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� Any pair of closed analytic subsets X ,Y ⊂ Cm satisfies so-called  Lojasiewicz
regular separation property at any point of X ∩Y :

∀x0 ∈ X ∩Y , ∃c , ν > 0 such that for some neighbourhood U of x0 we have

ρ(x ,X ) + ρ(x ,Y ) ≥ c ρ(x ,X ∩Y )ν for x ∈ U (1)

where ρ is the distance induced by the standard Hermitian norm on Cm

( Lojasiewicz)

� If x0 ∉ int(X ∩Y ), then ν ≥ 1

� X and Y satisfy (1) with a constant ν ≥ 1 if and only if there exist a
neighbourhood U ′ of x0 and a constant c ′ > 0 such that

ρ(x ,Y ) ≥ c ′ρ(x ,X ∩Y )ν for x ∈ U ′ ∩X

( Lojasiewicz, Cygan–Tworzewski, Denkowski)

� Any exponent ν satisfying (1) is called a regular separation exponent of X and
Y at x0. The infimum of such exponents is called the  Lojasiewicz exponent of X
and Y at x0 and is denoted by L(X ,Y ; x0); it is a regular separation exponent
itself (Spodzieja).
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 Lojasiewicz exponent and hyperplane sections

Theorem Let X and Y be closed analytic subsets in Cm and x0 ∈ X ∩Y such
that L(X ,Y ; x0) ≥ 1. Then for a general hyperplane H0 through x0:

L(X ∩H0,Y ∩H0; x0) ≤ L(X ,Y ; x0).

Proposition Let X be a closed analytic subset in Cm and x0 ∈ X . Then for a
general hyperplane H0 through x0, there exist c > 0 and a neighbourhood U of x0

such that:
ρ(x ,X ∩H0) ≤ c ρ(x ,X ) for x ∈ U ∩H0.

Proof of the theorem We may assume x0 = 0. If ν is a regular separation
exponent for X and Y at 0, then ν ≥ L(X ,Y ; 0) ≥ 1, and for some c ′ > 0 we have:

ρ(x ,Y ) ≥ c ′ρ(x ,X ∩Y )ν for x ∈ X near 0.

By the proposition, for a general H0, there exists c > 0 such that:

ρ(x ,X ∩Y ∩H0)ν ≤ c ρ(x ,X ∩Y )ν for x ∈ H0 near 0.

Combining these relations gives

ρ(x ,Y ∩H0) ≥ ρ(x ,Y ) ≥ c ′ ρ(x ,X ∩Y )ν ≥ (c ′/c)ρ(x ,X ∩Y ∩H0)ν

for x ∈ X ∩H0 near 0.
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Proof of the proposition We work in a small neighbourhood of x0 ≡ 0

● P̌m−1 set of all hyperplanes of Cm through 0

● The distance between H,K ∈ P̌m−1 is the angle

�(H,K) ∶= arccos (∣⟨v ,w⟩∣ / (∣v ∣ ∣w ∣)) ∈ [0, π/2]

⋅ v and w normal vectors to H and K respectively
⋅ ⟨−,−⟩ standard Hermitian product on Cm

� Consider the set X ∶= {(H, x) ∈ P̌m−1 ×Cm ∣ x ∈ H ∩X}. By a theorem of
Mostowski, in a neighbourhood of a generic (H0,0), say in

U ∶= {(H, x) ∈ P̌m−1 ×Cm ∣ �(H0,H) < a and ∣x ∣ < b},

X is Lipschitz equisingular over P̌m−1 × {0}, i.e., for any (H,0) ∈ U ∩ (P̌m−1 × {0}),
there is a (germ of) Lipschitz homeomorphism

ϕ∶ (P̌m−1 ×Cm, (H,0))→ (P̌m−1 ×Cm, (H,0))

(with a Lipschitz inverse) such that p ○ ϕ = p and ϕ(X ) = P̌m−1 × (H ∩X ), where
p is the projection on the first factor.
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Actually, if h = (h1, . . . ,hm−1) are coordinates in P̌m−1 around H0 such that

h1(H0) = ⋯ = hm−1(H0) = 0 ,

and if x = (x1, . . . , xm) are Cartesian coordinates in Cm, then, locally near (H0,0),
the standard “constant” vector fields ∂hj on P̌m−1 × {0} can be lifted to Lipschitz

vector fields vj on P̌m−1 ×Cm such that the flows of vj preserve X . So, vj is of the
form

vj(h, x) = ∂hj (h, x) +
m

∑
`=1

wj`(h, x)∂x`(h, x),

so that vj(h,0) = ∂hj (h,0) and there exists a constant c ′ > 0 such that

∣wj`(h, x)∣ ≤ c ′ ∣x ∣ near 0

for all j , `.
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� y0 ∈ H0; we want to prove ρ(y0,X ∩H0) ≤ c ρ(y0,X ).

Let y1 ∈ X be one of the closest points to y0 (i.e., ρ(y0,X ) = ∣y1 − y0∣), and
choose H1 ∈ P̌m−1 such that y1 ∈ H1 and �(H0,H1) is as small as possible.

Lemma If (H1, y
1) ∉ U (i.e., if �(H0,H1) ≥ a), then ∃a′ > 0 depending only on a

such that
∣y1 − y0∣ ≥ a′ ∣y0∣.

In particular, since 0 ∈ X ∩H0, we have

ρ(y0,X ∩H0) ≤ ∣y0∣ ≤ (1/a′)ρ(y0,X ).

Proof We may assume H0∶ xm = 0, the orthogonal projection of y1 onto H0 is
y2 = (y1

1 ,0, . . . ,0) and H1∶ xm = q1x1. Thus, if �(H0,H1) ≥ a, we must have

cos�(H0,H1) = 1/
√

1 + ∣q1∣2 ≤ a1 and ∣q1∣ ≥ a2.

We may always assume ∣y0 − y1∣ < (1/10) ∣y0∣.
y1

y0y2
0

H 1

H 0

Thus,

∣y2 − y0∣ ≤ ∣y1 − y0∣ < (1/10) ∣y0∣ and ∣y2 − 0∣ = ∣y1
1 ∣ > (9/10) ∣y0∣.

It follows that
∣y0 − y1∣ ≥ ∣y1 − y2∣ = ∣q1∣ ∣y1

1 ∣ ≥ a2 (9/10) ∣y0∣.
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Now, assume (H1, y
1) ∈ U , and let h1 = (h11, . . . ,h1m−1) be the coordinates of H1.

Consider

v(h, x) ∶= −
m−1
∑
j=1

h1j vj(h, x)

= −
m−1
∑
j=1

h1j ∂hj (h, x) +
m

∑
`=1

( −
m−1
∑
j=1

h1j wj,l(h, x))∂x`(h, x),

and look at the integral curve γ(t) = (h(t), x(t)) of v starting at (H1, y
1):

ḣj(t) = −h1j , ẋ`(t) = −
m−1
∑
j=1

h1j wj,l(h, x),

hj(0) = h1j , x`(0) = y1
` .
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● Flow of vj preserve X and γ(0) ∈ X ⇒ γ(t) ∈ X
● hj(t) = h1j (1 − t)⇒ hj(1) = 0⇒ x(1) ∈ H0

● The length L of the restriction of x(t) to [0,1] satisfies:

L ∶= ∫
1

0
∣ẋ(t)∣dt ≤ c1 ∫

1

0

m−1
∑
j=1

(∣h1j ∣ ⋅ (
m

∑
`=1

∣wj,`(γ(t))∣))dt

≤ c2 ∣h1∣∫
1

0
∣x(t)∣dt ≤ c3 ∣h1∣ ∣x(0)∣ ≤ c4 ∣y0 − x(0)∣

It follows that

ρ(y0,X ∩H0) ≤ ∣y0 − x(1)∣ ≤ ∣y0 − x(0)∣ + ∣x(0) − x(1)∣ ≤ ∣y0 − x(0)∣ + L

≤ (1 + c4) ∣y0 − x(0)∣ = (1 + c4)ρ(y0,X )
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 Lojasiewicz exponent and order of tangency

X and Y analytic submanifolds of Cm of dimension p

� We say that the order of tangency between X and Y at x0 is ≥ k if there exist
parametrizations

q∶ (U,u0)→ (X , x0) and q′∶ (U,u0)→ (Y , x0),

(U open subset of Cp) such that

q(u) − q′(u) = o(∣u − u0∣k)

as u → u0

� The order of tangency between X and Y at x0 is the supremum of such
integers k; it denoted by s(X ,Y ; x0).

Proposition Assume that s(X ,Y ; x0) is finite. If L(X ,Y ; x0) ≥ 1, then

s(X ,Y ; x0) ≤ L(X ,Y ; x0) − 1.
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Proof Write s ∶= s(X ,Y ; x0), L ∶= L(X ,Y ; x0), and Cm = Cp
x ×Cm−p

y .

In a neighbourhood of x0 ≡ 0,
X ∶ y = f (x)

for some analytic function f = (f1, . . . , fm−p)∶ (Cp
x ,0)→ (Cm−p

y ,0).

Similarly, Y ∶ y = g(x); we may assume g = 0.

� s ′ ∶= smallest integer k for which there exists a multi-index α with ∣α∣ = k
and Dα(f − g)(0) /= 0

Then s = s ′ − 1.

Each fi has the Taylor expansion

fi(x) = Fi(x) + o(∣x ∣ri )

where Fi is a homogeneous polynomial of degree ri . We may assume r1 ≤ ri , so
that r1 = s ′.

Let π∶ Cp
x ×Cm−p

y → Cp
x be the standard projection, and look at

π(X ∩Y ) = {x ∈ Cp
x ; f (x) = 0}.

Lemma If a line L through 0 is not contained in the tangent cone C of
π(X ∩Y ) at 0, then ρ(x , π(X ∩Y )) ∼ ∣x ∣ for x ∈ L.
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So, if F1 /= 0 on L, then for any x ∈ L:

⋅ ∣f1(x)∣ ∼ ∣x ∣r1 = ∣x ∣s′ and ∣fi(x)∣ ≤ a ∣x ∣ri ≤ a ∣x ∣s′

⋅ ρ(x , π(X ∩Y )) ∼ ∣x ∣ (by the lemma)

It follows that for any (x , y) ∈ π−1(L) ∩X = {(x , y) ; x ∈ L and y = f (x)}:

⋅ ρ((x , y),Y ) = ∣f (x)∣ ∼ ∣x ∣s′

⋅ ρ((x , y),X ∩Y ) ∼ ∣x ∣
Now the  Lojasiewicz exponent L satisfies:

ρ((x , y),Y ) ≥ c ρ((x , y),X ∩Y )L, i.e., ∣x ∣s
′

≥ c ∣x ∣L.

So s ′ ≤ L, and hence, s = s ′ − 1 ≤ L − 1.
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Using the theorem, we only obtain L > s

� Suppose x0 is an isolated point of X ∩Y . Then ∃c ′ > 0 such that:

ρ(x ,Y ) ≥ c ′ ρ(x ,X ∩Y )L = c ′ ∣x − x0∣L for x ∈ X near x0,

or equivalently, ρ(q(u),Y ) ≥ c ′ ∣q(u) − q(u0)∣L for u near u0. Since q is locally
bi-Lipschitz, there is a constant c ′′ > 0 such that

c ′ ∣q(u) − q(u0)∣L ≥ c ′′ ∣u − u0∣L for u near u0.

Since s is the order of tangency,

ρ(q(u),Y ) ≤ ∣q(u) − q′(u)∣ < c ′′ ∣u − u0∣s for u near u0.

Combining these relations gives :

c ′′ ∣u − u0∣L ≤ ρ(q(u),Y ) < c ′′ ∣u − u0∣s for u near u0.
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� If dimX ∩Y = n > 0, then take n general hyperplanes H1, . . . ,Hn through x0,
so that

X ∩Y ∩H1 ∩⋯ ∩Hn

is an isolated intersection. Write

si = order of tangency

Li =  Lojasiewicz exponent
∣ of X ∩H1 ∩⋯ ∩Hi and Y ∩H1 ∩⋯ ∩Hi at x0

Clearly, s ≤ s1, and by induction, si ≤ si+1. By the theorem Li ≥ Li+1. So
altogether:

s ≤ s1 ≤ ⋯ ≤ sn < Ln ≤ Ln−1 ≤ ⋯ ≤ L.
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Thank you for your attention!
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