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@ Polynomial mappings F: C" — C" are the most classical
objects in the complex analysis, yet their topology has not
been studied up till now.

@ To the best knowledge of the authors complex algebraic
families of polynomial mappings on affine varieties have
not been investigated so far.

© Here we describe an idea of such study. We consider the
family Qcn(dy, . . ., d,) of polynomial mappings
F = (Fy,...,Fy): C" — C™ of degree bounded by
(dyy...,dpy).

@ For a smooth affine variety X* ¢ C" we also consider the
famlly Qx(dl, . ,dm) = {F|X :F e Q(Cn(dl, . ,dm)}.
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@ If M, X, Y are affine irreducible varieties, X, Y are smooth
and ®: M x X — Y is an algebraic family of polynomial
mappings such that the generic element of this family is
proper then two generic members of this family are
topologically equivalent (Jel 2017).

@ In particular if X C C? is of dimension n and m > n then any
two generic members of the family Qx(d,...,d,) are
topologically equivalent.

© For example, if X is a smooth surface then the numbers
cx(dy,dy) and dx(dy, d,) of cusps and double folds,
respectively, of a generic member of the family Qx(d;, d>)
are well-defined.



Our aim is to describe effectively the topology of such generic
mappings. We consider in this paper the simplest case, when
n=m=2andX = C? or X is the complex sphere

S ={(x,y,z) € C*: x> +y* + 22 = 1}. In those cases we
describe the topology of the set C(F) of critical points of F and
the topology of its discriminant A(F).
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Q@ LetQ,(dy,...,d,) denote the space of polynomial
mappings F : C" — C™ of multi-degree bounded by
di,...,dpy.

@ Similarly if X ¢ C" is a smooth affine variety we consider
the famlly Qx(dl, .. ,dm) = {F|X F e Qn(dl, . ,dm)}
Note that Qx(d, ..., d,) as algebraic variety coincides with
Qu(dy, ... dy).

© By J4(C",C™) we denote the space of ¢-jets of polynomial
mappings F = (fi,...,fm) : C" — C™.

Q If X" c C? is a smooth affine variety then the space
J4(X,C™) has the structure of a smooth algebraic manifold
and can be locally represented in the same simple way as
above.
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polynomial mappings F = (fi,...,fy) : X — C™.

@ We denote by A the set {(xi,...x;) € X* : x; = x; for some
i # j} and for bundles 7; : W; — X we denote by Ay the set
{wi,...ws) @ mi(w;) = mj(w;) for some i # j}.

© We have J7(X,C™) = (J9(X,C™))* \ Ax. More generally,
we define the space of (¢1, ..., g;s)-jets to be
JAots (X CM) o= JU(X,C") x ... x JB(X,C™) \ Ax and call
it, if there is no danger of confusion, the space of multi-jets.

© Again, for a given polynomial mapping F : X — C™ we have
the mapping

JA b (F) : XA — (JIY(F)(x1), ... ,j%(F)(xg)) € J& (X, C™).



Thom-Boardman singularities.

Let F € Q,(d,...,d,) be one generic. Then

Y(F) := {x : corank d,F = r} is smooth and we can consider
the set ¥X*(F) where tha map F : ¥"(F) — C" drops rank s. If
¥3(F) is smooth we can continuing. In particular for n = 2 we
have that X! (F) is the set of folds and ©!'! is the set of cusps.
In fact we have the following Boardman Theorem:

THEOREM. For every sequence of integers

ry > ry > ... > r, > 0one can define a smooth algebraic
subvarigty X712+ of J*(C", C") such that if j/(F) is transversal
to all submanifolds "> with [ < s, then X5 (F) is well
defined and

x € Er]7~n7r_r<F) lf‘f‘]‘F(X) c Erly-“,rx.

Of course this is true for arbitrary smooth manifolds. We say
that the varieties X are Thom-Boardmann strata in jet
space.



@ We will also use the Thom-Boardman manifolds in the
space ,J*(X, C™) of multi-jets. We denote by dc» the set of
all multijets {(w1, ..., ws) € JX(X,C™) : for all
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men 2 J¥(X,C™) — C™ is the projection.



@ We will also use the Thom-Boardman manifolds in the
space ,J*(X, C™) of multi-jets. We denote by dc» the set of
all multijets {(w1, ..., ws) € JX(X,C™) : for all
1 <i,j<s : men(wi) = men(wj)}, Where
men 2 J¥(X,C™) — C™ is the projection.

@ We denote (X/1,...,%05) =%l x ... x b J¥ X, C™).
Moreover let (X0, ... 35) A == (B0 ... x X)) N 6.
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Q@ Letx = (x1,...,x;) € X%, let U be a n open neighborhood of
xand f : U — Y be a holomorphic mapping. Put

Z :sjk(f)ay = (f(xl)’ "'7f(xs))'

Let J*(X,Y), and (J*(X, Y),, denote fibers of ,J*(X, Y) over
x and (x,y) respectively.
@ Then we have canonical identifications:

(*)T(sjk(X7 Y)i): = Jk(f*TY)xv

where the right hand side denotes k—jets at x of sections of
the bundle f*TY.



Let m, denotes the ideal in J*(X) consisting of jets of functions
which vanish at x. Then with respect to (x) we have
identification:

(%) T (J5(X, ¥)ry)z = M5 (FFTY),.
In particular T(J*(X,Y),,)z has a structure of J*(X), module.
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Let m, denotes the ideal in J*(X) consisting of jets of functions
which vanish at x. Then with respect to (x) we have
identification:

(%) T (J5(X, ¥)ry)z = M5 (FFTY),.
In particular T(J*(X,Y),,)z has a structure of J*(X), module.

Let W be a non-void submanifold of the multi-jet bundle
J¥(X,Y). We say that W is modular if:
@ W is a smooth invariant submanifold of J*(X, ).

@ the space T(W,,), under identification () is a J*(X),
submodule of m,J*(f*TY),.



Let us state the following result of Mather:

Theorem. Let X € C" be a smooth affine algebraic subvariety
and let W C; J4(X,C™) be a modular submanifold. There exists
a Zariski open non-empty subset U in the space of all linear
mappings L£(C",C™) such that for every L € U the mapping
L:X — C™istransversal W.



This theorem has the following nice application (which in the
real smooth case was first observed by S. Ichiki):

Corollary. Let X ¢ C" be an affine smooth algebraic subvariety,
let W c; J9(X,C™) be a modular submanifold and let

F : X — C™ be a polynomial mapping. There exists a Zariski
open non-empty subset U in the space of all linear mappings
L(C",C™) such that for every L € U the mapping

F+L:X — C™istransversal to W.
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Now we can state the following fundamental result (version of
Mather’s Theorem):

Theorem 1. Let X¥ ¢ C" be a smooth algebraic variety of
dimension k and let W C ,J4(X,C™) be an algebraic modular
submanifold. Then there is a Zariski open subset

U C Qx(d,...,dy) such that for every F € U the mapping F is
transversal to W. In particular it holds, if we take as W the
Thom-Boardman manifolds (X1, ..., %5) and (21, ...,55)A in
sJ9(X,C™). Consequently, every mapping F € U satisfies the
normal crossings condition, hence it is a Thom-Boardman
mapping with a Normal Crossings Property.



DEFINITION. Let F € Q,(d;,d>). We say that F is generic if F is
proper, j' (F) m ©!, j2(F) £ and additionally j! (F) h 2.

Again by Theorem 1 the subset of generic mappings contains a
Zariski open dense subset of Q,(d;,d»). Thus a general
mapping is generic.

DEFINITION. Let F : (C?,a) — (C?, F(a)) be a holomorphic
mapping. We say that F has a simple cusp at a if F is
biholomorphically equivalent to the mapping

(C2,0) > (x,y) = (x,y* +xy) € (C%,0). It has a fold at a if F is
biholomorphically equivalent to the mapping

(C2,0) 3 (x,y) = (x,y%) € (C2,0).




By our previous consideration we have:

THEOREM. Let X c C" be a smooth affine surface and let
F : X — C? be a generic polynomial mapping. Then F has only
folds and simple cusps (and two-folds) as singularities.



THEOREM A For a general polynomial mapping
F=(f,g): C*> = C?, degf = dy, deg g = d>, the set C(F) of
critical points of F is a smooth connected curve which is
transversal to the line at infinity. The curve C(F) is topologically
equivalent to a sphere with {4t2=3)d1+h =4 pangles and

2
d, + d, — 2 points removed.
The discriminant A(F) = F(C(F)) of the mapping F is a curve
birationally equivalent to C(F) and it has only cusps and nodes
as singularities. The curve A(F) has

c(F) =& + &2 +3dids — 6dy — 6d> + 7
simple cusps and
1
d(F) = 5 [(didy = 4)((dy + dr = 2)* = 2) = (d = 5)(dy +d2 —2) — ]

nodes (here d = ged(d,, dy)).



Remark If d; = d» = d then the discriminant has 2d — 2 smooth
points at infinity and at each of these points it is tangent to the
line L, (at infinity) with multiplicity d. If d; > d, then the
discriminant has only one point at infinity with d; +d, — 2
branches Vi, ..., V4 14,—2 and each of these branches has
delta invariant

(dy = 1)(dy —da — 1) + (ged(dy, da) — 1)

(Vi) = >

and V; - L, = d,. Additionally V; - V; = di(d| — d>). In particular
the branches V; are smooth if and only if d; = d, ordy = d, + 1.



IS = {(x,y,2) € C*: x2 +)? + 72 = 1}, then we have:

THEOREM B There is a Zariski open, dense subset

U C Qg(d1,d>) such that for every mapping F € U the set C(F)
of critical points of F is a smooth connected curve, which is
topologically equivalent to a sphere with g = (d; + d, — 2)?
handles and 2(d; + d, — 1) points removed.

For every mapping F € U the discriminant A(F) = F(C(F)) has
only cusps and nodes as singularities. The number of cusps is
equal to

c(F) =2(d? 4+ d5 + 3d\d> — 3dy — 3d> + 1)
and the number of nodes is equal to
d(F) = (2d\dy — 3)D* — D(d) + dy +d — 2) — 2(d\dy — d\ — d>),

where D =d; +d, — 1 and d = ng(dl,dz).



Remark If d; = d» = d then the discriminant has 4d — 2 smooth
points at infinity and in each of these points it is tangent to the
line L, (at infinity) with multiplicity d. If d; > d, then the
discriminant has only one point at infinity with 2(d; +d, — 1)
branches Vi, ..., V54 +4,—1) @nd each of these branches has
delta invariant

(di—1)(di—dr—1)+(d—1)

o(Vi) = 3

and V; - L, = d,. Additionally V; - V; = d,(d\ — d»). In particular
branches V; are smooth if and only if d; = d, ordy =d, + 1.
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How to prove Theorem A?

@ For amapping F = (f, g) € (dy,d>), we have

) 9] 0 0
1) = (0030, 0). 3 (030, 19, ), S ) )

@ The set X! is given by the equation
¢(X, y7f7 gvfxn]g’?gx; gy) :fxgy _fygx =0.

© Now we would like to describe the set 21! effectively. In
the space J?(C?, C?) we introduce coordinates

(x, v.fs gvfmfya 8x, gyvfxmﬁvyvf:\fya 8xxs 8yys gxy)-



@ The set 1! is given in J?(C?, C?) by three equations:
Ly ::fxgy _fygx =0,

Ly = (fu8y 8oy —fry8x =8 )fy— oy 8y /8y —Siy8x—Sy8xy)fx = 0,
and

L = (fugyHfx8xy—fry8x—8xx) 8y— (fry8y+fx&yy—Sry&8x—Fy8xy)&x = 0.



@ The set 1! is given in J?(C?, C?) by three equations:
Ly = figy — 18 =0,
Ly = (fugy tfx8xy—fo8x—h8u )y — (fy&y+fi8yy—fry8x—Fy8xy)fx = 0,
and
L3 := (fuu8y+/x8xy—fry8x—/y8xx) 8y— (fry &y H/c8yy =y 8x—/y8xy)8x = 0

@ As above by symmetry the set 1! is smooth and locally is
given as a complete intersection of either Ly, L, or Ly, L3.
We will denote by J, J; 1,J; » curves given by L; o j*(F) = 0,
L; o j*(F) = 0 and L3 o j>(F) = 0, respectively.



Now we show how to compute the genus of C(F) and the
number of cusps of a general polynomial mapping
F € Oy (dy,d>). To do this we need a series of lemmas:

LEMMA. Let L., denote the line at infinity of C2. There is a
non-empty open subset V C Q,(d;, d>) such that for all
(f,g) eV:

{#=ofo {g -0} {#-o}n{E-0}nix-0




LEMMA. Let L., denote the line at infinity of C2. There is a
non-empty open subset V C Q,(d;, d>) such that for all

F=(fg €V:

Q@ JF)NJ11(F)N Ly =0,

Here J(F) denotes the projective closure of the set {J(F) = 0}
etc.



LEMMA. Let L., denote the line at infinity of C2. There is a
non-empty open subset V C Q,(d;, d>) such that for all

F=(fg €V:

Q@ JF)NJ11(F)N Ly =0,
Q@ J(F) h Lec.

Here J(F) denotes the projective closure of the set {J(F) = 0}
etc.



LEMMA. There is a non-empty open subset Vi C Q(dy, d>)
such that for all (f, g) € V; and every a € C?: if %(a) =0and

& (a) =0, then %(a) # 0 and §%(a) # 0.



LEMMA. There is a non-empty open subset V, C Q,(d;, d>)
such that for all (f, g) € V> we have
L =0}n{F=0}nua(f g =0.



LEMMA. There is a non-empty open subset V3 C Q(d,, d>)
such that for all (f, g) € Vs the curve J(f, g) is transversal to the
curve Jy1(f, g).



THEOREM. There is a Zariski open, dense subset

U C Q,(dy,d>) such that for every mapping F € U the mapping
F has only two-folds and cusps as singularities and the number
of cusps is equal to

d} + d3 + 3dydy — 6dy — 6dy + 7.

Moreover, if d; > 1 or d, > 1 then the set C(F) of critical points
of F is a smooth connected curve, which is topologically
equivalent to a sphere with g = {423 Ath %) hapdles and

dy + d> — 2 points removed.




Here we analyze the discriminant of a general mapping from
Q(d,,d,). Let us recall that the discriminant of the mapping
F:C? — C?is the curve A(F) := F(C(F)), where C(F) is the
critical curve of F. We have:

LEMMA. There is a non-empty open subset U C Q,(d;, d>)
such that for every mapping F € U:

1) Fic(r) is injective outside a finite set,

2)if p € A(F) then |[F~!(p) N C(F)| <2,3)if |[F~1(p) N C(F)| =2
then the curve A(F) has a normal crossing at p.



Hence for a general F the only singularities of A(F) are cusps
and nodes. We showed previously that there are exactly

c(F) = d? + d5 + 3d,d, — 6d; — 6dy + 7 cusps. Now we will
compute the number d(F) of nodes of A(F). We will use the
following theorem of Serre:

THEOREM. If T" is an irreducible curve of degree d and genus g
in the complex projective plane then

1
Sd=1)d-2)=¢g+ > 4
z€Sing(T")

where ¢, denotes the delta invariant of a point z.



LEMMA. Let F = (f, g) € Q2(d,, d>») be a general mapping. If
dy > d> then deg A(F) =d (d] +dy — 2).



We have the following method of computing the delta invariant:

THEOREM M. (Milnor) Let V,, ¢ C? be an irreducible germ of
an analytic curve with the Puiseux parametrization of the form

71 = tao, 7 = Z)\,‘lai, where ), 750, ar <ay<az<...
i>0

Let Dj = gcd(ao,al, e ,aj,l). Then
1
EZ(Q/— 1)(Dj = Djy1).

Jz1

0o =
If V.= J;_, Vi has r branches then

5(V) = Z S(Vi) + > ViV,
i=1

i<j

where V - W denotes the intersection product.



Our result follows directly from:

THEOREM. Let F € Q(d,, d,) be a general mapping. Let
d > dy and d = ged(d,, d,). Denote by A the projective closure
of the discriminant A. Then

1 1
> b= Sdi(di—dy)(d) +d2—2)2+§(—2d1 +dy+d)(dy+dr—-2).
2E(A\A)

How to prove? ltis a little bit tedious but possible!



THEOREM. There is a Zariski open, dense subset
U C Q,(d1,dy) such that for every mapping F € U the
discriminant A(F) = F(C(F)) has only cusps and nodes as
singularities. Let d = gecd(d;, d»). Then the number of cusps is
equal to

c(F) = d} + d5 + 3didy — 6dy — 6dy +7

and the number of nodes is equal to

1

d(F)—E

[(didy — 4)((dy + dr — 2)* = 2) — (d — 5)(d1 +d» — 2) — 6] .



In fact also the converse result is true (J+Farnik-submited):

THEOREM. For d;d, > 2, if a mapping F € Q,(d1,d») has
¢(dy, d>) cusps and n(d;, d,) nodes, then it has a generic
topological type. In particular, mappings with the generic
topological type form a Zariski open subset in ,(d;,d>).

COROLLARY. Let F,G € 0y (dy,d,), where did, > 2. Assume
that F and G have c(d,,d») cusps and n(d;, d>) nodes. Then
there exist homeomorphisms ®, ¥ : C> — C? such that

G=®oFoV.



DEFINITION. Let F : (C?,a) — (C?,F(a)) be a holomorphic
mapping. We say that F has a generalized cusp at «a if F, is
proper, the curve J(F) = 0 is reduced near a and the
discriminant of F, is not smooth at F(a).

REMARK. If F, is proper, J(F) = 0 is reduced near a and J(F) is
singular at a then it follows from Corollary 1.11 from [Jel, 2017]
that also the discriminant of F, is singular at F(a) and hence F
has a generalized cusp at a.



DEFINITION. Let F = (f, g) : (C*,a) — (C?,F(a)) be a
holomorphic mapping. Assume that F has a generalized cusp
at a point @ € C2. Since the curve J(F) = 0 is reduced near a,
we have that the set {Vf = 0} N {Vg = 0} has only isolated
points near a. For a general linear mapping 7 € GL(2), if

F' = (f'.¢') = T o F then Vf’ does not vanish identically on any
branch of {J(F) = 0} near a. We say that the cusp of F at a has
an index yu, := dimcO,/(J(F'),J1,1(F')) — dimcO./ (], 1;)-

REMARK. Using the exact sequence 1.7 from [Gaffney-Mond]
we see that

pta = dimeOa/(J(F), J1,1(F), J12(F)).

Hence our index coincides with the classical local number of
cusps defined e.g. in [Gaffny-Mond]. In particular p, > 1, if F
has a generalized cusp at a.



PROPOSITION. Let F = (f,g) € (d,,d») and assume that F
has a generalized cusp at a € C?. If U, is a sufficiently small
ball around a then y, is equal to the number of simple cusps in
U, of a general mapping F’ € Q»(d},d5), where d| > dy,d, > d»,
which is sufficiently close to F in the natural topology of

M(dy, db).



COROLLARY 1. Let F € Q,(d,,d,). Assume that F has
generalized cusps at points ay, ...,a,. Then
S He < d? 4 d? + 3dydy — 6dy — 6dy + 7.

COROLLARY 2. If F € Q(d1,d») is a generically finite
polynomial mapping with reduced critical curve, then it has not
more than d? + d? + 3dd, — 6d, — 6d> + 7 singular points which
are not folds.

Analogous theorems are true in the case of a complex sphere.



In previous sections we considered the family Qx(d, ..., d,), of
course we can consider also other families of polynomial
mappings and try to investigate their properties. Let F be any
algebraic family of generically-finite polynomial mappings

fp: X = C™ p e F,where X is a smooth irreducible affine
variety. We would like to know the behavior of proper mappings
in a such family. In general proper mappings do not form an
algebraic subset of F but only constructible one. However we
show that there is some regular behavior in such family. We
have:



Theorem.

Let P, X, Y be smooth irreducible affine algebraic varieties and
let F: P x X — P x Y be a generically finite mapping. The
mapping F induces a family 7 = {f,(-) = F(p,-), p € P}. Then
either there exists a Zariski open dense subset U C P such that
for every p € P the mapping f, is proper, or there exists a Zariski
open dense subset V C P such that for every p € P the
mapping f, is not proper.



Moreover, in the first case we have:

a) for every non-proper mapping f, in the family 7 we have
u(fy) < u(F), where p(f) denotes the geometric degree of f,

b) generic mappings in F are topologically equivalent, i.e., there
exists a Zariski open dense subset W C P such that for every
p,q € W the mappings f, and f, are topologically equivalent.



Theorem.

Let X C C" be a smooth irreducible affine variety of dimension k&
and let F : X — C™ be a polynomial mapping. If m > k, then
there exists a Zariski open dense subset U in the space of
linear mappings £(C",C™) such that:

a) for every L € U the mapping F + L is a finite mapping.

b) for all L € U the mappings F + L are topologically equivalent.

c) for all L € U the mappings F + L have only generic
singularities,i.e., transversal to Thom-Boardman strata.



In particular for a given mapping F : C*> — C? we can consider
the “linear” deformation F; = F + L; L € £(C?,C?). A general
member of this deformation is locally stable and proper. If F is
not "sufficiently generic", then this deformation gives a different
number of cusps and folds than a “generic” deformation
considered in this paper. We give here an example of a finitely
KC determined germ F which has at least two non-equivalent
stable deformations.



Example. Take a finitely K determined germ F(x,y) = (x,?)
and consider two deformations of F: the first one linear

F; = (x,y* + ty) and the second one given by

Gi(x,y) = (x,y* + txy). The members of the first family do not
have a cusp at all and the members of the second family have
exactly one cusp at 0.

This means that (contrary to the case of A finitely determined
germs) we can not define the numbers ¢(F) and d(F) for F
using stable deformations.



THANK YOU FOR ATTENTION!



