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1 Polynomial mappings F : Cn → Cn are the most classical
objects in the complex analysis, yet their topology has not
been studied up till now.

2 To the best knowledge of the authors complex algebraic
families of polynomial mappings on affine varieties have
not been investigated so far.

3 Here we describe an idea of such study. We consider the
family ΩCn(d1, . . . , dm) of polynomial mappings
F = (F1, . . . ,Fm) : Cn → Cm of degree bounded by
(d1, . . . , dm).

4 For a smooth affine variety Xk ⊂ Cn we also consider the
family ΩX(d1, . . . , dm) = {F|X : F ∈ ΩCn(d1, . . . , dm)}.



1 Polynomial mappings F : Cn → Cn are the most classical
objects in the complex analysis, yet their topology has not
been studied up till now.

2 To the best knowledge of the authors complex algebraic
families of polynomial mappings on affine varieties have
not been investigated so far.

3 Here we describe an idea of such study. We consider the
family ΩCn(d1, . . . , dm) of polynomial mappings
F = (F1, . . . ,Fm) : Cn → Cm of degree bounded by
(d1, . . . , dm).

4 For a smooth affine variety Xk ⊂ Cn we also consider the
family ΩX(d1, . . . , dm) = {F|X : F ∈ ΩCn(d1, . . . , dm)}.



1 Polynomial mappings F : Cn → Cn are the most classical
objects in the complex analysis, yet their topology has not
been studied up till now.

2 To the best knowledge of the authors complex algebraic
families of polynomial mappings on affine varieties have
not been investigated so far.

3 Here we describe an idea of such study. We consider the
family ΩCn(d1, . . . , dm) of polynomial mappings
F = (F1, . . . ,Fm) : Cn → Cm of degree bounded by
(d1, . . . , dm).

4 For a smooth affine variety Xk ⊂ Cn we also consider the
family ΩX(d1, . . . , dm) = {F|X : F ∈ ΩCn(d1, . . . , dm)}.



1 Polynomial mappings F : Cn → Cn are the most classical
objects in the complex analysis, yet their topology has not
been studied up till now.

2 To the best knowledge of the authors complex algebraic
families of polynomial mappings on affine varieties have
not been investigated so far.

3 Here we describe an idea of such study. We consider the
family ΩCn(d1, . . . , dm) of polynomial mappings
F = (F1, . . . ,Fm) : Cn → Cm of degree bounded by
(d1, . . . , dm).

4 For a smooth affine variety Xk ⊂ Cn we also consider the
family ΩX(d1, . . . , dm) = {F|X : F ∈ ΩCn(d1, . . . , dm)}.



1 If M,X,Y are affine irreducible varieties, X,Y are smooth
and Φ: M × X → Y is an algebraic family of polynomial
mappings such that the generic element of this family is
proper then two generic members of this family are
topologically equivalent (Jel 2017).

2 In particular if X ⊂ Cp is of dimension n and m ≥ n then any
two generic members of the family ΩX(d1, . . . , dm) are
topologically equivalent.

3 For example, if X is a smooth surface then the numbers
cX(d1, d2) and dX(d1, d2) of cusps and double folds,
respectively, of a generic member of the family ΩX(d1, d2)
are well-defined.
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Our aim is to describe effectively the topology of such generic
mappings. We consider in this paper the simplest case, when
n = m = 2 and X = C2 or X is the complex sphere
S = {(x, y, z) ∈ C3 : x2 + y2 + z2 = 1}. In those cases we
describe the topology of the set C(F) of critical points of F and
the topology of its discriminant ∆(F).



1 Let Ωn(d1, . . . , dm) denote the space of polynomial
mappings F : Cn → Cm of multi-degree bounded by
d1, . . . , dm.

2 Similarly if X ⊂ Cn is a smooth affine variety we consider
the family ΩX(d1, . . . , dm) = {F|X : F ∈ Ωn(d1, . . . , dm)}.
Note that ΩX(d1, . . . , dm) as algebraic variety coincides with
Ωn(d1, . . . , dm).

3 By Jq(Cn,Cm) we denote the space of q-jets of polynomial
mappings F = (f1, . . . , fm) : Cn → Cm.

4 If Xn ⊂ Cp is a smooth affine variety then the space
Jq(X,Cm) has the structure of a smooth algebraic manifold
and can be locally represented in the same simple way as
above.
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1 By sJq(X,Cm) we denote the space of multi q-jets of
polynomial mappings F = (f1, . . . , fn) : X → Cm.

2 We denote by ∆ the set {(x1, . . . xs) ∈ Xs : xi = xj for some
i 6= j} and for bundles πi : Wi → X we denote by ∆X the set
{(w1, . . .ws) : πi(wi) = πj(wj) for some i 6= j}.

3 We have sJq(X,Cm) = (Jq(X,Cm))s \∆X. More generally,
we define the space of (q1, . . . , qs)-jets to be
Jq1,...,qs(X,Cm) := Jq1(X,Cm)× . . .× Jqs(X,Cm) \∆X and call
it, if there is no danger of confusion, the space of multi-jets.

4 Again, for a given polynomial mapping F : X → Cm we have
the mapping

Jq1,...,qs(F) : Xs\∆ 7→ (jq1(F)(x1), . . . , jqs(F)(xs)) ∈ Jq1,...,qs(X,Cm).
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Thom-Boardman singularities.

Let F ∈ Ωn(d1, ..., dn) be one generic. Then
Σr(F) := {x : corank dxF = r} is smooth and we can consider
the set Σr,s(F) where tha map F : Σr(F)→ Cn drops rank s. If
Σr,s(F) is smooth we can continuing. In particular for n = 2 we
have that Σ1(F) is the set of folds and Σ1,1 is the set of cusps.
In fact we have the following Boardman Theorem:

THEOREM. For every sequence of integers
r1 ≥ r2 ≥ ... ≥ rs ≥ 0 one can define a smooth algebraic
subvariety Σr1,r2,...,rs of Js(Cn,Cn) such that if jl(F) is transversal
to all submanifolds Σt1,...,tl with l < s, then Σr1,...,rs(F) is well
defined and

x ∈ Σr1,...,rs(F) iff jsF(x) ∈ Σr1,...,rs .

Of course this is true for arbitrary smooth manifolds. We say
that the varieties Σt1,...tl are Thom-Boardmann strata in jet
space.



1 We will also use the Thom-Boardman manifolds in the
space sJk(X,Cm) of multi-jets. We denote by δCm the set of
all multijets {(w1, . . . ,ws) ∈ sJk(X,Cm) : for all
1 ≤ i, j ≤ s : πCm(wi) = πCm(wj)}, where
πCm : Jk(X,Cm)→ Cm is the projection.

2 We denote (ΣI1 , . . . ,ΣIs) := ΣI1 × . . .× ΣIs ∩ sJk(X,Cm).
Moreover let (ΣI1 , . . . ,ΣIs)∆ := (ΣI1 , . . .× ΣIs) ∩ δCm .
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1 Let x = (x1, ..., xs) ∈ Xs, let U be a n open neighborhood of
x and f : U → Y be a holomorphic mapping. Put

z =s jk(f ), y = (f (x1), ..., f (xs)).

Let sJk(X,Y)x and sJk(X,Y)x,y denote fibers of sJk(X,Y) over
x and (x, y) respectively.

2 Then we have canonical identifications:

(∗)T(sJk(X,Y)x)z = Jk(f ∗TY)x,

where the right hand side denotes k−jets at x of sections of
the bundle f ∗TY.
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Let mx denotes the ideal in Jk(X) consisting of jets of functions
which vanish at x. Then with respect to (∗) we have
identification:

(∗∗)T(sJk(X,Y)x,y)z = mxJk(f ∗TY)x.

In particular T(sJk(X,Y)x,y)z has a structure of Jk(X)x module.

Let W be a non-void submanifold of the multi-jet bundle
sJk(X,Y). We say that W is modular if:

1 W is a smooth invariant submanifold of sJk(X,Y).

2 the space T(Wx,y)z under identification (∗∗) is a Jk(X)x

submodule of mxJk(f ∗TY)x.
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Let us state the following result of Mather:

Theorem. Let X ⊂ Cn be a smooth affine algebraic subvariety
and let W ⊂s Jq(X,Cm) be a modular submanifold. There exists
a Zariski open non-empty subset U in the space of all linear
mappings L(Cn,Cm) such that for every L ∈ U the mapping
L : X → Cm is transversal W.



This theorem has the following nice application (which in the
real smooth case was first observed by S. Ichiki):

Corollary. Let X ⊂ Cn be an affine smooth algebraic subvariety,
let W ⊂s Jq(X,Cm) be a modular submanifold and let
F : X → Cm be a polynomial mapping. There exists a Zariski
open non-empty subset U in the space of all linear mappings
L(Cn,Cm) such that for every L ∈ U the mapping
F + L : X → Cm is transversal to W.



Now we can state the following fundamental result (version of
Mather’s Theorem):

Theorem 1. Let Xk ⊂ Cn be a smooth algebraic variety of
dimension k and let W ⊂ sJq(X,Cm) be an algebraic modular
submanifold. Then there is a Zariski open subset
U ⊂ ΩX(d1, . . . , dm) such that for every F ∈ U the mapping F is
transversal to W. In particular it holds, if we take as W the
Thom-Boardman manifolds (ΣI1 , . . . ,ΣIs) and (ΣI1 , . . . ,ΣIs)∆ in
sJq(X,Cm). Consequently, every mapping F ∈ U satisfies the
normal crossings condition, hence it is a Thom-Boardman
mapping with a Normal Crossings Property.



DEFINITION. Let F ∈ Ω2(d1, d2). We say that F is generic if F is
proper, j1(F) t Σ1, j2(F) t Σ1,1, and additionally j1(F) t Σ2.

Again by Theorem 1 the subset of generic mappings contains a
Zariski open dense subset of Ω2(d1, d2). Thus a general
mapping is generic.

DEFINITION. Let F : (C2, a)→ (C2,F(a)) be a holomorphic
mapping. We say that F has a simple cusp at a if F is
biholomorphically equivalent to the mapping
(C2, 0) 3 (x, y) 7→ (x, y3 + xy) ∈ (C2, 0). It has a fold at a if F is
biholomorphically equivalent to the mapping
(C2, 0) 3 (x, y) 7→ (x, y2) ∈ (C2, 0).



By our previous consideration we have:

THEOREM. Let X ⊂ Cn be a smooth affine surface and let
F : X → C2 be a generic polynomial mapping. Then F has only
folds and simple cusps (and two-folds) as singularities.



THEOREM A For a general polynomial mapping
F = (f , g) : C2 → C2, deg f = d1, deg g = d2, the set C(F) of
critical points of F is a smooth connected curve which is
transversal to the line at infinity. The curve C(F) is topologically
equivalent to a sphere with (d1+d2−3)(d1+d2−4)

2 handles and
d1 + d2 − 2 points removed.
The discriminant ∆(F) = F(C(F)) of the mapping F is a curve
birationally equivalent to C(F) and it has only cusps and nodes
as singularities. The curve ∆(F) has

c(F) = d2
1 + d2

2 + 3d1d2 − 6d1 − 6d2 + 7

simple cusps and

d(F) =
1
2
[
(d1d2 − 4)((d1 + d2 − 2)2 − 2)− (d − 5)(d1 + d2 − 2)− 6

]
nodes (here d = gcd(d1, d2)).



Remark If d1 = d2 = d then the discriminant has 2d − 2 smooth
points at infinity and at each of these points it is tangent to the
line L∞ (at infinity) with multiplicity d. If d1 > d2 then the
discriminant has only one point at infinity with d1 + d2 − 2
branches V1, . . . ,Vd1+d2−2 and each of these branches has
delta invariant

δ(Vi) =
(d1 − 1)(d1 − d2 − 1) + (gcd(d1, d2)− 1)

2

and Vi · L∞ = d1. Additionally Vi · Vj = d1(d1 − d2). In particular
the branches Vi are smooth if and only if d1 = d2 or d1 = d2 + 1.



If S = {(x, y, z) ∈ C3 : x2 + y2 + z2 = 1}, then we have:

THEOREM B There is a Zariski open, dense subset
U ⊂ ΩS(d1, d2) such that for every mapping F ∈ U the set C(F)
of critical points of F is a smooth connected curve, which is
topologically equivalent to a sphere with g = (d1 + d2 − 2)2

handles and 2(d1 + d2 − 1) points removed.
For every mapping F ∈ U the discriminant ∆(F) = F(C(F)) has
only cusps and nodes as singularities. The number of cusps is
equal to

c(F) = 2(d2
1 + d2

2 + 3d1d2 − 3d1 − 3d2 + 1)

and the number of nodes is equal to

d(F) = (2d1d2 − 3)D2 − D(d1 + d2 + d − 2)− 2(d1d2 − d1 − d2),

where D = d1 + d2 − 1 and d = gcd(d1, d2).



Remark If d1 = d2 = d then the discriminant has 4d − 2 smooth
points at infinity and in each of these points it is tangent to the
line L∞ (at infinity) with multiplicity d. If d1 > d2 then the
discriminant has only one point at infinity with 2(d1 + d2 − 1)
branches V1, . . . ,V2(d1+d2−1) and each of these branches has
delta invariant

δ(Vi) =
(d1 − 1)(d1 − d2 − 1) + (d − 1)

2

and Vi · L∞ = d1. Additionally Vi · Vj = d1(d1 − d2). In particular
branches Vi are smooth if and only if d1 = d2 or d1 = d2 + 1.



How to prove Theorem A?

1 For a mapping F = (f , g) ∈ Ω2(d1, d2), we have

j1(F) =

(
x, y, f (x, y), g(x, y),

∂f
∂x

(x, y),
∂f
∂y

(x, y),
∂g
∂x

(x, y),
∂g
∂y

(x, y)

)
2 The set Σ1 is given by the equation
φ(x, y, f , g, fx, fy, gx, gy) = fxgy − fygx = 0.

3 Now we would like to describe the set Σ1,1 effectively. In
the space J2(C2,C2) we introduce coordinates

(x, y, f , g, fx, fy, gx, gy, fxx, fyy, fxy, gxx, gyy, gxy).
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1 The set Σ1,1 is given in J2(C2,C2) by three equations:

L1 := fxgy − fygx = 0,

L2 := (fxxgy+fxgxy−fxygx−fygxx)fy−(fxygy+fxgyy−fyygx−fygxy)fx = 0,

and

L3 := (fxxgy+fxgxy−fxygx−fygxx)gy−(fxygy+fxgyy−fyygx−fygxy)gx = 0.

2 As above by symmetry the set Σ1,1 is smooth and locally is
given as a complete intersection of either L1,L2 or L1,L3.
We will denote by J, J1,1, J1,2 curves given by L1 ◦ j2(F) = 0,
L2 ◦ j2(F) = 0 and L3 ◦ j2(F) = 0, respectively.
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Now we show how to compute the genus of C(F) and the
number of cusps of a general polynomial mapping
F ∈ Ω2(d1, d2). To do this we need a series of lemmas:

LEMMA. Let L∞ denote the line at infinity of C2. There is a
non-empty open subset V ⊂ Ω2(d1, d2) such that for all
(f , g) ∈ V :{

∂f
∂x = 0

}
t
{

∂f
∂y = 0

}
,
{

∂f
∂x = 0

}
∩
{

∂f
∂y = 0

}
∩ L∞ = ∅.



LEMMA. Let L∞ denote the line at infinity of C2. There is a
non-empty open subset V ⊂ Ω2(d1, d2) such that for all
F = (f , g) ∈ V:

1 J(F) ∩ J1,1(F) ∩ L∞ = ∅,
2 J(F) t L∞.

Here J(F) denotes the projective closure of the set {J(F) = 0}
etc.



LEMMA. Let L∞ denote the line at infinity of C2. There is a
non-empty open subset V ⊂ Ω2(d1, d2) such that for all
F = (f , g) ∈ V:

1 J(F) ∩ J1,1(F) ∩ L∞ = ∅,
2 J(F) t L∞.

Here J(F) denotes the projective closure of the set {J(F) = 0}
etc.



LEMMA. There is a non-empty open subset V1 ⊂ Ω2(d1, d2)
such that for all (f , g) ∈ V1 and every a ∈ C2: if ∂f

∂x(a) = 0 and
∂f
∂y(a) = 0, then ∂g

∂x (a) 6= 0 and ∂g
∂y (a) 6= 0.



LEMMA. There is a non-empty open subset V2 ⊂ Ω2(d1, d2)
such that for all (f , g) ∈ V2 we have{∂f
∂x = 0

}
∩
{∂f
∂y = 0

}
∩ J1,2(f , g) = ∅.



LEMMA. There is a non-empty open subset V3 ⊂ Ω2(d1, d2)
such that for all (f , g) ∈ V3 the curve J(f , g) is transversal to the
curve J1,1(f , g).



THEOREM. There is a Zariski open, dense subset
U ⊂ Ω2(d1, d2) such that for every mapping F ∈ U the mapping
F has only two-folds and cusps as singularities and the number
of cusps is equal to

d2
1 + d2

2 + 3d1d2 − 6d1 − 6d2 + 7.

Moreover, if d1 > 1 or d2 > 1 then the set C(F) of critical points
of F is a smooth connected curve, which is topologically
equivalent to a sphere with g = (d1+d2−3)(d1+d2−4)

2 handles and
d1 + d2 − 2 points removed.



Here we analyze the discriminant of a general mapping from
Ω(d1, d2). Let us recall that the discriminant of the mapping
F : C2 → C2 is the curve ∆(F) := F(C(F)), where C(F) is the
critical curve of F. We have:

LEMMA. There is a non-empty open subset U ⊂ Ω2(d1, d2)
such that for every mapping F ∈ U:
1) F|C(F) is injective outside a finite set,
2) if p ∈ ∆(F) then |F−1(p) ∩ C(F)| ≤ 2, 3) if |F−1(p) ∩ C(F)| = 2
then the curve ∆(F) has a normal crossing at p.



Hence for a general F the only singularities of ∆(F) are cusps
and nodes. We showed previously that there are exactly
c(F) = d2

1 + d2
2 + 3d1d2 − 6d1 − 6d2 + 7 cusps. Now we will

compute the number d(F) of nodes of ∆(F). We will use the
following theorem of Serre:

THEOREM. If Γ is an irreducible curve of degree d and genus g
in the complex projective plane then

1
2

(d − 1)(d − 2) = g +
∑

z∈Sing(Γ)

δz,

where δz denotes the delta invariant of a point z.



LEMMA. Let F = (f , g) ∈ Ω(d1, d2) be a general mapping. If
d1 ≥ d2 then deg ∆(F) = d1(d1 + d2 − 2).



We have the following method of computing the delta invariant:

THEOREM M. (Milnor) Let V0 ⊂ C2 be an irreducible germ of
an analytic curve with the Puiseux parametrization of the form

z1 = ta0 , z2 =
∑
i>0

λitai , where λi 6= 0, a1 < a2 < a3 < . . .

Let Dj = gcd(a0, a1, . . . , aj−1). Then

δ0 =
1
2

∑
j≥1

(aj − 1)(Dj − Dj+1).

If V =
⋃r

i=1 Vi has r branches then

δ(V) =

r∑
i=1

δ(Vi) +
∑
i<j

Vi · Vj,

where V ·W denotes the intersection product.



Our result follows directly from:

THEOREM. Let F ∈ Ω(d1, d2) be a general mapping. Let
d1 ≥ d2 and d = gcd(d1, d2). Denote by ∆ the projective closure
of the discriminant ∆. Then∑
z∈(∆\∆)

δz =
1
2

d1(d1−d2)(d1+d2−2)2+
1
2

(−2d1+d2+d)(d1+d2−2).

How to prove? It is a little bit tedious but possible!



THEOREM. There is a Zariski open, dense subset
U ⊂ Ω2(d1, d2) such that for every mapping F ∈ U the
discriminant ∆(F) = F(C(F)) has only cusps and nodes as
singularities. Let d = gcd(d1, d2). Then the number of cusps is
equal to

c(F) = d2
1 + d2

2 + 3d1d2 − 6d1 − 6d2 + 7

and the number of nodes is equal to

d(F) =
1
2
[
(d1d2 − 4)((d1 + d2 − 2)2 − 2)− (d − 5)(d1 + d2 − 2)− 6

]
.



In fact also the converse result is true (J+Farnik-submited):

THEOREM. For d1d2 > 2, if a mapping F ∈ Ω2(d1, d2) has
c(d1, d2) cusps and n(d1, d2) nodes, then it has a generic
topological type. In particular, mappings with the generic
topological type form a Zariski open subset in Ω2(d1, d2).

COROLLARY. Let F,G ∈ Ω2(d1, d2), where d1d2 > 2. Assume
that F and G have c(d1, d2) cusps and n(d1, d2) nodes. Then
there exist homeomorphisms Φ,Ψ : C2 → C2 such that

G = Φ ◦ F ◦Ψ.



DEFINITION. Let F : (C2, a)→ (C2,F(a)) be a holomorphic
mapping. We say that F has a generalized cusp at a if Fa is
proper, the curve J(F) = 0 is reduced near a and the
discriminant of Fa is not smooth at F(a).

REMARK. If Fa is proper, J(F) = 0 is reduced near a and J(F) is
singular at a then it follows from Corollary 1.11 from [Jel, 2017]
that also the discriminant of Fa is singular at F(a) and hence F
has a generalized cusp at a.



DEFINITION. Let F = (f , g) : (C2, a)→ (C2,F(a)) be a
holomorphic mapping. Assume that F has a generalized cusp
at a point a ∈ C2. Since the curve J(F) = 0 is reduced near a,
we have that the set {∇f = 0} ∩ {∇g = 0} has only isolated
points near a. For a general linear mapping T ∈ GL(2), if
F′ = (f ′, g′) = T ◦ F then ∇f ′ does not vanish identically on any
branch of {J(F) = 0} near a. We say that the cusp of F at a has
an index µa := dimCOa/(J(F′), J1,1(F′))− dimCOa/(f ′x, f

′
y).

REMARK. Using the exact sequence 1.7 from [Gaffney-Mond]
we see that

µa = dimCOa/(J(F), J1,1(F), J1,2(F)).

Hence our index coincides with the classical local number of
cusps defined e.g. in [Gaffny-Mond]. In particular µa ≥ 1, if F
has a generalized cusp at a.



PROPOSITION. Let F = (f , g) ∈ Ω2(d1, d2) and assume that F
has a generalized cusp at a ∈ C2. If Ua is a sufficiently small
ball around a then µa is equal to the number of simple cusps in
Ua of a general mapping F′ ∈ Ω2(d′1, d

′
2), where d′1 ≥ d1, d′2 ≥ d2,

which is sufficiently close to F in the natural topology of
Ω2(d′1, d

′
2).



COROLLARY 1. Let F ∈ Ω2(d1, d2). Assume that F has
generalized cusps at points a1, . . . , ar. Then∑r

i=1 µai ≤ d2
1 + d2

2 + 3d1d2 − 6d1 − 6d2 + 7.

COROLLARY 2. If F ∈ Ω(d1, d2) is a generically finite
polynomial mapping with reduced critical curve, then it has not
more than d2

1 + d2
2 + 3d1d2 − 6d1 − 6d2 + 7 singular points which

are not folds.

Analogous theorems are true in the case of a complex sphere.



In previous sections we considered the family ΩX(d1, . . . , dm), of
course we can consider also other families of polynomial
mappings and try to investigate their properties. Let F be any
algebraic family of generically-finite polynomial mappings
fp : X → Cm; p ∈ F , where X is a smooth irreducible affine
variety. We would like to know the behavior of proper mappings
in a such family. In general proper mappings do not form an
algebraic subset of F but only constructible one. However we
show that there is some regular behavior in such family. We
have:



Theorem.
Let P,X,Y be smooth irreducible affine algebraic varieties and
let F : P× X → P× Y be a generically finite mapping. The
mapping F induces a family F = {fp(·) = F(p, ·), p ∈ P}. Then
either there exists a Zariski open dense subset U ⊂ P such that
for every p ∈ P the mapping fp is proper, or there exists a Zariski
open dense subset V ⊂ P such that for every p ∈ P the
mapping fp is not proper.



Moreover, in the first case we have:
a) for every non-proper mapping fp in the family F we have
µ(fp) < µ(F), where µ(f ) denotes the geometric degree of f ,
b) generic mappings in F are topologically equivalent, i.e., there
exists a Zariski open dense subset W ⊂ P such that for every
p, q ∈ W the mappings fp and fq are topologically equivalent.



Theorem.
Let X ⊂ Cn be a smooth irreducible affine variety of dimension k
and let F : X → Cm be a polynomial mapping. If m ≥ k, then
there exists a Zariski open dense subset U in the space of
linear mappings L(Cn,Cm) such that:
a) for every L ∈ U the mapping F + L is a finite mapping.
b) for all L ∈ U the mappings F + L are topologically equivalent.
c) for all L ∈ U the mappings F + L have only generic
singularities,i.e., transversal to Thom-Boardman strata.



In particular for a given mapping F : C2 → C2 we can consider
the “linear” deformation FL = F + L; L ∈ L(C2,C2). A general
member of this deformation is locally stable and proper. If F is
not "sufficiently generic", then this deformation gives a different
number of cusps and folds than a “generic” deformation
considered in this paper. We give here an example of a finitely
K determined germ F which has at least two non-equivalent
stable deformations.



Example. Take a finitely K determined germ F(x, y) = (x, y3)
and consider two deformations of F: the first one linear
Ft = (x, y3 + ty) and the second one given by
Gt(x, y) = (x, y3 + txy). The members of the first family do not
have a cusp at all and the members of the second family have
exactly one cusp at 0.
This means that (contrary to the case of A finitely determined
germs) we can not define the numbers c(F) and d(F) for F
using stable deformations.



THANK YOU FOR ATTENTION!


