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False coin

False coin: 60% vs. 40%
How to detect?

Throw 100 times: 57 heads, 43 tails
What is the probability of this result for two cases?
1.75 · 10−30 ·

(
100
57

)
vs. 6 · 10−33 ·

(
100
57

)
We maximize the likelihood to �nd the correct probability distribution

Example→ statistical model
two points→ variety
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Gaussian model

one dimensional Gaussian distribution: mean µ and variance Σ > 0

Multivariate Gaussian distribution on Rn:

fµ,Σ(x) :=
1√

(2π)n det Σ
e−

1
2

(x−µ)TΣ−1(x−µ),

Here µ ∈ Rn and Σ symmetric PD matrix

image from wiki
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Linear concentration models

Concentration matrix K = Σ−1

Anderson 1970: model K ∈ L ⊂ S2Rn = S2V for a linear space

Our variety/model:

L−1 = {K−1 : K ∈ L} ⊂ S2V ∗

Data gives: sample covariance matrix Σ0

Main question: Which Σ ∈ L−1 maximizes the likelihood?

Theorem

Let π : P(S2V ∗) 99K P
(
S2V ∗/(L⊥)

)
.

There is a unique PD Σ ∈ L−1 such that π(Σ) = π(Σ0). This is the MLE.
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Geometric setting

P(S2V ) ⊃ L 99K L−1 ⊂ P(S2V ∗) 99K P
(
S2V ∗/(L⊥)

)
Our interest: �bers of π|L−1

De�nition

The maximum likelihood degree is the degree of the (�nite) map πL−1 .
For L general, the ML-degree depends on: d = dimL and n. It is denoted
by φ(n, d).

Theorem (Teissier)

For general L we have L−1 ∩ L⊥ = ∅.

Corollary

φ(n, d) = degL−1
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CQ

∆ ⊂ P(S2V )× P(S2V ∗)

P(S2V ) P(S2V ∗)

understand φ(n, ·)⇔ understand the cohomology class [∆]

Idea: look at a resolution CQ
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Complete Quadrics

CQ: closure of the image of the set of invertible matrices under the map

ϕ : P(S2V ) 99K P
(
S2V

)
× P

(
S2(

2∧
V )

)
× · · · × P

(
S2(

n−1∧
V )

)
,

sending a matrix A to (A,
∧2A, . . . ,

∧n−1A).

Equvalently: blow-up of rank 1,2,. . . , n− 2 matrices
Two types of divisors:

Li: pull-back of Hi ⊂ P
(
S2(
∧i V )

)
Si: exceptional divisor from rank i matrices

φ(n, d) = L
(n+1

2 )−d−1

1 Ldn−1
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Theorem (Schubert)

The classes L1, . . . , Ln−1 form a basis of Pic(CQ(V )), in which the classes

S1, . . . , Sn−1 are given by the relations

Si = −Li−1 + 2Li − Li+1,

with L0 = Ln := 0.

Li: twice the fundamental roots

Si: twice the simple positive roots

φ(n, d) = L
(n+1

2 )−d−1

1 Ldn−1

=
1

n

n−1∑
s=1

L
(n+1

2 )−d−2

1 Ldn−1Sn−s
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P(S2U)×G(r,n) P(S2Q∗) model of Sr

L
(n+1

2 )−d−2

1 Ldn−1Sn−s →
intersection theory on P(S2U)×G(r,n) P(S2Q∗)→
intersection theory on G(r, n)

Main advantage: we may use a very well developed theory of Pragacz,
Lascoux and others
Crucial role: Segre class of symmetric square of a bundle
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De�nition

For I be a set of integers of cardinality r let:

s(d)({xi + xj | 1 ≤ i ≤ j ≤ r}) =
∑

λ(I) ` d
#I = r

ψIsλ(I)(x1, . . . , xr).

Equivalently:
Segd(S

2U) =
∑

λ(I) ` d
#I = r

ψIσλ(I),

where σλ denote the Schubert classes in the Chow ring of the
Grassmannian.
In both

λ(I) := (ir − (r − 1), ir−1 − (r − 2), . . . , i2 − 1, i1).
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Example

Consider G(2, 4). U has two Chern roots x1, x2.

x1 + x2 = − , x1 · x2 =

Chern roots of S2U are 2x1, x1 + x2, 2x2. Three respective Chern classes:

−3 , 2 + 6 , −4 .

By inverting the Chern polynomial we obtain the Segre classes:

3 , 7 + 3 , 10 , 10 .

Their coe�cients are the Lascoux coe�cients, namely:

ψ0,2 = 3, ψ0,3 = 7, ψ1,2 = 3, ψ1,3 = 10, ψ2,3 = 10.
Mateusz Michaªek Complete quadrics and algebraic statistics
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Example

Equivalently:

s(2)(2x1, x1 + x2, 2x2) = 7x2
1 + 7x2

2 + 10x1x2 =

= 7(x2
1 + x1x2 + x2

2) + 3x1x2 = 7s(2,0)(x1, x2) + 3s(1,1)(x1, x2).
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Central results

Pfa�an formulas for ψI by Pragacz

Recursive formulas for ψI by Pragacz and Laksov, Lascoux, Thorup

Theorem (Bothmer, Ranestad)

SrL
(n+1

2 )−m−1

1 Lm−1
n−1 =

∑
I⊂[n]

#I=n−r∑
I=m−n+r

ψIψ[n]\I

Mateusz Michaªek Complete quadrics and algebraic statistics
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Lemma

ψ[n]\I is a polynomial in n

Corollary (Conjectured by Sturmfels and Uhler)

For any d the function φ(n, d) is a polynomial in n.
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φ(n, 1) = n− 1
φ(n, 2) =

(n− 1)2

φ(n, 3) =

(n− 1)3−deg base locus= 1
6(5n− 3)(n− 1)(n− 2)

Theorem (Stückrad/ Chardin, Eisenbud, Ulrich)

φ(n, 4) = 1
12(n− 1)(n− 2)(7n2 − 19n+ 6)

1 2 4 4 2 1 0 0

1 3 9 17 21 21 17 · · ·
1 4 16 44 86 137 188 212 188 · · ·
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Consequence:
How many quadrics in n variables pass through d (general) points and are
tangent to

(
n+1

2

)
− d− 1 (general) hyperplanes?

For �xed d the answer is a polynomial in n.
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φ(n, 17) =
1

355687428096000
(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)

(3024902557n12 − 111489409997n11 + 1862235028288n10−
18676382506290n9 + 125446336704681n8 − 594987544526781n7+

2047718727437714n6 − 5214795516381220n5 + 10138037306327912n4

− 15696938913831072n3 + 18622763914779648n2

− 12286614789872640n+ 2964061900800)
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Further results

Types A and D

Proof of NRS conjecture

Sn−sL
(n+1

2 )−m−1

1 Lm−1
n−1 =

∑
∑
I≤m−s,|I|=s

(−1)m−s−
∑
IψIbI(n)

(
m− 1

m− s−
∑
I

)
Explicit formulas in terms of dimensions of representations
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Future directions

Does the log-concavity of the coe�cients of φ(·, d) suggest some
cohomology theory on in�nite dimensional algebraic varieties?

What is the degree of the dual variety to: matrices of �xed rank
intersected with a space of �xed dimension?

What if we intersect other cohomology classes with L
(n+1

2 )−d
n−1 ?

Can we de�ne noncommutative matroids?

What about graphical Gaussian models?

What about linear covariance models?
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Thank you!
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