Special loci of Betti Moduli

Hélène Esnault, with Moritz Kerz

Warsaw, November 19, 2020

Betti Moduli

X sm q-proj var over \mathbb{C} , $\pi_1^{\mathrm{top}}(X,x)$ top fund gr based at $x \in X(\mathbb{C})$, $1 \leq r \in \mathbb{N} \leadsto \exists$ moduli space M(X,r) =: M of conj cl of rk r ss lin rep of $\pi_1^{\mathrm{top}}(X,x)$.

Betti Moduli

X sm q-proj var over \mathbb{C} , $\pi_1^{\mathrm{top}}(X,x)$ top fund gr based at $x \in X(\mathbb{C})$, $1 \leq r \in \mathbb{N} \leadsto \exists$ moduli space M(X,r) =: M of conj cl of rk r ss lin rep of $\pi_1^{\mathrm{top}}(X,x)$.

M is an aff sch/ \mathbb{Z} . $M(\mathbb{C})$ is the set of iso cl of ss \mathbb{C} -loc syst of rk r.

Quasi-unipotency at infinity

Fix a normal comp $j: X \hookrightarrow \bar{X}$. The conj cl of the gen T_s of local fund gr around a comp D_s at ∞ is well defined in $\pi_1^{\mathrm{top}}(X,x) \rightsquigarrow$ notion of loc mon at ∞ of loc syst $\mathcal{V} \in M(\mathbb{C})$.

Quasi-unipotency at infinity

Fix a normal comp $j: X \hookrightarrow \bar{X}$. The conj cl of the gen T_s of local fund gr around a comp D_s at ∞ is well defined in $\pi_1^{\mathrm{top}}(X,x) \rightsquigarrow$ notion of loc mon at ∞ of loc syst $\mathcal{V} \in M(\mathbb{C})$.

Notation

 $M(\mathbb{C})^{\mathrm{qu}} \subset M(\mathbb{C})$ is the set of iso cl of \mathbb{C} -loc syst with quasi-unip mon at ∞ .

Quasi-unipotency at infinity

Fix a normal comp $j: X \hookrightarrow \bar{X}$. The conj cl of the gen T_s of local fund gr around a comp D_s at ∞ is well defined in $\pi_1^{\mathrm{top}}(X,x) \rightsquigarrow$ notion of loc mon at ∞ of loc syst $\mathcal{V} \in M(\mathbb{C})$.

Notation

 $M(\mathbb{C})^{\mathrm{qu}}\subset M(\mathbb{C})$ is the set of iso cl of \mathbb{C} -loc syst with quasi-unip mon at ∞ .

Remark

Same definition fixing the determinant $\mathcal L$ of $\mathcal V$ which is torsison \leadsto $M(\mathcal L)$ and $M(\mathcal L)(\mathbb C)^{\mathrm{qu}}\subset M(\mathcal L)(\mathbb C)$.

Density

Theorem A (E-Kerz '20)

 $M(\mathbb{C})^{\mathrm{qu}}\subset M(\mathbb{C})$ is Zariski dense.

Density

Theorem A (E-Kerz '20)

 $M(\mathbb{C})^{\mathrm{qu}}\subset M(\mathbb{C})$ is Zariski dense.

Remark

Same theorem with $M \rightsquigarrow M(\mathcal{L})$.

Density

Theorem A (E-Kerz '20)

 $M(\mathbb{C})^{\mathrm{qu}} \subset M(\mathbb{C})$ is Zariski dense.

Remark

Same theorem with $M \rightsquigarrow M(\mathcal{L})$.

Heuristic

- Simpson: in each irr comp of M, exists \mathbb{C} -VHS (viewed as a fixpoint under the \mathbb{C}^{\times} -rescaling on the Higgs field; ref in the -proj case?).
- Hope: those coming from geometry are even Zariski dense.
- ullet Their monodromies at ∞ are quasi-unipotent (Brieskorn, Griffiths, Grothendieck).

 \exists framed moduli space $M^{\square}(X,r)=:M^{\square}$ defined by the functor $\pi_1^{\mathrm{top}}(X,x) \to GL_r(A)$ on aff \mathbb{Z} -alg A. M^{\square} fine, aff sch $/\mathbb{Z}$, $M^{\square}(\mathbb{C}) \stackrel{q}{\to} M(\mathbb{C})$ cat quotient by GL_r action on frames $\leadsto M^{\square}(\mathbb{C})^{\mathrm{qu}} = q^{-1}M(\mathbb{C})^{\mathrm{qu}}$.

 \exists framed moduli space $M^{\square}(X,r)=:M^{\square}$ defined by the functor $\pi_1^{\mathrm{top}}(X,x) \to GL_r(A)$ on aff \mathbb{Z} -alg A. M^{\square} fine, aff sch $/\mathbb{Z}$, $M^{\square}(\mathbb{C}) \stackrel{q}{\to} M(\mathbb{C})$ cat quotient by GL_r action on frames $\leadsto M^{\square}(\mathbb{C})^{\mathrm{qu}} = q^{-1}M(\mathbb{C})^{\mathrm{qu}}$.

 \exists framed moduli space $M^{\square}(X,r)=:M^{\square}$ defined by the functor $\pi_1^{\mathrm{top}}(X,x) \to GL_r(A)$ on aff \mathbb{Z} -alg A. M^{\square} fine, aff sch $/\mathbb{Z}$, $M^{\square}(\mathbb{C}) \stackrel{q}{\to} M(\mathbb{C})$ cat quotient by GL_r action on frames $\rightsquigarrow M^{\square}(\mathbb{C})^{\mathrm{qu}} = q^{-1}M(\mathbb{C})^{\mathrm{qu}}$.

 ℓ prime given $\leadsto M^{\square}(\bar{\mathbb{Z}}_{\ell}) \subset M^{\square}(\bar{\mathbb{Q}}_{\ell}) = \text{set of}$ $\rho: \pi_1^{\mathrm{top}}(X,x) \to GL_r(\bar{\mathbb{Q}}_{\ell})$ which factor through cont rep $\rho^{\mathrm{\acute{e}t}}: \pi_1^{\mathrm{\acute{e}t}}(X,x) \to GL_r(\bar{\mathbb{Z}}_{\ell}).$

 \exists framed moduli space $M^{\square}(X,r)=:M^{\square}$ defined by the functor $\pi_1^{\mathrm{top}}(X,x) \to GL_r(A)$ on aff \mathbb{Z} -alg A. M^{\square} fine, aff sch $/\mathbb{Z}$, $M^{\square}(\mathbb{C}) \stackrel{q}{\to} M(\mathbb{C})$ cat quotient by GL_r action on frames $\rightsquigarrow M^{\square}(\mathbb{C})^{\mathrm{qu}} = q^{-1}M(\mathbb{C})^{\mathrm{qu}}$.

 ℓ prime given $\leadsto M^{\square}(\bar{\mathbb{Z}}_{\ell}) \subset M^{\square}(\bar{\mathbb{Q}}_{\ell}) = \text{set of}$ $ho: \pi_1^{\mathrm{top}}(X,x) \to GL_r(\bar{\mathbb{Q}}_{\ell})$ which factor through cont rep $ho^{\mathrm{\acute{e}t}}: \pi_1^{\mathrm{\acute{e}t}}(X,x) \to GL_r(\bar{\mathbb{Z}}_{\ell}).$

ℓ -adic points of M

$$M^{\mathrm{\acute{e}t},\ell} := q(M^{\square}(ar{\mathbb{Z}}_{\ell})) \subset M(ar{\mathbb{Q}}_{\ell})$$

is the set of étale $\bar{\mathbb{Q}}_\ell$ -loc syst.

Galois action on ℓ -adic points

$$x\in X(F)$$
 (if \emptyset enlarge $F)\leadsto G\circlearrowleft \pi_1^{\operatorname{\acute{e}t}}(X_{ar{F}},x)$ by conj \leadsto
$$G\circlearrowleft M^{\operatorname{\acute{e}t},\ell}.$$

Galois action on ℓ -adic points

$$x\in X(F)$$
 (if \emptyset enlarge $F)\leadsto G\circlearrowleft \pi_1^{\operatorname{\acute{e}t}}(X_{ar{F}},x)$ by conj \leadsto
$$G\circlearrowleft M^{\operatorname{\acute{e}t},\ell}.$$

Special loci

Definition

A closed subset $S \subset M^{\square}(\bar{\mathbb{Q}}_{\ell})$ is *special* if 1) \forall each irred comp S_i $\emptyset \neq S_i \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$; 2) $U \circlearrowleft S \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$ for some $U \subset G$ open.

Special loci

Definition

A closed subset $S \subset M^{\square}(\bar{\mathbb{Q}}_{\ell})$ is *special* if 1) \forall each irred comp S_i $\emptyset \neq S_i \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$; 2) $U \circlearrowleft S \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$ for some $U \subset G$ open.

So by definition S special iff its irr comp are special.

Special loci

Definition

A closed subset $S \subset M^{\square}(\bar{\mathbb{Q}}_{\ell})$ is *special* if 1) \forall each irred comp S_i $\emptyset \neq S_i \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$; 2) $U \circlearrowleft S \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$ for some $U \subset G$ open.

So by definition S special iff its irr comp are special.

Theorem B (E-Kerz '20)

 $S \text{ special} \Rightarrow S \cap M^{\square}(\mathbb{C})^{\mathrm{qu}} \subset S \text{ Zariski dense.}$

Thm $B \Rightarrow Thm A$

- ullet \mathbb{Q}_ℓ alg. cl. \Rightarrow may replace \mathbb{C} by \mathbb{Q}_ℓ in Thm A (top loc syst).
- $M^{\square}(\bar{\mathbb{Z}}_{\ell})$ *G*-invariant;
- so enough to find ℓ so all irr comp of $M^{\square}(\bar{\mathbb{Q}}_{\ell})$ meet $M^{\square}(\bar{\mathbb{Z}}_{\ell})$;
- fin many irr comp $M_i^{\square}/\bar{\mathbb{Q}}$, pick $\rho_i \in M_i^{\square}(\bar{\mathbb{Q}})$; as $\pi_1^{\text{top}}(X,x)$ fin gen, all ρ_i defined over $\mathcal{O}_{E,\Sigma}$, Σ fin many places of \mathcal{O}_E ; so $\ell \notin \text{char } \Sigma$ does it.

Proof of Thm B

- by defn, may assume *S* irr;
- $N := \prod_s \mathbb{A}^{r-1} \times \mathbb{G}_m$;

•

$$\psi: M^{\square}(\bar{\mathbb{Q}}_{\ell})(\to M(\bar{\mathbb{Q}}_{\ell})) \to N(\bar{\mathbb{Q}}_{\ell})$$

$$\rho \mapsto \prod_{s} (\operatorname{coeff} \text{ of } \det(X - \rho(T_{s}) \cdot \operatorname{Id}))$$

- ψ defined $/\mathbb{Z}_{\ell}$, G-equivariant on $M^{\square}(\bar{\mathbb{Z}}_{\ell}) \to \mathcal{N}(\bar{\mathbb{Z}}_{\ell})$;
- define $N(\bar{\mathbb{Q}}_{\ell})^{\mathrm{tor}} \subset N(\bar{\mathbb{Q}}_{\ell})$ as the pol with torsion zeroes;
- $S \cap M^{\square}(\bar{\mathbb{Q}}_{\ell})^{\mathrm{qu}} = \psi^{-1}(\psi(S) \cap N(\bar{\mathbb{Q}}_{\ell})^{\mathrm{tor}});$
- Chevalley thm $\Rightarrow \psi(S)$ constructible;
- Zariski cl $\overline{\psi(S)} =: Z$ irr and $Z \cap N(\bar{\mathbb{Z}}_{\ell}) \neq \emptyset$;
- ullet so enough to prove $Z\cap N(ar{\mathbb{Q}}_\ell)^{\mathrm{tor}}\subset Z$ Zariski dense;
- $h: T = \prod_s \mathbb{G}_m^r \to N$ separates the roots; h fin surj, so enough to prove $h^{-1}Z \cap T(\bar{\mathbb{Q}}_\ell)^{\mathrm{tor}} \subset h^{-1}Z$ Zariski dense.

Theorem C (E-Kerz '19)

T torus /F, then torsion points are Zariski dense in special loci.

Theorem C (E-Kerz '19)

T torus /F, then torsion points are Zariski dense in special loci.

Remark

Thm C more is precise: special loci are union of translates by a torsion point of motivic subtori.

Theorem C (E-Kerz '19)

T torus /F, then torsion points are Zariski dense in special loci.

Remark

Thm C more is precise: special loci are union of translates by a torsion point of motivic subtori.

Remark

Method of proof of Thm B comes from our proof of density thm of tame arithm $\bar{\mathbb{Q}}_\ell$ -loc syst of rk 2 on $\mathbb{P}^1\setminus\{0,1,\infty\}/\bar{\mathbb{F}}_p$. Generalization to higher rank would yield the Hard Lefschetz thm in char p>0.