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Introduction

There are many versions (variants) of the Łojasiewicz inequality 
and the Łojasiewicz exponent.
The main common idea (problem) is:
We have two mappings 𝐹 𝑎𝑛𝑑 𝐺 (of various domains,  classes, 
fields, etc.) such that 𝑉 𝐹 ⊂ 𝑉 𝐺 .
Find (or prove the existence) the best exponent λ ∊ 𝑹 such that
the following inequality holds (the Łojasiewicz inequality)

𝐹 ≥ 𝐶 | 𝐺 |λ

locally or globally.



Introduction

We are interested in the following local variant over C:

𝐹 = 𝛻𝑓 = (
𝜕𝑓

𝜕𝑧1
, ⋯ ,

𝜕𝑓

𝜕𝑧𝑛
),              𝐺 = (𝑧1, ⋯ , 𝑧𝑛),

where 𝑓: 𝐶𝑛, 0 → (𝐶, 0) is an isolated complex singularity.



Introduction

We are interested in the following local, complex variant:

𝐹 = 𝛻𝑓 = (
𝜕𝑓

𝜕𝑧1
, ⋯ ,

𝜕𝑓

𝜕𝑧𝑛
),              𝐺 = (𝑧1, ⋯ , 𝑧𝑛),

where 𝑓: 𝐶𝑛, 0 → (𝐶, 0) is an isolated complex singularity.
Of course we have

𝑉 𝐹 = 𝑉
𝜕𝑓

𝜕𝑧1
, ⋯ ,

𝜕𝑓

𝜕𝑧𝑛
= 0 = 𝑉 𝑧1, ⋯ , 𝑧𝑛 = 𝑉(𝐺)

and the Łojasiewicz inequality takes the form

𝜵𝒇(𝒛) ≥ 𝑪 | 𝒛 |𝝀.



Introduction

Definition. The best exponent (the infimum) λ ∊ 𝑹 such that
the following inequality holds

𝛁𝒇(𝒛) ≥ 𝑪 | 𝒛 |λ

in  a neighbourhood of the origin in 𝑪𝑛 is the Łojasiewicz
exponent of 𝑓 and is denoted by ℒ(𝑓).
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ℒ(𝑓) is an interesting invariant of 𝑓:

1. ℒ 𝑓 + 1 is the 𝐶0-sufficiency degree of 𝑓 ,
2. ℒ 𝑓 𝜖 𝑸,
3. ℒ 𝑓 is an analytic invariant of 𝑓,
4. open problem whether ℒ 𝑓 is a topological invariant, 

5. ℒ 𝑓 depends only on the ideal
𝜕𝑓

𝜕𝑧1
, ⋯ ,

𝜕𝑓

𝜕𝑧𝑛
𝐶{𝑧}



Introduction

6. ℒ 𝑓 can be calculated by means of analytic paths

ℒ 𝑓 = supΦ
ord(𝛁𝒇∘Φ)

ord Φ
,     Φ(0)=0,

where Φ: 𝑪, 0 → (𝑪𝑛, 0) a holomorphic curve



Introduction

6. ℒ 𝑓 can be calculated by means of analytic paths

ℒ 𝑓 = supΦ
ord(𝛁𝒇∘Φ)

ord Φ
,     Φ(0)=0,

where Φ: 𝑪, 0 → (𝑪𝑛, 0) a holomorphic curve and  moreover,
there exists a holomorphic curve  Φ(𝑡) such that

||𝛁𝑓 Φ 𝑡 || ~ ||Φ 𝑡 ||ℒ 𝑓 .



The main result

A formula for the Łojasiewicz exponent 𝓛(𝒇) of a non-
degenerate surface singularity 𝒇 in terms of its Newton 
polyhedron.
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A formula for the Łojasiewicz exponent 𝓛(𝒇) of a non-
degenerate surface singularity 𝒇 in terms of its Newton 
polyhedron.

Surface singularity:
𝑓 = 𝑓(𝑥, 𝑦, 𝑧): 𝐶3, 0 → (𝐶, 0),    𝑛 = 3,



Explanation of the main result

A formula for the Łojasiewicz exponent 𝓛(𝒇) of a non-
degenerate surface singularity 𝒇 in terms of its Newton 
polyhedron.

Surface singularity:
𝑓 = 𝑓(𝑥, 𝑦, 𝑧): 𝐶3, 0 → (𝐶, 0),    𝑛 = 3,

𝑛 = 1. Trivial.
𝑛 = 2. Non-trivial. A. Lenarcik 1996.
𝑛 > 3. Open problem.



Explanation of the main result

A formula for the Łojasiewicz exponent 𝓛(𝒇) of a non-
degenerate surface singularity 𝒇 in terms of its Newton 
polyhedron.

Newton polyhedron of 𝑓:

Combinatorial object in 𝑹𝑛 associated to  𝑓
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polyhedron.



Explanation of the main result

A formula for the Łojasiewicz exponent 𝓛(𝒇) of a non-
degenerate surface singularity 𝒇 in terms of its Newton 
polyhedron.
For any boundary face 𝑆 of the Newton polyhedron

𝑆𝜖Γ 𝑓 = Γ0 𝑓 ∪ Γ1 𝑓 ∪ Γ2 𝑓 ∪ …. ∪ Γ𝑛−1 𝑓
the system of polynomial equations:

𝜕𝑓𝑆
𝜕𝑧1

𝑧 = 0,

…………………
𝜕𝑓𝑆
𝜕𝑧𝑛

𝑧 = 0

has no solution in (𝐶∗)𝑛.



Explanation of the main result

Arnold’s problems:

1968-2. What topological characteristics of a real (complex) 
polynomial are computable from the Newton diagram?

1975-1. Every interesting discrete invariant of a generic 
singularity with Newton polyhedron is an interesting function of 
the polyhedron. 

1975-21. Express the main numerical invariants of a typical 
singularity with a given Newton diagram.



Known estimations in terms of the Newton polyhedron

Ben Lichtin (1981)
Tohizumi Fukui (1991).
Carles Bivia-Ausina (2003)
Ould Abderahmane (2005)
Pinaki Mondal (2019)
Mutsuo Oka (2018)



Lenarcik result for n=2

A. Lenarcik (1996) A formula for ℒ 𝑓 in 2 dimensional case
(n=2). The singularity depends on two variables 𝑓 𝑥, 𝑦 .



Lenarcik result for n=2

A. Lenarcik (1996) A formula for ℒ 𝑓 in 2 dimensional case
(n=2). The singularity depends on two variables 𝑓 𝑥, 𝑦 .

max α 𝑆 : 𝑆 𝜖Γ1 𝑓 − 𝐸𝑓 − 1 if Γ1 𝑓 − 𝐸𝑓 ≠ ∅

ℒ 𝑓 =
1 if Γ1 𝑓 − 𝐸𝑓 = ∅.

𝐸𝑓 - exceptional segments of the Newton boundary Γ 𝑓 .



Lenarcik result for n=2

Exceptional segment: if one of the partial derivatives of 𝑓𝑆 is a 

pure power of another variables e.g.   𝑓𝑆 = 𝒚𝒙𝟓 + 𝑥8 because
𝜕𝑓𝑆

𝜕𝑦
𝑥, 𝑦 = 𝒙𝟓.

𝛼 𝑆 ≔ max(𝛼1, 𝛼2)



The main result.

Theorem (Brzostowski, Krasiński, Oleksik). If 𝑓: 𝐶3, 0 → (𝐶, 0)
is a non-degenerate isolated singularity and Γ2 𝑓 − 𝐸𝑓 ≠ ∅

then

ℒ 𝑓 = max α 𝑆 : 𝑆 𝜖Γ2 𝑓 − 𝐸𝑓 − 1.



The main result.

Theorem (Brzostowski, Krasiński, Oleksik). If 𝑓: 𝐶3, 0 → (𝐶, 0)
is a non-degenerate isolated singularity and Γ2 𝑓 − 𝐸𝑓 ≠ ∅

then

ℒ 𝑓 = max α 𝑆 : 𝑆 𝜖Γ2 𝑓 − 𝐸𝑓 − 1.

Remark. The  case Γ2 𝑓 − 𝐸𝑓 = ∅ i.e. Γ2 𝑓 = 𝐸𝑓 was solved

by Oleksik in 2013.  This is a very special case and relatively
simpler.



Definition of exceptional faces.

Definition:
2-dimensional face 𝑆𝜖Γ2 𝑓 is said to be exceptional if one of 
the partial derivatives of 𝑓𝑆 is a pure power of another variable. 

Remark. This definition may be easily transferred (generalized) 
to n-dimensional case.

Example. 𝑓𝑆 = 𝑦𝑧5 + 𝑧8 + 𝑥8



Definition of exceptional faces – geometrically.



Definition of α 𝑆 . 



The Oleksik result

Theorem (Oleksik 2010). If 𝑓: 𝐶3, 0 → (𝐶, 0) is a non-
degenerate isolated singularity and Γ2 𝑓 − 𝐸𝑓 ≠ ∅ then

ℒ 𝑓 ≤ max α 𝑆 : 𝑆 𝜖Γ2 𝑓 − 𝐸𝑓 − 1.



The Oleksik result

Theorem (Oleksik 2010). If 𝑓: 𝐶3, 0 → (𝐶, 0) is a non-
degenerate isolated singularity and Γ2 𝑓 − 𝐸𝑓 ≠ ∅ then

ℒ 𝑓 ≤ max α 𝑆 : 𝑆 𝜖Γ2 𝑓 − 𝐸𝑓 − 1.

We must prove the inverse inequality

ℒ 𝑓 ≥ max α 𝑆 : 𝑆 𝜖Γ2 𝑓 − 𝐸𝑓 − 1.



The idea of the proof 

For inverse inequality  " ≥ " it suffices to find a holomorphic
curve φ 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) such that

||𝛻𝑓 𝜑 𝑡 || ~ ||φ 𝑡 ||α 𝑓 ,

where α 𝑓 := max α 𝑆 : 𝑆 𝜖Γ2 𝑓 − 𝐸𝑓 − 1.



The idea of the proof 

The first step to find such a curve is to „simplify” the 
singularity 𝑓 to one which has the same Newton polyhedron, 
the same Łojasiewicz exponent and it is „very simple”.  We apply
the Brzostowski theorem.



The idea of the proof  

Theorem (Brzostowski). In the class of non-degenerate isolated 
singularities in n-dimensional case the Łojasiewicz exponent 
depends only on the Newton polyhedron.



The idea of the proof  

Theorem (Brzostowski). In the class of non-degenerate isolated 
singularities in n-dimensional case the Łojasiewicz exponent 
depends only on the Newton polyhedron.

Precisely
If 𝑓, 𝑔: (𝐶𝑛, 0) → (𝐶, 0) are isolated non-degenerate
singularities and Γ 𝑓 = Γ 𝑔 then ℒ 𝑓 = ℒ 𝑔 .



The idea of the proof  

By this theorem we replace the initial singularity for another
singularity which
1. has the same Newton polyhedron,
2. has no points above the Newton boundary, 
3. has only vertices,
4. has generic coefficients.



The idea of the proof  



The idea of the proof  



The idea of the proof 

Let a non exceptional face 𝑆𝜖Γ2 𝑓 realize the maximum in the 
definition of  α 𝑓 .  Let this maximum be attained on the axis
Ox.



The idea of the proof 

Let (𝑣, 𝑢, 𝑤) ∊ 𝑁3 be a vector perpendicular to S.



The idea of the proof 

For the monomial curve Γ: φ 𝑡 = 𝑎𝑡𝑣 , 𝑏𝑡𝑢, 𝑐𝑡𝑤 with generic
coefficients 𝑎, 𝑏, 𝑐, 𝑎𝑏𝑐 ≠ 0

𝜕𝑓

𝜕𝑥
𝜑 𝑡 ~ ||φ 𝑡 ||α 𝑓



The idea of the proof 

For the monomial curve Γ: φ 𝑡 = 𝑎𝑡𝑣 , 𝑏𝑡𝑢, 𝑐𝑡𝑤 with generic
coefficients 𝑎, 𝑏, 𝑐, 𝑎𝑏𝑐 ≠ 0

𝜕𝑓

𝜕𝑥
𝜑 𝑡 ~ ||φ 𝑡 ||α 𝑓

But we need

||𝛻𝑓 φ(𝑡) || ~ ||φ 𝑡 ||α 𝑓 ,
i.e.

||
𝜕𝑓

𝜕𝑥
𝜑 𝑡 ,

𝜕𝑓

𝜕𝑦
𝜑 𝑡 ,

𝜕𝑓

𝜕𝑧
𝜑 𝑡 | |~ ||φ 𝑡 ||α 𝑓



The idea of the proof 

The problem is to make the remaining partial derivatives
𝜕𝑓

𝜕𝑦
, 
𝜕𝑓

𝜕𝑧

small enough on the monomial curve Γ or on its prolongation of 
the form (𝑎𝑡𝑣 +⋯ , 𝑏𝑡𝑢 +⋯ , 𝑐𝑡𝑤 +⋯).



The idea of the proof 

The problem is to make the remaining partial derivatives
𝜕𝑓

𝜕𝑦
, 
𝜕𝑓

𝜕𝑧

small enough on the monomial curve Γ or on its prolongation of 
the form (𝑎𝑡𝑣 +⋯ , 𝑏𝑡𝑢 +⋯ , 𝑐𝑡𝑤 +⋯).
It would be optimal to find such a curve for which

𝜕𝑓

𝜕𝑦
𝜑 𝑡 ≡ 0,

𝜕𝑓

𝜕𝑧
𝜑 𝑡 ≡ 0



The idea of the proof 

The problem is to make the remaining partial derivatives
𝜕𝑓

𝜕𝑦
, 
𝜕𝑓

𝜕𝑧

small enough on the monomial curve Γ or on its prolongation of 
the form (𝑎𝑡𝑣 +⋯ , 𝑏𝑡𝑢 +⋯ , 𝑐𝑡𝑤 +⋯).
It would be optimal to find such a curve for which

𝜕𝑓

𝜕𝑦
𝜑 𝑡 ≡ 0,

𝜕𝑓

𝜕𝑧
𝜑 𝑡 ≡ 0

Unfortunately, it is not always possible.



The idea of proof 

Example. For the non-exceptional face 𝑓𝑆 = 𝑥10 + 𝑥5𝑦2 + 𝑧5

we have 𝑣, 𝑢, 𝑤 = 2,5,4 𝑎𝑛𝑑
𝜕𝑓

𝜕𝑦
= 2𝑥5𝑦 +⋯(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑠)



The idea of the proof 

It is possible to find such a curve for which
𝜕𝑓

𝜕𝑦
𝜑 𝑡 ≡ 0,

𝜕𝑓

𝜕𝑧
𝜑 𝑡 ≡ 0

under some assumptions on 𝑓𝑆 .



The idea of the proof 

Proposition. If the quasi-homogeneous polynomial 𝑓𝑆
associated to the face S satisfies:

1.  
𝜕𝑓𝑆

𝜕𝑦
, 
𝜕𝑓𝑆

𝜕𝑧
are not monomials,

2. GCD(
𝜕𝑓𝑆

𝜕𝑦
, 
𝜕𝑓𝑆

𝜕𝑧
) is at most monomial,

3. the system of 2 equations in 3 variables
𝜕𝑓𝑆
𝜕𝑦

𝑥, 𝑦, 𝑧 = 0,

𝜕𝑓𝑆
𝜕𝑧

𝑥, 𝑦, 𝑧 = 0

has a solution in (𝐶∗)3

(*)



The idea of the proof 

then there exists a holomorphic curve φ 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 )
such that

1.  
𝜕𝑓

𝜕𝑦
∘ φ ≡ 0, 

𝜕𝑓

𝜕𝑧
∘ φ ≡ 0,



The idea of the proof  

then there exists a holomorphic curve φ 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 )
such that

1.
𝜕𝑓

𝜕𝑦
∘ φ ≡ 0, 

𝜕𝑓

𝜕𝑧
∘ φ ≡ 0,

2. φ 𝑡 = (𝑎𝑡𝑣 +⋯ , 𝑏𝑡𝑢 +⋯ , 𝑐𝑡𝑤 +⋯), 𝑎𝑏𝑐 ≠ 0, where 
(𝑣, 𝑢, 𝑤) is a vector perpendicular to S and 𝑎, 𝑏, 𝑐 are a 
solution of the above system (*),



The idea of the proof  

then there exists a holomorphic curve φ 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 )
such that

1.
𝜕𝑓

𝜕𝑦
∘ φ ≡ 0, 

𝜕𝑓

𝜕𝑧
∘ φ ≡ 0,

2. φ 𝑡 = (𝑎𝑡𝑣 +⋯ , 𝑏𝑡𝑢 +⋯ , 𝑐𝑡𝑤 +⋯), 𝑎𝑏𝑐 ≠ 0, where 
(𝑣, 𝑢, 𝑤) is a vector perpendicular to S and 𝑎, 𝑏, 𝑐 are a 
solution of the above system (*),

3. | 𝛻𝑓 𝜑 𝑡 | ~ ||φ 𝑡 ||α 𝑓 .



The idea of the proof  

In the proof we use the classic:
1. The Bernstein Theorem (1975) on the existence of non-zero 

solutions of systems of polynomial equations with given
Newton polyhedrons, and



The idea of the proof  

In the proof we use classic:
1. The Bernstein Theorem (1975) on the existence of non-zero 

solutions of systems of polynomial equations with given
Newton polyhedrons, and

2. The Maurer theorem (1980) on existence of a 
parametrization with „a given initial part” of an analytic 
space curve.



The Bernstein Theorem  

Theorem. Let 𝑓1, … , 𝑓𝑛 ∈ 𝐶[𝑧1, … , 𝑧𝑛] be polynomials. If the 
mixed volume 𝑀𝑉(𝑁 𝑓1 , … , 𝑁 𝑓𝑛 ) of the Newton polytopes
𝑁 𝑓𝑖 of 𝑓𝑖 is positive and the system (𝑓1, … , 𝑓𝑛) is non-
degenerate in the Bernstein sense then the system of 
equations 𝑓1 = 0,… , 𝑓𝑛 = 0 has exactly 𝑀𝑉(𝑁 𝑓1 , … , 𝑁 𝑓𝑛 )
isolated solutions, counted with multiplicities.



The Bernstein Theorem  

Theorem. Let 𝑓1, … , 𝑓𝑛 ∈ 𝐶[𝑧1, … , 𝑧𝑛] be polynomials. If the 
mixed volume 𝑀𝑉(𝑁 𝑓1 , … , 𝑁 𝑓𝑛 ) of the Newton polytopes
𝑁 𝑓𝑖 of 𝑓𝑖 is positive and the system (𝑓1, … , 𝑓𝑛) is non-
degenerate in the Bernstein sense then the system of 
equations 𝑓1 = 0,… , 𝑓𝑛 = 0 has exactly 𝑀𝑉(𝑁 𝑓1 , … , 𝑁 𝑓𝑛 )
isolated solutions, counted with multiplicities.

Mixed volume for two polynomials 𝑀𝑉(𝑁 𝑓1 , 𝑁 𝑓2 ), 
considered in the proof, has the simple form
𝑀𝑉 𝑁 𝑓1 , 𝑁 𝑓2 =

vol2(𝑁 𝑓1 +𝑁 𝑓2 ) − vol2(𝑁 𝑓1 ) − vol2(𝑁 𝑓2 )



The Maurer Theorem 

Theorem. Let 𝐼 ⊂ 𝐶{𝑥1, … , 𝑥𝑛} be an ideal with one 
dimensional zero set and  𝒘 = (𝑤1, … , 𝑤𝑛) ∈ 𝑵𝑛

a weight vector of variables 𝒙. If 𝒘 is a tropism of 𝐼 (it means 𝑤𝑖

are non-zero positive integers and 𝑖𝑛𝒘𝐹 is not monomial for 
any 𝐹 ∈ 𝐼)  then there exists a parametrization of one 
irreducible component of 𝑉(𝐼) of the form

𝑥1 𝑡 = 𝑎1𝑡
𝑘𝑤1 +⋯ ,

………………………
𝑥𝑛 𝑡 = 𝑎𝑛𝑡

𝑘𝑤𝑛 +⋯
𝑎𝑖 ≠ 0.

𝑘 ∈ 𝑵



The idea of the proof  

To check the assumptions of the Maurer Theorem we need the 
following key algebraic lemma. 



The idea of the proof  

The key algebraic lemma:

Lemma. R – a unique factorization domain, 𝐹, 𝐺 ∊ 𝑅 𝒙 two

formal series in n variables, 𝒘 a weight vector of variables 𝒙
and 𝑖𝑛𝒘𝐹, 𝑖𝑛𝒘𝐺 the initial parts of 𝐹, 𝐺 with respect to these
weights 𝒘. If:
1. GCD(𝑖𝑛𝒘𝐹, 𝑖𝑛𝒘𝐺) is at most a monomial,
2. 𝑖𝑛𝒘𝐹, 𝑖𝑛𝒘𝐺 do not generate a monomial
then 𝐹, 𝐺 do not generate an element with 𝒘-initial part being
a monomial.



The idea of the proof  

To complete the proof we have to consider non exceptional
faces S (realizing maximum intersections with axes) which don’t
satisfy conditions in the Proposition. 



The idea of the proof  

To complete the proof we have to consider non exceptional
faces S (realizing maximum intersections with axes) which don’t
satisfy conditions in the Proposition. 



The idea of the proof  

This imposes severe restrictions on the geometry of S: S must be 
a triangle and there is no appropriate curve with initial orders
being an integer vector perpendicular to S.
In these cases we must find another appropriate face, often in 
some sense „hidden” one, which gives the sought curve.
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One of possible cases
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One of possible cases

𝑆∗ satisfies the assumptions of the Proposition and 
gives an appropriate curve.



The idea of the proof  

We consider all the possible cases. In each one we are able to 
find a curve on which the gradient of f has the required order. 



Application 

The solution of a Teissier’s problem (question):

Whether the Łojasiewicz exponent is constant in 𝝁-constant
families of isolated singularities?

in one particular case. 



Application 

The solution of a Teissier’s problem (question):

Whether the Łojasiewicz exponent is constant in 𝝁-constant
families of isolated singularities?

in one particular case. 

Theorem. If (𝑓𝑡) is a non-degenerate 𝜇-constant deformation of 
an isolated surface singularity 𝑓0 then ℒ 𝑓𝑡 =constant.



Problems

1. Generalize the result to n-dimensional case.



Problems

1. Generalize the result to n-dimensional case.

2. Generalize the key algebraic lemma  for any system of 
functions.



The end

Thank you for your attention.


