Effective Whitney theorem for complex polynomial mappings of the plane, IMPANGA 2021

M. Farnik, Z. Jelonek, M.A.S. Ruas

January 29, 2021

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Polynomial mappings F: Cⁿ → Cⁿ are the most classical objects in the complex analysis, yet their topology has not been studied up till now.
- To the best knowledge of the authors complex algebraic families of polynomial mappings on affine varieties have not been investigated so far.
- 3 Here we describe an idea of such study. We consider the family $\Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)$ of polynomial mappings $F = (F_1, \ldots, F_m) \colon \mathbb{C}^n \to \mathbb{C}^m$ of degree bounded by (d_1, \ldots, d_m) .
- For a smooth affine variety $X^k \subset \mathbb{C}^n$ we also consider the family $\Omega_X(d_1, \ldots, d_m) = \{F|_X : F \in \Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)\}.$

- Polynomial mappings F: Cⁿ → Cⁿ are the most classical objects in the complex analysis, yet their topology has not been studied up till now.
- To the best knowledge of the authors complex algebraic families of polynomial mappings on affine varieties have not been investigated so far.
- 3 Here we describe an idea of such study. We consider the family $\Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)$ of polynomial mappings $F = (F_1, \ldots, F_m) \colon \mathbb{C}^n \to \mathbb{C}^m$ of degree bounded by (d_1, \ldots, d_m) .
- For a smooth affine variety $X^k \subset \mathbb{C}^n$ we also consider the family $\Omega_X(d_1, \ldots, d_m) = \{F|_X : F \in \Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)\}.$

- Polynomial mappings F: Cⁿ → Cⁿ are the most classical objects in the complex analysis, yet their topology has not been studied up till now.
- To the best knowledge of the authors complex algebraic families of polynomial mappings on affine varieties have not been investigated so far.
- So Here we describe an idea of such study. We consider the family $\Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)$ of polynomial mappings $F = (F_1, \ldots, F_m) \colon \mathbb{C}^n \to \mathbb{C}^m$ of degree bounded by (d_1, \ldots, d_m) .
- For a smooth affine variety $X^k \subset \mathbb{C}^n$ we also consider the family $\Omega_X(d_1, \ldots, d_m) = \{F|_X : F \in \Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)\}.$

- Polynomial mappings F: Cⁿ → Cⁿ are the most classical objects in the complex analysis, yet their topology has not been studied up till now.
- To the best knowledge of the authors complex algebraic families of polynomial mappings on affine varieties have not been investigated so far.
- So Here we describe an idea of such study. We consider the family $\Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)$ of polynomial mappings $F = (F_1, \ldots, F_m) \colon \mathbb{C}^n \to \mathbb{C}^m$ of degree bounded by (d_1, \ldots, d_m) .
- For a smooth affine variety $X^k \subset \mathbb{C}^n$ we also consider the family $\Omega_X(d_1, \ldots, d_m) = \{F|_X : F \in \Omega_{\mathbb{C}^n}(d_1, \ldots, d_m)\}.$

- If *M*, *X*, *Y* are affine irreducible varieties, *X*, *Y* are smooth and Φ: *M* × *X* → *Y* is an algebraic family of polynomial mappings such that the generic element of this family is proper then two generic members of this family are topologically equivalent (Jel 2017).
- In particular if X ⊂ C^p is of dimension n and m ≥ n then any two generic members of the family Ω_X(d₁,...,d_m) are topologically equivalent.
- **③** For example, if *X* is a smooth surface then the numbers $c_X(d_1, d_2)$ and $d_X(d_1, d_2)$ of cusps and double folds, respectively, of a generic member of the family $\Omega_X(d_1, d_2)$ are well-defined.

(日) (日) (日) (日) (日) (日) (日)

- If *M*, *X*, *Y* are affine irreducible varieties, *X*, *Y* are smooth and Φ: *M* × *X* → *Y* is an algebraic family of polynomial mappings such that the generic element of this family is proper then two generic members of this family are topologically equivalent (Jel 2017).
- In particular if X ⊂ C^p is of dimension n and m ≥ n then any two generic members of the family Ω_X(d₁,...,d_m) are topologically equivalent.
- **③** For example, if *X* is a smooth surface then the numbers $c_X(d_1, d_2)$ and $d_X(d_1, d_2)$ of cusps and double folds, respectively, of a generic member of the family $\Omega_X(d_1, d_2)$ are well-defined.

(日) (日) (日) (日) (日) (日) (日)

- If *M*, *X*, *Y* are affine irreducible varieties, *X*, *Y* are smooth and Φ: *M* × *X* → *Y* is an algebraic family of polynomial mappings such that the generic element of this family is proper then two generic members of this family are topologically equivalent (Jel 2017).
- In particular if X ⊂ C^p is of dimension n and m ≥ n then any two generic members of the family Ω_X(d₁,...,d_m) are topologically equivalent.

So For example, if *X* is a smooth surface then the numbers $c_X(d_1, d_2)$ and $d_X(d_1, d_2)$ of cusps and double folds, respectively, of a generic member of the family $\Omega_X(d_1, d_2)$ are well-defined.

Our aim is to describe effectively the topology of such generic mappings. We consider in this paper the simplest case, when n = m = 2 and $X = \mathbb{C}^2$ or X is the complex sphere $S = \{(x, y, z) \in \mathbb{C}^3 : x^2 + y^2 + z^2 = 1\}$. In those cases we describe the topology of the set C(F) of critical points of F and the topology of its discriminant $\Delta(F)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let $\Omega_n(d_1, \ldots, d_m)$ denote the space of polynomial mappings $F : \mathbb{C}^n \to \mathbb{C}^m$ of multi-degree bounded by d_1, \ldots, d_m .

- Similarly if X ⊂ Cⁿ is a smooth affine variety we consider the family Ω_X(d₁,...,d_m) = {F|_X : F ∈ Ω_n(d₁,...,d_m)}.
 Note that Ω_X(d₁,...,d_m) as algebraic variety coincides with Ω_n(d₁,...,d_m).
- 3 By $J^q(\mathbb{C}^n, \mathbb{C}^m)$ we denote the space of *q*-jets of polynomial mappings $F = (f_1, \ldots, f_m) : \mathbb{C}^n \to \mathbb{C}^m$.
- If $X^n \subset \mathbb{C}^p$ is a smooth affine variety then the space $J^q(X, \mathbb{C}^m)$ has the structure of a smooth algebraic manifold and can be locally represented in the same simple way as above.

(ロ) (同) (三) (三) (三) (○) (○)

- Let $\Omega_n(d_1, \ldots, d_m)$ denote the space of polynomial mappings $F : \mathbb{C}^n \to \mathbb{C}^m$ of multi-degree bounded by d_1, \ldots, d_m .
- Similarly if X ⊂ Cⁿ is a smooth affine variety we consider the family Ω_X(d₁,...,d_m) = {F|_X : F ∈ Ω_n(d₁,...,d_m)}.
 Note that Ω_X(d₁,...,d_m) as algebraic variety coincides with Ω_n(d₁,...,d_m).
- 3 By $J^q(\mathbb{C}^n, \mathbb{C}^m)$ we denote the space of *q*-jets of polynomial mappings $F = (f_1, \ldots, f_m) : \mathbb{C}^n \to \mathbb{C}^m$.
- If $X^n \subset \mathbb{C}^p$ is a smooth affine variety then the space $J^q(X, \mathbb{C}^m)$ has the structure of a smooth algebraic manifold and can be locally represented in the same simple way as above.

- Let $\Omega_n(d_1, \ldots, d_m)$ denote the space of polynomial mappings $F : \mathbb{C}^n \to \mathbb{C}^m$ of multi-degree bounded by d_1, \ldots, d_m .
- Similarly if X ⊂ Cⁿ is a smooth affine variety we consider the family Ω_X(d₁,...,d_m) = {F|_X : F ∈ Ω_n(d₁,...,d_m)}.
 Note that Ω_X(d₁,...,d_m) as algebraic variety coincides with Ω_n(d₁,...,d_m).
- 3 By $J^q(\mathbb{C}^n, \mathbb{C}^m)$ we denote the space of *q*-jets of polynomial mappings $F = (f_1, \ldots, f_m) : \mathbb{C}^n \to \mathbb{C}^m$.
- If $X^n \subset \mathbb{C}^p$ is a smooth affine variety then the space $J^q(X, \mathbb{C}^m)$ has the structure of a smooth algebraic manifold and can be locally represented in the same simple way as above.

- Let $\Omega_n(d_1, \ldots, d_m)$ denote the space of polynomial mappings $F : \mathbb{C}^n \to \mathbb{C}^m$ of multi-degree bounded by d_1, \ldots, d_m .
- Similarly if X ⊂ Cⁿ is a smooth affine variety we consider the family Ω_X(d₁,...,d_m) = {F|_X : F ∈ Ω_n(d₁,...,d_m)}.
 Note that Ω_X(d₁,...,d_m) as algebraic variety coincides with Ω_n(d₁,...,d_m).
- 3 By $J^q(\mathbb{C}^n, \mathbb{C}^m)$ we denote the space of *q*-jets of polynomial mappings $F = (f_1, \ldots, f_m) : \mathbb{C}^n \to \mathbb{C}^m$.
- If Xⁿ ⊂ C^p is a smooth affine variety then the space J^q(X, C^m) has the structure of a smooth algebraic manifold and can be locally represented in the same simple way as above.

- Solution By ${}_{s}J^{q}(X, \mathbb{C}^{m})$ we denote the space of multi q-jets of polynomial mappings $F = (f_{1}, \ldots, f_{n}) : X \to \mathbb{C}^{m}$.
- **(2)** We denote by Δ the set $\{(x_1, \ldots, x_s) \in X^s : x_i = x_j \text{ for some } i \neq j\}$ and for bundles $\pi_i : W_i \to X$ we denote by Δ_X the set $\{(w_1, \ldots, w_s) : \pi_i(w_i) = \pi_j(w_j) \text{ for some } i \neq j\}.$
- We have _sJ^q(X, C^m) = (J^q(X, C^m))^s \ ∆_X. More generally, we define the space of (q₁,...,q_s)-jets to be J^{q₁,...,q_s}(X, C^m) := J^{q₁}(X, C^m) × ... × J^{q_s}(X, C^m) \ ∆_X and call it, if there is no danger of confusion, the space of multi-jets.
- Again, for a given polynomial mapping $F: X \to \mathbb{C}^m$ we have the mapping

 $J^{q_1,\ldots,q_s}(F): X^s ackslash \Delta \mapsto (j^{q_1}(F)(x_1),\ldots,j^{q_s}(F)(x_s)) \in J^{q_1,\ldots,q_s}(X,\mathbb{C}^m).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Solution By ${}_{s}J^{q}(X, \mathbb{C}^{m})$ we denote the space of multi q-jets of polynomial mappings $F = (f_{1}, \ldots, f_{n}) : X \to \mathbb{C}^{m}$.
- 2 We denote by Δ the set $\{(x_1, \ldots x_s) \in X^s : x_i = x_j \text{ for some } i \neq j\}$ and for bundles $\pi_i : W_i \to X$ we denote by Δ_X the set $\{(w_1, \ldots w_s) : \pi_i(w_i) = \pi_j(w_j) \text{ for some } i \neq j\}.$
- We have _sJ^q(X, C^m) = (J^q(X, C^m))^s \ ∆_X. More generally, we define the space of (q₁,...,q_s)-jets to be J^{q₁,...,q_s}(X, C^m) := J^{q₁}(X, C^m) × ... × J^{q_s}(X, C^m) \ ∆_X and call it, if there is no danger of confusion, the space of multi-jets.
- (a) Again, for a given polynomial mapping $F: X \to \mathbb{C}^m$ we have the mapping

 $J^{q_1,\ldots,q_s}(F): X^s ackslash \Delta \mapsto (j^{q_1}(F)(x_1),\ldots,j^{q_s}(F)(x_s)) \in J^{q_1,\ldots,q_s}(X,\mathbb{C}^m).$

- Solution By ${}_{s}J^{q}(X, \mathbb{C}^{m})$ we denote the space of multi q-jets of polynomial mappings $F = (f_{1}, \ldots, f_{n}) : X \to \mathbb{C}^{m}$.
- **2** We denote by Δ the set $\{(x_1, \ldots, x_s) \in X^s : x_i = x_j \text{ for some } i \neq j\}$ and for bundles $\pi_i : W_i \to X$ we denote by Δ_X the set $\{(w_1, \ldots, w_s) : \pi_i(w_i) = \pi_j(w_j) \text{ for some } i \neq j\}.$
- We have _sJ^q(X, C^m) = (J^q(X, C^m))^s \ Δ_X. More generally, we define the space of (q₁,...,q_s)-jets to be J^{q₁,...,q_s}(X, C^m) := J^{q₁}(X, C^m) × ... × J^{q_s}(X, C^m) \ Δ_X and call it, if there is no danger of confusion, the space of multi-jets.

• Again, for a given polynomial mapping $F: X \to \mathbb{C}^m$ we have the mapping

 $J^{q_1,\ldots,q_s}(F): X^s \setminus \Delta \mapsto (j^{q_1}(F)(x_1),\ldots,j^{q_s}(F)(x_s)) \in J^{q_1,\ldots,q_s}(X,\mathbb{C}^m).$

- Solution By ${}_{s}J^{q}(X, \mathbb{C}^{m})$ we denote the space of multi q-jets of polynomial mappings $F = (f_{1}, \ldots, f_{n}) : X \to \mathbb{C}^{m}$.
- **2** We denote by Δ the set $\{(x_1, \ldots, x_s) \in X^s : x_i = x_j \text{ for some } i \neq j\}$ and for bundles $\pi_i : W_i \to X$ we denote by Δ_X the set $\{(w_1, \ldots, w_s) : \pi_i(w_i) = \pi_j(w_j) \text{ for some } i \neq j\}.$
- We have _sJ^q(X, C^m) = (J^q(X, C^m))^s \ ∆_X. More generally, we define the space of (q₁,...,q_s)-jets to be J^{q₁,...,q_s}(X, C^m) := J^{q₁}(X, C^m) × ... × J^{q_s}(X, C^m) \ ∆_X and call it, if there is no danger of confusion, the space of multi-jets.
- **3** Again, for a given polynomial mapping $F: X \to \mathbb{C}^m$ we have the mapping

$$J^{q_1,\ldots,q_s}(F): X^s ackslash \Delta \mapsto (j^{q_1}(F)(x_1),\ldots,j^{q_s}(F)(x_s)) \in J^{q_1,\ldots,q_s}(X,\mathbb{C}^m).$$

(日) (日) (日) (日) (日) (日) (日)

Thom-Boardman singularities.

Let $F \in \Omega_n(d_1, ..., d_n)$ be one generic. Then $\Sigma^r(F) := \{x : \text{corank } d_x F = r\}$ is smooth and we can consider the set $\Sigma^{r,s}(F)$ where tha map $F : \Sigma^r(F) \to \mathbb{C}^n$ drops rank *s*. If $\Sigma^{r,s}(F)$ is smooth we can continuing. In particular for n = 2 we have that $\Sigma^1(F)$ is the set of folds and $\Sigma^{1,1}$ is the set of cusps. In fact we have the following Boardman Theorem:

THEOREM. For every sequence of integers

 $r_1 \geq r_2 \geq ... \geq r_s \geq 0$ one can define a smooth algebraic subvariety $\Sigma^{r_1, r_2, ..., r_s}$ of $J^s(\mathbb{C}^n, \mathbb{C}^n)$ such that if $j^l(F)$ is transversal to all submanifolds $\Sigma^{t_1, ..., t_l}$ with l < s, then $\Sigma^{r_1, ..., r_s}(F)$ is well defined and

$x \in \Sigma^{r_1,\ldots,r_s}(F)$ iff $j^s F(x) \in \Sigma^{r_1,\ldots,r_s}$.

Of course this is true for arbitrary smooth manifolds. We say that the varieties Σ^{t_1,\ldots,t_l} are Thom-Boardmann strata in jet space.

- We will also use the Thom-Boardman manifolds in the space _sJ^k(X, C^m) of multi-jets. We denote by δ_{C^m} the set of all multijets {(w₁,...,w_s) ∈ _sJ^k(X, C^m) : for all 1 ≤ i, j ≤ s : π_{C^m}(w_i) = π_{C^m}(w_j)}, where π_{C^m} : J^k(X, C^m) → C^m is the projection.
- $\begin{array}{l} \textcircled{O} \quad \text{We denote } (\Sigma^{I_1},\ldots,\Sigma^{I_s}) := \Sigma^{I_1}\times\ldots\times\Sigma^{I_s}\cap_s J^k(X,\mathbb{C}^m).\\ \text{Moreover let } (\Sigma^{I_1},\ldots,\Sigma^{I_s})_\Delta := (\Sigma^{I_1},\ldots\times\Sigma^{I_s})\cap\delta_{\mathbb{C}^m}. \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We will also use the Thom-Boardman manifolds in the space _sJ^k(X, C^m) of multi-jets. We denote by δ_{C^m} the set of all multijets {(w₁,..., w_s) ∈ _sJ^k(X, C^m) : for all 1 ≤ i, j ≤ s : π_{C^m}(w_i) = π_{C^m}(w_j)}, where π_{C^m} : J^k(X, C^m) → C^m is the projection.
- $\begin{array}{l} \textcircled{2} \quad \text{We denote } (\Sigma^{I_1},\ldots,\Sigma^{I_s}) := \Sigma^{I_1}\times\ldots\times\Sigma^{I_s}\cap_s J^k(X,\mathbb{C}^m).\\ \text{Moreover let } (\Sigma^{I_1},\ldots,\Sigma^{I_s})_\Delta := (\Sigma^{I_1},\ldots\times\Sigma^{I_s})\cap\delta_{\mathbb{C}^m}. \end{array}$

Let x = (x₁,...,x_s) ∈ X^s, let U be a n open neighborhood of x and f : U → Y be a holomorphic mapping. Put

$$z =_{s} j^{k}(f), y = (f(x_{1}), ..., f(x_{s})).$$

Let ${}_{s}J^{k}(X, Y)_{x}$ and ${}_{s}J^{k}(X, Y)_{x,y}$ denote fibers of ${}_{s}J^{k}(X, Y)$ over x and (x, y) respectively.

Then we have canonical identifications:

$$(*)T(_sJ^k(X,Y)_x)_z = J^k(f^*TY)_x,$$

where the right hand side denotes k-jets at x of sections of the bundle f^*TY .

(日) (日) (日) (日) (日) (日) (日)

Let x = (x₁,...,x_s) ∈ X^s, let U be a n open neighborhood of x and f : U → Y be a holomorphic mapping. Put

$$z =_{s} j^{k}(f), y = (f(x_{1}), ..., f(x_{s})).$$

Let ${}_{s}J^{k}(X, Y)_{x}$ and ${}_{s}J^{k}(X, Y)_{x,y}$ denote fibers of ${}_{s}J^{k}(X, Y)$ over x and (x, y) respectively.

2 Then we have canonical identifications:

$$(*)T(_{s}J^{k}(X,Y)_{x})_{z}=J^{k}(f^{*}TY)_{x},$$

where the right hand side denotes k-jets at x of sections of the bundle f^*TY .

(日) (日) (日) (日) (日) (日) (日)

Let \mathfrak{m}_x denotes the ideal in $J^k(X)$ consisting of jets of functions which vanish at x. Then with respect to (*) we have identification:

$$(**)T(_{s}J^{k}(X,Y)_{x,y})z = \mathfrak{m}_{x}J^{k}(f^{*}TY)_{x}.$$

In particular $T({}_{s}J^{k}(X, Y)_{x,y})z$ has a structure of $J^{k}(X)_{x}$ module.

Let *W* be a non-void submanifold of the multi-jet bundle ${}_{s}J^{k}(X, Y)$. We say that *W* is modular if:

- W is a smooth invariant submanifold of ${}_{s}J^{k}(X, Y)$.
- 2 the space $T(W_{x,y})_z$ under identification (**) is a $J^k(X)_x$ submodule of $\mathfrak{m}_x J^k(f^*TY)_x$.

Let \mathfrak{m}_x denotes the ideal in $J^k(X)$ consisting of jets of functions which vanish at x. Then with respect to (*) we have identification:

$$(**)T(_{s}J^{k}(X,Y)_{x,y})z = \mathfrak{m}_{x}J^{k}(f^{*}TY)_{x}.$$

In particular $T({}_{s}J^{k}(X, Y)_{x,y})z$ has a structure of $J^{k}(X)_{x}$ module.

Let *W* be a non-void submanifold of the multi-jet bundle ${}_{s}J^{k}(X, Y)$. We say that *W* is modular if:

- W is a smooth invariant submanifold of ${}_{s}J^{k}(X, Y)$.
- the space $T(W_{x,y})_z$ under identification (**) is a $J^k(X)_x$ submodule of $\mathfrak{m}_x J^k(f^*TY)_x$.

(日)(1)(1

Let us state the following result of Mather:

Theorem. Let $X \subset \mathbb{C}^n$ be a smooth affine algebraic subvariety and let $W \subset_s J^q(X, \mathbb{C}^m)$ be a modular submanifold. There exists a Zariski open non-empty subset U in the space of all linear mappings $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ such that for every $L \in U$ the mapping $L: X \to \mathbb{C}^m$ is transversal W.

(日) (日) (日) (日) (日) (日) (日)

This theorem has the following nice application (which in the real smooth case was first observed by S. Ichiki):

Corollary. Let $X \subset \mathbb{C}^n$ be an affine smooth algebraic subvariety, let $W \subset_s J^q(X, \mathbb{C}^m)$ be a modular submanifold and let $F: X \to \mathbb{C}^m$ be a polynomial mapping. There exists a Zariski open non-empty subset U in the space of all linear mappings $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ such that for every $L \in U$ the mapping $F + L: X \to \mathbb{C}^m$ is transversal to W.

(ロ) (同) (三) (三) (三) (○) (○)

Now we can state the following fundamental result (version of Mather's Theorem):

Theorem 1. Let $X^k \subset \mathbb{C}^n$ be a smooth algebraic variety of dimension k and let $W \subset {}_sJ^q(X, \mathbb{C}^m)$ be an algebraic modular submanifold. Then there is a Zariski open subset $U \subset \Omega_X(d_1, \ldots, d_m)$ such that for every $F \in U$ the mapping F is transversal to W. In particular it holds, if we take as W the Thom-Boardman manifolds $(\Sigma^{I_1}, \ldots, \Sigma^{I_s})$ and $(\Sigma^{I_1}, \ldots, \Sigma^{I_s})_\Delta$ in ${}_sJ^q(X, \mathbb{C}^m)$. Consequently, every mapping $F \in U$ satisfies the normal crossings condition, hence it is a Thom-Boardman mapping with a Normal Crossings Property.

DEFINITION. Let $F \in \Omega_2(d_1, d_2)$. We say that F is generic if F is proper, $j^1(F) \pitchfork \Sigma^1, j^2(F) \pitchfork \Sigma^{1,1}$, and additionally $j^1(F) \pitchfork \Sigma^2$.

Again by Theorem 1 the subset of generic mappings contains a Zariski open dense subset of $\Omega_2(d_1, d_2)$. Thus a general mapping is generic.

DEFINITION. Let $F : (\mathbb{C}^2, a) \to (\mathbb{C}^2, F(a))$ be a holomorphic mapping. We say that *F* has a simple cusp at *a* if *F* is biholomorphically equivalent to the mapping $(\mathbb{C}^2, 0) \ni (x, y) \mapsto (x, y^3 + xy) \in (\mathbb{C}^2, 0)$. It has a fold at *a* if *F* is biholomorphically equivalent to the mapping $(\mathbb{C}^2, 0) \ni (x, y) \mapsto (x, y^2) \in (\mathbb{C}^2, 0)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

By our previous consideration we have:

THEOREM. Let $X \subset \mathbb{C}^n$ be a smooth affine surface and let $F: X \to \mathbb{C}^2$ be a generic polynomial mapping. Then *F* has only folds and simple cusps (and two-folds) as singularities.

(ロ) (同) (三) (三) (三) (○) (○)

THEOREM A For a general polynomial mapping $F = (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$, deg $f = d_1$, deg $g = d_2$, the set C(F) of critical points of F is a smooth connected curve which is transversal to the line at infinity. The curve C(F) is topologically equivalent to a sphere with $\frac{(d_1+d_2-3)(d_1+d_2-4)}{2}$ handles and $d_1 + d_2 - 2$ points removed. The discriminant $\Delta(F) = F(C(F))$ of the mapping F is a curve birationally equivalent to C(F) and it has only cusps and nodes

as singularities. The curve $\Delta(F)$ has

$$c(F) = d_1^2 + d_2^2 + 3d_1d_2 - 6d_1 - 6d_2 + 7$$

simple cusps and

$$d(F) = \frac{1}{2} \left[(d_1 d_2 - 4)((d_1 + d_2 - 2)^2 - 2) - (d - 5)(d_1 + d_2 - 2) - 6 \right]$$

nodes (here $d = \text{gcd}(d_1, d_2)$).

Remark If $d_1 = d_2 = d$ then the discriminant has 2d - 2 smooth points at infinity and at each of these points it is tangent to the line L_{∞} (at infinity) with multiplicity d. If $d_1 > d_2$ then the discriminant has only one point at infinity with $d_1 + d_2 - 2$ branches $V_1, \ldots, V_{d_1+d_2-2}$ and each of these branches has delta invariant

$$\delta(V_i) = \frac{(d_1 - 1)(d_1 - d_2 - 1) + (\gcd(d_1, d_2) - 1)}{2}$$

and $V_i \cdot L_{\infty} = d_1$. Additionally $V_i \cdot V_j = d_1(d_1 - d_2)$. In particular the branches V_i are smooth if and only if $d_1 = d_2$ or $d_1 = d_2 + 1$.

If $S = \{(x, y, z) \in \mathbb{C}^3 : x^2 + y^2 + z^2 = 1\}$, then we have:

THEOREM B There is a Zariski open, dense subset $U \subset \Omega_S(d_1, d_2)$ such that for every mapping $F \in U$ the set C(F) of critical points of F is a smooth connected curve, which is topologically equivalent to a sphere with $g = (d_1 + d_2 - 2)^2$ handles and $2(d_1 + d_2 - 1)$ points removed. For every mapping $F \in U$ the discriminant $\Delta(F) = F(C(F))$ has

For every mapping $F \in U$ the discriminant $\Delta(F) = F(C(F))$ has only cusps and nodes as singularities. The number of cusps is equal to

$$c(F) = 2(d_1^2 + d_2^2 + 3d_1d_2 - 3d_1 - 3d_2 + 1)$$

and the number of nodes is equal to

$$d(F) = (2d_1d_2 - 3)D^2 - D(d_1 + d_2 + d - 2) - 2(d_1d_2 - d_1 - d_2),$$

where $D = d_1 + d_2 - 1$ and $d = \text{gcd}(d_1, d_2)$.

Remark If $d_1 = d_2 = d$ then the discriminant has 4d - 2 smooth points at infinity and in each of these points it is tangent to the line L_{∞} (at infinity) with multiplicity d. If $d_1 > d_2$ then the discriminant has only one point at infinity with $2(d_1 + d_2 - 1)$ branches $V_1, \ldots, V_{2(d_1+d_2-1)}$ and each of these branches has delta invariant

$$\delta(V_i) = \frac{(d_1 - 1)(d_1 - d_2 - 1) + (d - 1)}{2}$$

and $V_i \cdot L_{\infty} = d_1$. Additionally $V_i \cdot V_j = d_1(d_1 - d_2)$. In particular branches V_i are smooth if and only if $d_1 = d_2$ or $d_1 = d_2 + 1$.

How to prove Theorem A?

• For a mapping $F = (f, g) \in \Omega_2(d_1, d_2)$, we have

$$j^{1}(F) = \left(x, y, f(x, y), g(x, y), \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y), \frac{\partial g}{\partial x}(x, y), \frac{\partial g}{\partial y}(x, y)\right)$$

² The set
$$\Sigma^1$$
 is given by the equation
 $\phi(x, y, f, g, f_x, f_y, g_x, g_y) = f_x g_y - f_y g_x = 0.$

3 Now we would like to describe the set Σ^{1,1} effectively. In the space J²(C², C²) we introduce coordinates

 $(x, y, f, g, f_x, f_y, g_x, g_y, f_{xx}, f_{yy}, f_{xy}, g_{xx}, g_{yy}, g_{xy}).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How to prove Theorem A?

• For a mapping $F = (f, g) \in \Omega_2(d_1, d_2)$, we have

$$j^{1}(F) = \left(x, y, f(x, y), g(x, y), \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y), \frac{\partial g}{\partial x}(x, y), \frac{\partial g}{\partial y}(x, y)\right)$$

the space $J^2(\mathbb{C}^2,\mathbb{C}^2)$ we introduce coordinates

 $(x, y, f, g, f_x, f_y, g_x, g_y, f_{xx}, f_{yy}, f_{xy}, g_{xx}, g_{yy}, g_{xy}).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How to prove Theorem A?

• For a mapping $F = (f, g) \in \Omega_2(d_1, d_2)$, we have

$$j^{1}(F) = \left(x, y, f(x, y), g(x, y), \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y), \frac{\partial g}{\partial x}(x, y), \frac{\partial g}{\partial y}(x, y)\right)$$

2 The set
$$\Sigma^1$$
 is given by the equation
 $\phi(x, y, f, g, f_x, f_y, g_x, g_y) = f_x g_y - f_y g_x = 0.$

Now we would like to describe the set Σ^{1,1} effectively. In the space J²(C², C²) we introduce coordinates

$$(x, y, f, g, f_x, f_y, g_x, g_y, f_{xx}, f_{yy}, f_{xy}, g_{xx}, g_{yy}, g_{xy}).$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• The set $\Sigma^{1,1}$ is given in $J^2(\mathbb{C}^2, \mathbb{C}^2)$ by three equations:

$$L_1:=f_xg_y-f_yg_x=0,$$

$$L_2 := (f_{xx}g_y + f_xg_{xy} - f_{xy}g_x - f_yg_{xx})f_y - (f_{xy}g_y + f_xg_{yy} - f_{yy}g_x - f_yg_{xy})f_x = 0,$$

and

$$L_3 := (f_{xx}g_y + f_xg_{xy} - f_{xy}g_x - f_yg_{xx})g_y - (f_{xy}g_y + f_xg_{yy} - f_{yy}g_x - f_yg_{xy})g_x = 0.$$

As above by symmetry the set Σ^{1,1} is smooth and locally is given as a complete intersection of either L₁, L₂ or L₁, L₃. We will denote by J, J_{1,1}, J_{1,2} curves given by L₁ ∘ j²(F) = 0, L₂ ∘ j²(F) = 0 and L₃ ∘ j²(F) = 0, respectively.

• The set $\Sigma^{1,1}$ is given in $J^2(\mathbb{C}^2, \mathbb{C}^2)$ by three equations:

$$L_1 := f_x g_y - f_y g_x = 0$$

$$L_{2} := (f_{xx}g_{y} + f_{x}g_{xy} - f_{xy}g_{x} - f_{y}g_{xx})f_{y} - (f_{xy}g_{y} + f_{x}g_{yy} - f_{yy}g_{x} - f_{y}g_{xy})f_{x} = 0,$$

and

$$L_3 := (f_{xx}g_y + f_xg_{xy} - f_{xy}g_x - f_yg_{xx})g_y - (f_{xy}g_y + f_xg_{yy} - f_{yy}g_x - f_yg_{xy})g_x = 0.$$

2 As above by symmetry the set $\Sigma^{1,1}$ is smooth and locally is given as a complete intersection of either L_1, L_2 or L_1, L_3 . We will denote by $J, J_{1,1}, J_{1,2}$ curves given by $L_1 \circ j^2(F) = 0$, $L_2 \circ j^2(F) = 0$ and $L_3 \circ j^2(F) = 0$, respectively. Now we show how to compute the genus of C(F) and the number of cusps of a general polynomial mapping $F \in \Omega_2(d_1, d_2)$. To do this we need a series of lemmas:

LEMMA. Let L_{∞} denote the line at infinity of \mathbb{C}^2 . There is a non-empty open subset $V \subset \Omega_2(d_1, d_2)$ such that for all $(f, g) \in V$: $\left\{\frac{\partial f}{\partial x} = 0\right\} \pitchfork \left\{\frac{\partial f}{\partial y} = 0\right\}, \overline{\left\{\frac{\partial f}{\partial x} = 0\right\}} \cap \overline{\left\{\frac{\partial f}{\partial y} = 0\right\}} \cap L_{\infty} = \emptyset.$

LEMMA. Let L_{∞} denote the line at infinity of \mathbb{C}^2 . There is a non-empty open subset $V \subset \Omega_2(d_1, d_2)$ such that for all $F = (f, g) \in V$:

$$\overline{J(F)} \cap \overline{J_{1,1}(F)} \cap L_{\infty} = \emptyset,$$

$$\overline{J(F)} \pitchfork L_{\infty}.$$

Here $\overline{J(F)}$ denotes the projective closure of the set $\{J(F) = 0\}$ etc.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

LEMMA. Let L_{∞} denote the line at infinity of \mathbb{C}^2 . There is a non-empty open subset $V \subset \Omega_2(d_1, d_2)$ such that for all $F = (f, g) \in V$:

$$I(F) \pitchfork L_{\infty}.$$

Here $\overline{J(F)}$ denotes the projective closure of the set $\{J(F) = 0\}$ etc.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

LEMMA. There is a non-empty open subset $V_1 \subset \Omega_2(d_1, d_2)$ such that for all $(f, g) \in V_1$ and every $a \in \mathbb{C}^2$: if $\frac{\partial f}{\partial x}(a) = 0$ and $\frac{\partial f}{\partial y}(a) = 0$, then $\frac{\partial g}{\partial x}(a) \neq 0$ and $\frac{\partial g}{\partial y}(a) \neq 0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

LEMMA. There is a non-empty open subset $V_2 \subset \Omega_2(d_1, d_2)$ such that for all $(f, g) \in V_2$ we have $\left\{\frac{\partial f}{\partial x} = 0\right\} \cap \left\{\frac{\partial f}{\partial y} = 0\right\} \cap J_{1,2}(f, g) = \emptyset.$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

LEMMA. There is a non-empty open subset $V_3 \subset \Omega_2(d_1, d_2)$ such that for all $(f, g) \in V_3$ the curve J(f, g) is transversal to the curve $J_{1,1}(f, g)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

THEOREM. There is a Zariski open, dense subset $U \subset \Omega_2(d_1, d_2)$ such that for every mapping $F \in U$ the mapping F has only two-folds and cusps as singularities and the number of cusps is equal to

$$d_1^2 + d_2^2 + 3d_1d_2 - 6d_1 - 6d_2 + 7.$$

Moreover, if $d_1 > 1$ or $d_2 > 1$ then the set C(F) of critical points of *F* is a smooth connected curve, which is topologically equivalent to a sphere with $g = \frac{(d_1+d_2-3)(d_1+d_2-4)}{2}$ handles and $d_1 + d_2 - 2$ points removed.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Here we analyze the discriminant of a general mapping from $\Omega(d_1, d_2)$. Let us recall that the discriminant of the mapping $F : \mathbb{C}^2 \to \mathbb{C}^2$ is the curve $\Delta(F) := F(C(F))$, where C(F) is the critical curve of *F*. We have:

LEMMA. There is a non-empty open subset $U \subset \Omega_2(d_1, d_2)$ such that for every mapping $F \in U$: 1) $F_{|C(F)}$ is injective outside a finite set, 2) if $p \in \Delta(F)$ then $|F^{-1}(p) \cap C(F)| \leq 2$, 3) if $|F^{-1}(p) \cap C(F)| = 2$ then the curve $\Delta(F)$ has a normal crossing at p.

Hence for a general *F* the only singularities of $\Delta(F)$ are cusps and nodes. We showed previously that there are exactly $c(F) = d_1^2 + d_2^2 + 3d_1d_2 - 6d_1 - 6d_2 + 7$ cusps. Now we will compute the number d(F) of nodes of $\Delta(F)$. We will use the following theorem of Serre:

THEOREM. If Γ is an irreducible curve of degree *d* and genus *g* in the complex projective plane then

$$\frac{1}{2}(d-1)(d-2) = g + \sum_{z \in \operatorname{Sing}(\Gamma)} \delta_z,$$

where δ_z denotes the delta invariant of a point *z*.

LEMMA. Let $F = (f,g) \in \Omega(d_1,d_2)$ be a general mapping. If $d_1 \ge d_2$ then $\deg \Delta(F) = d_1(d_1 + d_2 - 2)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We have the following method of computing the delta invariant:

THEOREM M. (Milnor) Let $V_0 \subset \mathbb{C}^2$ be an irreducible germ of an analytic curve with the Puiseux parametrization of the form

$$z_1 = t^{a_0}, \ z_2 = \sum_{i>0} \lambda_i t^{a_i}, \$$
where $\lambda_i \neq 0, \ a_1 < a_2 < a_3 < \dots$

Let $D_j = gcd(a_0, a_1, ..., a_{j-1})$. Then

$$\delta_0 = \frac{1}{2} \sum_{j \ge 1} (a_j - 1)(D_j - D_{j+1}).$$

If $V = \bigcup_{i=1}^{r} V_i$ has *r* branches then

$$\delta(V) = \sum_{i=1}^{r} \delta(V_i) + \sum_{i < j} V_i \cdot V_j,$$

where $V \cdot W$ denotes the intersection product.

Our result follows directly from:

THEOREM. Let $F \in \Omega(d_1, d_2)$ be a general mapping. Let $d_1 \ge d_2$ and $d = \operatorname{gcd}(d_1, d_2)$. Denote by $\overline{\Delta}$ the projective closure of the discriminant Δ . Then

$$\sum_{z \in (\overline{\Delta} \setminus \Delta)} \delta_z = \frac{1}{2} d_1 (d_1 - d_2) (d_1 + d_2 - 2)^2 + \frac{1}{2} (-2d_1 + d_2 + d) (d_1 + d_2 - 2).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How to prove? It is a little bit tedious but possible!

THEOREM. There is a Zariski open, dense subset $U \subset \Omega_2(d_1, d_2)$ such that for every mapping $F \in U$ the discriminant $\Delta(F) = F(C(F))$ has only cusps and nodes as singularities. Let $d = \text{gcd}(d_1, d_2)$. Then the number of cusps is equal to

$$c(F) = d_1^2 + d_2^2 + 3d_1d_2 - 6d_1 - 6d_2 + 7$$

and the number of nodes is equal to

$$d(F) = \frac{1}{2} \left[(d_1 d_2 - 4)((d_1 + d_2 - 2)^2 - 2) - (d - 5)(d_1 + d_2 - 2) - 6 \right].$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In fact also the converse result is true (J+Farnik-submited):

THEOREM. For $d_1d_2 > 2$, if a mapping $F \in \Omega_2(d_1, d_2)$ has $c(d_1, d_2)$ cusps and $n(d_1, d_2)$ nodes, then it has a generic topological type. In particular, mappings with the generic topological type form a Zariski open subset in $\Omega_2(d_1, d_2)$.

COROLLARY. Let $F, G \in \Omega_2(d_1, d_2)$, where $d_1d_2 > 2$. Assume that F and G have $c(d_1, d_2)$ cusps and $n(d_1, d_2)$ nodes. Then there exist homeomorphisms $\Phi, \Psi : \mathbb{C}^2 \to \mathbb{C}^2$ such that

 $G = \Phi \circ F \circ \Psi.$

DEFINITION. Let $F : (\mathbb{C}^2, a) \to (\mathbb{C}^2, F(a))$ be a holomorphic mapping. We say that *F* has a generalized cusp at *a* if *F_a* is proper, the curve J(F) = 0 is reduced near *a* and the discriminant of *F_a* is not smooth at *F(a)*.

REMARK. If F_a is proper, J(F) = 0 is reduced near a and J(F) is singular at a then it follows from Corollary 1.11 from [Jel, 2017] that also the discriminant of F_a is singular at F(a) and hence F has a generalized cusp at a.

DEFINITION. Let $F = (f,g) : (\mathbb{C}^2, a) \to (\mathbb{C}^2, F(a))$ be a holomorphic mapping. Assume that *F* has a generalized cusp at a point $a \in \mathbb{C}^2$. Since the curve J(F) = 0 is reduced near *a*, we have that the set $\{\nabla f = 0\} \cap \{\nabla g = 0\}$ has only isolated points near *a*. For a general linear mapping $T \in GL(2)$, if $F' = (f',g') = T \circ F$ then $\nabla f'$ does not vanish identically on any branch of $\{J(F) = 0\}$ near *a*. We say that the cusp of *F* at *a* has an index $\mu_a := \dim_{\mathbb{C}} \mathcal{O}_a / (J(F'), J_{1,1}(F')) - \dim_{\mathbb{C}} \mathcal{O}_a / (f'_x, f'_y)$.

REMARK. Using the exact sequence 1.7 from [Gaffney-Mond] we see that

$$\mu_a = \dim_{\mathbb{C}} \mathcal{O}_a / (J(F), J_{1,1}(F), J_{1,2}(F)).$$

Hence our index coincides with the classical local number of cusps defined e.g. in [Gaffny-Mond]. In particular $\mu_a \ge 1$, if *F* has a generalized cusp at *a*.

PROPOSITION. Let $F = (f,g) \in \Omega_2(d_1, d_2)$ and assume that F has a generalized cusp at $a \in \mathbb{C}^2$. If U_a is a sufficiently small ball around a then μ_a is equal to the number of simple cusps in U_a of a general mapping $F' \in \Omega_2(d'_1, d'_2)$, where $d'_1 \ge d_1, d'_2 \ge d_2$, which is sufficiently close to F in the natural topology of $\Omega_2(d'_1, d'_2)$.

(日) (日) (日) (日) (日) (日) (日)

COROLLARY 1. Let $F \in \Omega_2(d_1, d_2)$. Assume that F has generalized cusps at points a_1, \ldots, a_r . Then $\sum_{i=1}^r \mu_{a_i} \le d_1^2 + d_2^2 + 3d_1d_2 - 6d_1 - 6d_2 + 7.$

COROLLARY 2. If $F \in \Omega(d_1, d_2)$ is a generically finite polynomial mapping with reduced critical curve, then it has not more than $d_1^2 + d_2^2 + 3d_1d_2 - 6d_1 - 6d_2 + 7$ singular points which are not folds.

Analogous theorems are true in the case of a complex sphere.

In previous sections we considered the family $\Omega_X(d_1, \ldots, d_m)$, of course we can consider also other families of polynomial mappings and try to investigate their properties. Let \mathcal{F} be any algebraic family of generically-finite polynomial mappings $f_p: X \to \mathbb{C}^m$; $p \in \mathcal{F}$, where *X* is a smooth irreducible affine variety. We would like to know the behavior of proper mappings in a such family. In general proper mappings do not form an algebraic subset of \mathcal{F} but only constructible one. However we show that there is some regular behavior in such family. We have:

Theorem.

Let P, X, Y be smooth irreducible affine algebraic varieties and let $F : P \times X \to P \times Y$ be a generically finite mapping. The mapping F induces a family $\mathcal{F} = \{f_p(\cdot) = F(p, \cdot), p \in P\}$. Then either there exists a Zariski open dense subset $U \subset P$ such that for every $p \in P$ the mapping f_p is proper, or there exists a Zariski open dense subset $V \subset P$ such that for every $p \in P$ the mapping f_p is not proper.

Moreover, in the first case we have:

a) for every non-proper mapping f_p in the family \mathcal{F} we have $\mu(f_p) < \mu(F)$, where $\mu(f)$ denotes the geometric degree of f, b) generic mappings in \mathcal{F} are topologically equivalent, i.e., there exists a Zariski open dense subset $W \subset P$ such that for every $p, q \in W$ the mappings f_p and f_q are topologically equivalent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem.

Let $X \subset \mathbb{C}^n$ be a smooth irreducible affine variety of dimension kand let $F : X \to \mathbb{C}^m$ be a polynomial mapping. If $m \ge k$, then there exists a Zariski open dense subset U in the space of linear mappings $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ such that:

a) for every $L \in U$ the mapping F + L is a finite mapping.

b) for all $L \in U$ the mappings F + L are topologically equivalent.

c) for all $L \in U$ the mappings F + L have only generic singularities, i.e., transversal to Thom-Boardman strata.

In particular for a given mapping $F : \mathbb{C}^2 \to \mathbb{C}^2$ we can consider the "linear" deformation $F_L = F + L$; $L \in \mathcal{L}(\mathbb{C}^2, \mathbb{C}^2)$. A general member of this deformation is locally stable and proper. If *F* is not "sufficiently generic", then this deformation gives a different number of cusps and folds than a "generic" deformation considered in this paper. We give here an example of a finitely \mathcal{K} determined germ *F* which has at least two non-equivalent stable deformations.

Example. Take a finitely \mathcal{K} determined germ $F(x, y) = (x, y^3)$ and consider two deformations of F: the first one linear $F_t = (x, y^3 + ty)$ and the second one given by $G_t(x, y) = (x, y^3 + txy)$. The members of the first family do not have a cusp at all and the members of the second family have exactly one cusp at 0.

This means that (contrary to the case of A finitely determined germs) we can not define the numbers c(F) and d(F) for F using stable deformations.

THANK YOU FOR ATTENTION!