{\ell=1}^{m} w_{j \ell}(h, x) \partial_{x_{\ell}}(h, x)
$$

so that $v_{j}(h, 0)=\partial_{h_{j}}(h, 0)$ and there exists a constant $c^{\prime}>0$ such that

$$
\left|w_{j \ell}(h, x)\right| \leq c^{\prime}|x| \text { near } 0
$$

for all j, ℓ.

- $y^{0} \in H_{0}$; we want to prove $\rho\left(y^{0}, X \cap H_{0}\right) \leq c \rho\left(y^{0}, X\right)$.

Let $y^{1} \in X$ be one of the closest points to y^{0} (i.e., $\rho\left(y^{0}, X\right)=\left|y^{1}-y^{0}\right|$), and choose $H_{1} \in \check{\mathbb{P}}^{m-1}$ such that $y^{1} \in H_{1}$ and $\Varangle\left(H_{0}, H_{1}\right)$ is as small as possible.
Lemma If $\left(H_{1}, y^{1}\right) \notin \mathcal{U}$ (i.e., if $\Varangle\left(H_{0}, H_{1}\right) \geq a$), then $\exists a^{\prime}>0$ depending only on a such that

$$
\left|y^{1}-y^{0}\right| \geq a^{\prime}\left|y^{0}\right| .
$$

In particular, since $0 \in X \cap H_{0}$, we have

$$
\rho\left(y^{0}, X \cap H_{0}\right) \leq\left|y^{0}\right| \leq\left(1 / a^{\prime}\right) \rho\left(y^{0}, X\right) .
$$

Proof We may assume $H_{0}: x_{m}=0$, the orthogonal projection of y^{1} onto H_{0} is $y^{2}=\left(y_{1}^{1}, 0, \ldots, 0\right)$ and $H_{1}: x_{m}=q_{1} x_{1}$. Thus, if $\Varangle\left(H_{0}, H_{1}\right) \geq a$, we must have

$$
\cos \Varangle\left(H_{0}, H_{1}\right)=1 / \sqrt{1+\left|q_{1}\right|^{2}} \leq a_{1} \quad \text { and } \quad\left|q_{1}\right| \geq a_{2} .
$$

We may always assume $\left|y^{0}-y^{1}\right|<(1 / 10)\left|y^{0}\right|$.
Thus,

$$
\left|y^{2}-y^{0}\right| \leq\left|y^{1}-y^{0}\right|<(1 / 10)\left|y^{0}\right| \quad \text { and } \quad\left|y^{2}-0\right|=\left|y_{1}^{1}\right|>(9 / 10)\left|y^{0}\right| .
$$

It follows that

$$
\left|y^{0}-y^{1}\right| \geq\left|y^{1}-y^{2}\right|=\left|q_{1}\right|\left|y_{1}^{1}\right| \geq a_{2}(9 / 10)\left|y^{0}\right| .
$$

Now, assume $\left(H_{1}, y^{1}\right) \in \mathcal{U}$, and let $h^{1}=\left(h_{1}^{1}, \ldots, h_{m-1}^{1}\right)$ be the coordinates of H_{1}. Consider

$$
\begin{aligned}
v(h, x) & :=-\sum_{j=1}^{m-1} h_{j}^{1} v_{j}(h, x) \\
& =-\sum_{j=1}^{m-1} h_{j}^{1} \partial_{h_{j}}(h, x)+\sum_{\ell=1}^{m}\left(-\sum_{j=1}^{m-1} h_{j}^{1} w_{j, l}(h, x)\right) \partial_{x_{\ell}}(h, x),
\end{aligned}
$$

and look at the integral curve $\gamma(t)=(h(t), x(t))$ of v starting at $\left(H_{1}, y^{1}\right)$:

$$
\begin{array}{ll}
\dot{h}_{j}(t)=-h_{j}^{1}, & \dot{x}_{\ell}(t)=-\sum_{j=1}^{m-1} h_{j}^{1} w_{j, l}(h, x), \\
h_{j}(0)=h_{j}^{1}, & x_{\ell}(0)=y_{\ell}^{1} .
\end{array}
$$

- Flow of v_{j} preserve \mathcal{X} and $\gamma(0) \in \mathcal{X} \Rightarrow \gamma(t) \in \mathcal{X}$
- $h_{j}(t)=h_{j}^{1}(1-t) \Rightarrow h_{j}(1)=0 \Rightarrow x(1) \in H_{0}$
- The length L of the restriction of $x(t)$ to $[0,1]$ satisfies:

$$
\begin{aligned}
L:=\int_{0}^{1}|\dot{x}(t)| d t & \leq c_{1} \int_{0}^{1} \sum_{j=1}^{m-1}\left(\left|h_{j}^{1}\right| \cdot\left(\sum_{\ell=1}^{m}\left|w_{j}, \ell(\gamma(t))\right|\right)\right) d t \\
& \leq c_{2}\left|h^{1}\right| \int_{0}^{1}|x(t)| d t \leq c_{3}\left|h^{1}\right||x(0)| \leq c_{4}\left|y^{0}-x(0)\right|
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\rho\left(y^{0}, X \cap H_{0}\right) & \leq\left|y^{0}-x(1)\right| \leq\left|y^{0}-x(0)\right|+|x(0)-x(1)| \leq\left|y^{0}-x(0)\right|+L \\
& \leq\left(1+c_{4}\right)\left|y^{0}-x(0)\right|=\left(1+c_{4}\right) \rho\left(y^{0}, X\right)
\end{aligned}
$$

Łojasiewicz exponent and order of tangency

X and Y analytic submanifolds of \mathbb{C}^{m} of dimension p

- We say that the order of tangency between X and Y at x^{0} is $\geq k$ if there exist parametrizations

$$
q:\left(U, u^{0}\right) \rightarrow\left(X, x^{0}\right) \quad \text { and } \quad q^{\prime}:\left(U, u^{0}\right) \rightarrow\left(Y, x^{0}\right),
$$

(U open subset of \mathbb{C}^{p}) such that

$$
q(u)-q^{\prime}(u)=o\left(\left|u-u^{0}\right|^{k}\right)
$$

as $u \rightarrow u^{0}$

- The order of tangency between X and Y at x^{0} is the supremum of such integers k; it denoted by $s\left(X, Y ; x^{0}\right)$.

Proposition Assume that $s\left(X, Y ; x^{0}\right)$ is finite. If $\mathcal{L}\left(X, Y ; x^{0}\right) \geq 1$, then

$$
s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)-1 .
$$

Proof Write $s:=s\left(X, Y ; x^{0}\right), \mathcal{L}:=\mathcal{L}\left(X, Y ; x^{0}\right)$, and $\mathbb{C}^{m}=\mathbb{C}_{x}^{p} \times \mathbb{C}_{y}^{m-p}$.
In a neighbourhood of $x^{0} \equiv 0$,

$$
X: y=f(x)
$$

for some analytic function $f=\left(f_{1}, \ldots, f_{m-p}\right):\left(\mathbb{C}_{x}^{p}, 0\right) \rightarrow\left(\mathbb{C}_{y}^{m-p}, 0\right)$.
Similarly, $Y: y=g(x)$; we may assume $g=0$.

- $s^{\prime}:=$ smallest integer k for which there exists a multi-index α with $|\alpha|=k$ and $D^{\alpha}(f-g)(0) \neq 0$

Then $s=s^{\prime}-1$.
Each f_{i} has the Taylor expansion

$$
f_{i}(x)=F_{i}(x)+o\left(|x|^{r_{i}}\right)
$$

where F_{i} is a homogeneous polynomial of degree r_{i}. We may assume $r_{1} \leq r_{i}$, so that $r_{1}=s^{\prime}$.

Let $\pi: \mathbb{C}_{x}^{p} \times \mathbb{C}_{y}^{m-p} \rightarrow \mathbb{C}_{x}^{p}$ be the standard projection, and look at

$$
\pi(X \cap Y)=\left\{x \in \mathbb{C}_{x}^{p} ; f(x)=0\right\}
$$

Lemma If a line L through 0 is not contained in the tangent cone C of $\pi(X \cap Y)$ at 0 , then $\rho(x, \pi(X \cap Y)) \sim|x|$ for $x \in L$.

So, if $F_{1} \neq 0$ on L, then for any $x \in L$:

- $\left|f_{1}(x)\right| \sim|x|^{r_{1}}=|x|^{s^{\prime}}$ and $\left|f_{i}(x)\right| \leq a|x|^{r_{i}} \leq a|x|^{s^{\prime}}$
- $\rho(x, \pi(X \cap Y)) \sim|x|$ (by the lemma)

It follows that for any $(x, y) \in \pi^{-1}(L) \cap X=\{(x, y) ; x \in L$ and $y=f(x)\}$:

- $\rho((x, y), Y)=\left.|f(x)| \sim|x|\right|^{s^{\prime}}$
- $\rho((x, y), X \cap Y) \sim|x|$

Now the Łojasiewicz exponent \mathcal{L} satisfies:

$$
\rho((x, y), Y) \geq c \rho((x, y), X \cap Y)^{\mathcal{L}} \text {, i.e., }|x|^{s^{\prime}} \geq c|x|^{\mathcal{L}} \text {. }
$$

So $s^{\prime} \leq \mathcal{L}$, and hence, $s=s^{\prime}-1 \leq \mathcal{L}-1$.

Using the theorem, we only obtain $\mathcal{L}>s$

- Suppose x_{0} is an isolated point of $X \cap Y$. Then $\exists c^{\prime}>0$ such that:

$$
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\mathcal{L}}=c^{\prime}\left|x-x^{0}\right|^{\mathcal{L}} \quad \text { for } \quad x \in X \text { near } x^{0},
$$

or equivalently, $\rho(q(u), Y) \geq c^{\prime}\left|q(u)-q\left(u^{0}\right)\right|^{\mathcal{L}}$ for u near u^{0}. Since q is locally bi-Lipschitz, there is a constant $c^{\prime \prime}>0$ such that

$$
c^{\prime}\left|q(u)-q\left(u^{0}\right)\right|^{\mathcal{L}} \geq c^{\prime \prime}\left|u-u^{0}\right|^{\mathcal{L}} \quad \text { for } \quad u \text { near } u^{0}
$$

Since s is the order of tangency,

$$
\rho(q(u), Y) \leq\left|q(u)-q^{\prime}(u)\right|<c^{\prime \prime}\left|u-u^{0}\right|^{s} \text { for } u \text { near } u^{0} .
$$

Combining these relations gives :

$$
c^{\prime \prime}\left|u-u^{0}\right|^{\mathcal{L}} \leq \rho(q(u), Y)<c^{\prime \prime}\left|u-u^{0}\right|^{s} \text { for } u \text { near } u^{0} .
$$

- If $\operatorname{dim} X \cap Y=n>0$, then take n general hyperplanes H_{1}, \ldots, H_{n} through x^{0}, so that

$$
X \cap Y \cap H_{1} \cap \cdots \cap H_{n}
$$

is an isolated intersection. Write

$$
\begin{array}{c|c}
s_{i}=\text { order of tangency } & \text { of } X \cap H_{1} \cap \cdots \cap H_{i} \text { and } Y \cap H_{1} \cap \cdots \cap H_{i} \text { at } x^{0} \\
\mathcal{L}_{i}=\text { tojasiewicz exponent }
\end{array}
$$

Clearly, $s \leq s_{1}$, and by induction, $s_{i} \leq s_{i+1}$. By the theorem $\mathcal{L}_{i} \geq \mathcal{L}_{i+1}$. So altogether:

$$
s \leq s_{1} \leq \cdots \leq s_{n}<\mathcal{L}_{n} \leq \mathcal{L}_{n-1} \leq \cdots \leq \mathcal{L}
$$

Thank you for your attention!

