On some properties of the Łojasiewicz exponent

Christophe Eyral

Joint work with Tadeusz Mostowski and Piotr Pragacz

Institute of Mathematics Polish Academy of Sciences

A B M A B M

Any pair of closed analytic subsets $X, Y \in \mathbb{C}^m$ satisfies so-called Lojasiewicz regular separation property at any point of $X \cap Y$:

 $\forall x^0 \in X \cap Y$, $\exists c, \nu > 0$ such that for some neighbourhood U of x^0 we have

$$\rho(x,X) + \rho(x,Y) \ge c \,\rho(x,X \cap Y)^{\nu} \quad \text{for} \quad x \in U \tag{1}$$

where ρ is the distance induced by the standard Hermitian norm on \mathbb{C}^m (Łojasiewicz)

• If
$$x^0 \notin int(X \cap Y)$$
, then $\nu \ge 1$

▶ X and Y satisfy (1) with a constant $\nu \ge 1$ if and only if there exist a neighbourhood U' of x^0 and a constant c' > 0 such that

$$\rho(x, Y) \ge c' \rho(x, X \cap Y)^{\nu} \quad \text{for} \quad x \in U' \cap X$$

(Łojasiewicz, Cygan-Tworzewski, Denkowski)

Any exponent ν satisfying (1) is called a regular separation exponent of X and Y at x^0 . The infimum of such exponents is called the Łojasiewicz exponent of X and Y at x^0 and is denoted by $\mathcal{L}(X, Y; x^0)$; it is a regular separation exponent itself (Spodzieja).

Łojasiewicz exponent and hyperplane sections

Theorem Let X and Y be closed analytic subsets in \mathbb{C}^m and $x^0 \in X \cap Y$ such that $\mathcal{L}(X, Y; x^0) \ge 1$. Then for a general hyperplane H_0 through x^0 :

$$\mathcal{L}(X \cap H_0, Y \cap H_0; x^0) \leq \mathcal{L}(X, Y; x^0).$$

Proposition Let X be a closed analytic subset in \mathbb{C}^m and $x^0 \in X$. Then for a general hyperplane H_0 through x^0 , there exist c > 0 and a neighbourhood U of x^0 such that:

$$\rho(x, X \cap H_0) \leq c \,\rho(x, X) \quad \text{for } x \in U \cap H_0.$$

Proof of the theorem We may assume $x^0 = 0$. If ν is a regular separation exponent for X and Y at 0, then $\nu \ge \mathcal{L}(X, Y; 0) \ge 1$, and for some c' > 0 we have:

$$\rho(x, Y) \ge c' \rho(x, X \cap Y)^{\nu}$$
 for $x \in X$ near 0.

By the proposition, for a general H_0 , there exists c > 0 such that:

$$\rho(x, X \cap Y \cap H_0)^{\nu} \leq c \, \rho(x, X \cap Y)^{\nu} \quad \text{for } x \in H_0 \text{ near } 0.$$

Combining these relations gives

$$\rho(x, Y \cap H_0) \ge \rho(x, Y) \ge c' \, \rho(x, X \cap Y)^{\nu} \ge (c'/c) \, \rho(x, X \cap Y \cap H_0)^{\nu}$$

for $x \in X \cap H_0$ near 0.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ りへで

Proof of the proposition We work in a small neighbourhood of $x^0 \equiv 0$

- $\check{\mathbb{P}}^{m-1}$ set of all hyperplanes of \mathbb{C}^m through 0
- The distance between $H, K \in \check{\mathbb{P}}^{m-1}$ is the angle

$$\sphericalangle(H,K) \coloneqq \arccos\left(\left|\left\langle v,w
ight
angle
ight| / (\left|v
ight| \left|w
ight|)
ight) \in \left[0,\pi/2
ight]$$

- $\cdot v$ and w normal vectors to H and K respectively
- \cdot $\langle -,
 angle$ standard Hermitian product on \mathbb{C}^m

► Consider the set $\mathcal{X} := \{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^m \mid x \in H \cap X\}$. By a theorem of Mostowski, in a neighbourhood of a generic $(H_0, 0)$, say in

$$\mathcal{U} \coloneqq \{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^m \mid \sphericalangle(H_0, H) < a \text{ and } |x| < b\},\$$

 \mathcal{X} is Lipschitz equisingular over $\check{\mathbb{P}}^{m-1} \times \{0\}$, i.e., for any $(H, 0) \in \mathcal{U} \cap (\check{\mathbb{P}}^{m-1} \times \{0\})$, there is a (germ of) Lipschitz homeomorphism

$$\varphi : (\check{\mathbb{P}}^{m-1} \times \mathbb{C}^m, (H, 0)) \to (\check{\mathbb{P}}^{m-1} \times \mathbb{C}^m, (H, 0))$$

(with a Lipschitz inverse) such that $p \circ \varphi = p$ and $\varphi(\mathcal{X}) = \mathbb{P}^{m-1} \times (H \cap X)$, where p is the projection on the first factor.

Actually, if $h = (h_1, \ldots, h_{m-1})$ are coordinates in $\check{\mathbb{P}}^{m-1}$ around H_0 such that

$$h_1(H_0) = \cdots = h_{m-1}(H_0) = 0$$
,

and if $x = (x_1, \ldots, x_m)$ are Cartesian coordinates in \mathbb{C}^m , then, locally near $(H_0, 0)$, the standard "constant" vector fields ∂_{h_j} on $\check{\mathbb{P}}^{m-1} \times \{0\}$ can be lifted to Lipschitz vector fields v_j on $\check{\mathbb{P}}^{m-1} \times \mathbb{C}^m$ such that the flows of v_j preserve \mathcal{X} . So, v_j is of the form

$$v_j(h,x) = \partial_{h_j}(h,x) + \sum_{\ell=1}^m w_{j\ell}(h,x) \,\partial_{x_\ell}(h,x),$$

so that $v_j(h,0) = \partial_{h_j}(h,0)$ and there exists a constant c' > 0 such that

$$|w_{j\ell}(h,x)| \le c' |x|$$
 near 0

for all j, ℓ .

• $y^0 \in H_0$; we want to prove $\rho(y^0, X \cap H_0) \leq c \rho(y^0, X)$.

Let $y^1 \in X$ be one of the closest points to y^0 (i.e., $\rho(y^0, X) = |y^1 - y^0|$), and choose $H_1 \in \check{\mathbb{P}}^{m-1}$ such that $y^1 \in H_1$ and $\sphericalangle(H_0, H_1)$ is as small as possible.

Lemma If $(H_1, y^1) \notin U$ (i.e., if $\sphericalangle(H_0, H_1) \ge a$), then $\exists a' > 0$ depending only on a such that

$$|y^{1} - y^{0}| \ge a' |y^{0}|.$$

In particular, since $0 \in X \cap H_0$, we have

$$\rho(y^0, X \cap H_0) \le |y^0| \le (1/a')\rho(y^0, X).$$

Proof We may assume H_0 : $x_m = 0$, the orthogonal projection of y^1 onto H_0 is $v^2 = (v_1^1, 0, \dots, 0)$ and $H_1: x_m = q_1 x_1$. Thus, if $\sphericalangle(H_0, H_1) \ge a$, we must have

$$\cos \ll (H_0, H_1) = 1/\sqrt{1 + |q_1|^2} \le a_1 \text{ and } |q_1| \ge a_2.$$

We may always assume $|y^0 - y^1| < (1/10) |y^0|.$
Thus.

$$|y^2 - y^0| \le |y^1 - y^0| < (1/10) |y^0|$$
 and $|y^2 - 0| = |y_1^1| > (9/10) |y^0|$.

It follows that

Thus,

$$|y^{0} - y^{1}| \ge |y^{1} - y^{2}| = |q_{1}| |y_{1}^{1}| \ge a_{2} (9/10) |y^{0}|.$$

æ

Now, assume $(H_1, y^1) \in \mathcal{U}$, and let $h^1 = (h_1^1, \dots, h_{m-1}^1)$ be the coordinates of H_1 . Consider

$$\begin{aligned} v(h,x) &\coloneqq -\sum_{j=1}^{m-1} h_j^1 v_j(h,x) \\ &= -\sum_{j=1}^{m-1} h_j^1 \partial_{h_j}(h,x) + \sum_{\ell=1}^m \left(-\sum_{j=1}^{m-1} h_j^1 w_{j,\ell}(h,x) \right) \partial_{x_\ell}(h,x), \end{aligned}$$

and look at the integral curve $\gamma(t) = (h(t), x(t))$ of v starting at (H_1, y^1) :

$$\dot{h}_j(t) = -h_j^1, \quad \dot{x}_\ell(t) = -\sum_{j=1}^{m-1} h_j^1 w_{j,l}(h, x),$$

$$h_j(0) = h_j^1, \qquad x_\ell(0) = y_\ell^1.$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ▲ 三 ● の Q @

• Flow of v_j preserve \mathcal{X} and $\gamma(0) \in \mathcal{X} \Rightarrow \gamma(t) \in \mathcal{X}$

•
$$h_j(t) = h_j^1(1-t) \Rightarrow h_j(1) = 0 \Rightarrow x(1) \in H_0$$

• The length L of the restriction of x(t) to [0,1] satisfies:

$$\begin{split} L &\coloneqq \int_{0}^{1} |\dot{x}(t)| \, dt \leq c_{1} \, \int_{0}^{1} \sum_{j=1}^{m-1} \left(|h_{j}^{1}| \cdot \left(\sum_{\ell=1}^{m} |w_{j,\ell}(\gamma(t))| \right) \right) dt \\ &\leq c_{2} \, |h^{1}| \, \int_{0}^{1} |x(t)| \, dt \leq c_{3} \, |h^{1}| \, |x(0)| \leq c_{4} \, |y^{0} - x(0)| \end{split}$$

It follows that

$$\begin{aligned} \rho(y^0, X \cap H_0) &\leq |y^0 - x(1)| \leq |y^0 - x(0)| + |x(0) - x(1)| \leq |y^0 - x(0)| + L \\ &\leq (1 + c_4) |y^0 - x(0)| = (1 + c_4) \, \rho(y^0, X) \end{aligned}$$

→ □ → → 三 → → 三 → のへで

Łojasiewicz exponent and order of tangency

X and Y analytic submanifolds of \mathbb{C}^m of dimension p

▶ We say that the order of tangency between X and Y at x^0 is $\ge k$ if there exist parametrizations

$$q:(U, u^0) \rightarrow (X, x^0)$$
 and $q':(U, u^0) \rightarrow (Y, x^0)$,

 $(U \text{ open subset of } \mathbb{C}^p)$ such that

$$q(u) - q'(u) = o(|u - u^0|^k)$$

as $u \rightarrow u^0$

► The order of tangency between X and Y at x^0 is the supremum of such integers k; it denoted by $s(X, Y; x^0)$.

Proposition Assume that $s(X, Y; x^0)$ is finite. If $\mathcal{L}(X, Y; x^0) \ge 1$, then

$$s(X,Y;x^0) \leq \mathcal{L}(X,Y;x^0) - 1.$$

Proof Write $s := s(X, Y; x^0)$, $\mathcal{L} := \mathcal{L}(X, Y; x^0)$, and $\mathbb{C}^m = \mathbb{C}_x^p \times \mathbb{C}_y^{m-p}$. In a neighbourhood of $x^0 \equiv 0$,

$$X: y = f(x)$$

for some analytic function $f = (f_1, \ldots, f_{m-p}): (\mathbb{C}^p_x, 0) \to (\mathbb{C}^{m-p}_y, 0).$

Similarly, Y: y = g(x); we may assume g = 0.

s' := smallest integer k for which there exists a multi-index a with |a| = k and D^a(f − g)(0) ≠ 0

Then s = s' - 1.

Each f_i has the Taylor expansion

$$f_i(x) = F_i(x) + o(|x|^{r_i})$$

where F_i is a homogeneous polynomial of degree r_i . We may assume $r_1 \le r_i$, so that $r_1 = s'$.

Let $\pi: \mathbb{C}^p_x \times \mathbb{C}^{m-p}_v \to \mathbb{C}^p_x$ be the standard projection, and look at

$$\pi(X \cap Y) = \{x \in \mathbb{C}^p_x ; f(x) = 0\}.$$

Lemma If a line *L* through 0 is not contained in the tangent cone *C* of $\pi(X \cap Y)$ at 0, then $\rho(x, \pi(X \cap Y)) \sim |x|$ for $x \in L$.

So, if $F_1 \neq 0$ on L, then for any $x \in L$:

- $\cdot |f_1(x)| \sim |x|^{r_1} = |x|^{s'} \text{ and } |f_i(x)| \le a |x|^{r_i} \le a |x|^{s'}$
- $\cdot \rho(x, \pi(X \cap Y)) \sim |x|$ (by the lemma)

It follows that for any $(x, y) \in \pi^{-1}(L) \cap X = \{(x, y) ; x \in L \text{ and } y = f(x)\}$:

- $\cdot \ \rho((x,y),Y) = |f(x)| \sim |x|^{s'}$
- $\cdot \rho((x,y), X \cap Y) \sim |x|$

Now the Łojasiewicz exponent $\mathcal L$ satisfies:

$$\rho((x,y),Y) \ge c \,\rho((x,y),X \cap Y)^{\mathcal{L}}, \text{ i.e., } |x|^{s'} \ge c|x|^{\mathcal{L}}.$$

So $s' \leq \mathcal{L}$, and hence, $s = s' - 1 \leq \mathcal{L} - 1$.

ABAABA B 9900

Using the theorem, we only obtain $\mathcal{L} > s$

Suppose x_0 is an isolated point of $X \cap Y$. Then $\exists c' > 0$ such that:

$$\rho(x, Y) \ge c' \, \rho(x, X \cap Y)^{\mathcal{L}} = c' \, |x - x^0|^{\mathcal{L}} \quad \text{for} \quad x \in X \text{ near } x^0,$$

or equivalently, $\rho(q(u), Y) \ge c' |q(u) - q(u^0)|^{\mathcal{L}}$ for u near u^0 . Since q is locally bi-Lipschitz, there is a constant c'' > 0 such that

$$c' |q(u) - q(u^0)|^{\mathcal{L}} \ge c'' |u - u^0|^{\mathcal{L}}$$
 for u near u^0 .

Since *s* is the order of tangency,

$$\rho(q(u), Y) \le |q(u) - q'(u)| < c'' |u - u^0|^s \text{ for } u \text{ near } u^0.$$

Combining these relations gives :

$$c^{\prime\prime} |u-u^0|^{\mathcal{L}} \leq \rho(q(u),Y) < c^{\prime\prime} |u-u^0|^s \quad \text{for} \quad u \text{ near } u^0.$$

э

伺 ト イヨト イヨト

▶ If dim $X \cap Y = n > 0$, then take *n* general hyperplanes H_1, \ldots, H_n through x^0 , so that

$$X \cap Y \cap H_1 \cap \cdots \cap H_n$$

is an isolated intersection. Write

$$s_i$$
 = order of tangency
 \mathcal{L}_i = Łojasiewicz exponent of $X \cap H_1 \cap \dots \cap H_i$ and $Y \cap H_1 \cap \dots \cap H_i$ at x^0

Clearly, $s \leq s_1$, and by induction, $s_i \leq s_{i+1}$. By the theorem $\mathcal{L}_i \geq \mathcal{L}_{i+1}$. So altogether:

$$s \leq s_1 \leq \cdots \leq s_n < \mathcal{L}_n \leq \mathcal{L}_{n-1} \leq \cdots \leq \mathcal{L}.$$

→ 冊 ▶ ★ 臣 ▶ ★ 臣 ▶ → 臣 → のへで

Thank you for your attention!

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○