Complete quadrics:
 Schubert calculus for Gaussian models and semidefinite programming

Mateusz Michałek
University of Konstanz

Joint work with: Laurent Manivel, Leonid Monin, Tim Seynnaeve, Martin Vodicka and Jarosław Wiśniewski

False coin

False coin: 60% vs. 40% How to detect?

False coin

False coin: 60% vs. 40%

How to detect?

Throw 100 times: 57 heads, 43 tails

Main Results

False coin

False coin: 60% vs. 40%

How to detect?

Throw 100 times: 57 heads, 43 tails
What is the probability of this result for two cases?
$1.75 \cdot 10^{-30} \cdot\binom{100}{57}$ vs. $6 \cdot 10^{-33} \cdot\binom{100}{57}$

False coin

False coin: 60% vs. 40%
How to detect?
Throw 100 times: 57 heads, 43 tails
What is the probability of this result for two cases?
$1.75 \cdot 10^{-30} \cdot\binom{100}{57}$ vs. $6 \cdot 10^{-33} \cdot\binom{100}{57}$
We maximize the likelihood to find the correct probability distribution

False coin

False coin: 60% vs. 40%
How to detect?
Throw 100 times: 57 heads, 43 tails
What is the probability of this result for two cases?
$1.75 \cdot 10^{-30} \cdot\binom{100}{57}$ vs. $6 \cdot 10^{-33} \cdot\binom{100}{57}$
We maximize the likelihood to find the correct probability distribution
Example \rightarrow statistical model two points \rightarrow variety

Gaussian model

- one dimensional Gaussian distribution: mean μ and variance $\Sigma>0$

Gaussian model

- one dimensional Gaussian distribution: mean μ and variance $\Sigma>0$
- Multivariate Gaussian distribution on \mathbb{R}^{n} :

$$
f_{\mu, \Sigma}(x):=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

Here $\mu \in \mathbb{R}^{n}$ and Σ symmetric PD matrix

Gaussian model

- one dimensional Gaussian distribution: mean μ and variance $\Sigma>0$
- Multivariate Gaussian distribution on \mathbb{R}^{n} :

$$
f_{\mu, \Sigma}(x):=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

Here $\mu \in \mathbb{R}^{n}$ and Σ symmetric PD matrix

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

- Anderson 1970: model $K \in \mathcal{L} \subset S^{2} \mathbb{R}^{n}=S^{2} V$ for a linear space

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

- Anderson 1970: model $K \in \mathcal{L} \subset S^{2} \mathbb{R}^{n}=S^{2} V$ for a linear space

Our variety/model:

$$
\mathcal{L}^{-1}=\left\{K^{-1}: K \in \mathcal{L}\right\} \subset S^{2} V^{*}
$$

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

- Anderson 1970: model $K \in \mathcal{L} \subset S^{2} \mathbb{R}^{n}=S^{2} V$ for a linear space

Our variety/model:

$$
\mathcal{L}^{-1}=\left\{K^{-1}: K \in \mathcal{L}\right\} \subset S^{2} V^{*}
$$

Data gives: sample covariance matrix Σ_{0}

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

- Anderson 1970: model $K \in \mathcal{L} \subset S^{2} \mathbb{R}^{n}=S^{2} V$ for a linear space

Our variety/model:

$$
\mathcal{L}^{-1}=\left\{K^{-1}: K \in \mathcal{L}\right\} \subset S^{2} V^{*}
$$

Data gives: sample covariance matrix Σ_{0}
Main question: Which $\Sigma \in \mathcal{L}^{-1}$ maximizes the likelihood?

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

- Anderson 1970: model $K \in \mathcal{L} \subset S^{2} \mathbb{R}^{n}=S^{2} V$ for a linear space

Our variety/model:

$$
\mathcal{L}^{-1}=\left\{K^{-1}: K \in \mathcal{L}\right\} \subset S^{2} V^{*}
$$

Data gives: sample covariance matrix Σ_{0}
Main question: Which $\Sigma \in \mathcal{L}^{-1}$ maximizes the likelihood?

Theorem

Let $\pi: \mathbb{P}\left(S^{2} V^{*}\right) \rightarrow \mathbb{P}\left(S^{2} V^{*} /\left(\mathcal{L}^{\perp}\right)\right)$.
There is a unique $P D \Sigma \in \mathcal{L}^{-1}$ such that $\pi(\Sigma)=\pi\left(\Sigma_{0}\right)$. This is the MLE.

Geometric setting

$$
\mathbb{P}\left(S^{2} V\right) \supset \mathcal{L} \longrightarrow \mathcal{L}^{-1} \subset \mathbb{P}\left(S^{2} V^{*}\right) \longrightarrow \mathbb{P}\left(S^{2} V^{*} /\left(\mathcal{L}^{\perp}\right)\right)
$$

Our interest: fibers of $\pi_{\mid \mathcal{L}^{-1}}$

Definition

The maximum likelihood degree is the degree of the (finite) map $\pi_{\mathcal{L}^{-1}}$. For \mathcal{L} general, the ML-degree depends on: $d=\operatorname{dim} \mathcal{L}$ and n. It is denoted by $\phi(n, d)$.

Geometric setting

$$
\mathbb{P}\left(S^{2} V\right) \supset \mathcal{L} \longrightarrow \mathcal{L}^{-1} \subset \mathbb{P}\left(S^{2} V^{*}\right) \longrightarrow \mathbb{P}\left(S^{2} V^{*} /\left(\mathcal{L}^{\perp}\right)\right)
$$

Our interest: fibers of $\pi_{\mid \mathcal{L}^{-1}}$

Definition

The maximum likelihood degree is the degree of the (finite) map $\pi_{\mathcal{L}^{-1}}$. For \mathcal{L} general, the ML-degree depends on: $d=\operatorname{dim} \mathcal{L}$ and n. It is denoted by $\phi(n, d)$.

Theorem (Teissier)

For general \mathcal{L} we have $\mathcal{L}^{-1} \cap \mathcal{L}^{\perp}=\emptyset$.

Geometric setting

$$
\mathbb{P}\left(S^{2} V\right) \supset \mathcal{L} \longrightarrow \mathcal{L}^{-1} \subset \mathbb{P}\left(S^{2} V^{*}\right) \longrightarrow \mathbb{P}\left(S^{2} V^{*} /\left(\mathcal{L}^{\perp}\right)\right)
$$

Our interest: fibers of $\pi_{\mid \mathcal{L}^{-1}}$

Definition

The maximum likelihood degree is the degree of the (finite) map $\pi_{\mathcal{L}^{-1}}$. For \mathcal{L} general, the ML-degree depends on: $d=\operatorname{dim} \mathcal{L}$ and n. It is denoted by $\phi(n, d)$.

Theorem (Teissier)

For general \mathcal{L} we have $\mathcal{L}^{-1} \cap \mathcal{L}^{\perp}=\emptyset$.

Corollary

$\phi(n, d)=\operatorname{deg} \mathcal{L}^{-1}$

understand $\phi(n, \cdot) \Leftrightarrow$ understand the cohomology class [Δ]

understand $\phi(n, \cdot) \Leftrightarrow$ understand the cohomology class $[\Delta]$ Idea: look at a resolution $C Q$

Complete Quadrics

$C Q$: closure of the image of the set of invertible matrices under the map

$$
\varphi: \mathbb{P}\left(S^{2} V\right) \rightarrow \mathbb{P}\left(S^{2} V\right) \times \mathbb{P}\left(S^{2}\left(\bigwedge^{2} V\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\bigwedge^{n-1} V\right)\right)
$$

sending a matrix A to $\left(A, \bigwedge^{2} A, \ldots, \bigwedge^{n-1} A\right)$.

Complete Quadrics

$C Q$: closure of the image of the set of invertible matrices under the map

$$
\varphi: \mathbb{P}\left(S^{2} V\right) \rightarrow \mathbb{P}\left(S^{2} V\right) \times \mathbb{P}\left(S^{2}\left(\bigwedge^{2} V\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\bigwedge^{n-1} V\right)\right)
$$

sending a matrix A to $\left(A, \bigwedge^{2} A, \ldots, \bigwedge^{n-1} A\right)$.
Equvalently: blow-up of rank $1,2, \ldots, n-2$ matrices

Complete Quadrics

$C Q$: closure of the image of the set of invertible matrices under the map

$$
\varphi: \mathbb{P}\left(S^{2} V\right) \longrightarrow \mathbb{P}\left(S^{2} V\right) \times \mathbb{P}\left(S^{2}\left(\bigwedge^{2} V\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\bigwedge^{n-1} V\right)\right)
$$

sending a matrix A to $\left(A, \bigwedge^{2} A, \ldots, \bigwedge^{n-1} A\right)$.
Equvalently: blow-up of rank $1,2, \ldots, n-2$ matrices Two types of divisors:

- L_{i} : pull-back of $H_{i} \subset \mathbb{P}\left(S^{2}\left(\bigwedge^{i} V\right)\right)$
- S_{i} : exceptional divisor from rank i matrices

Complete Quadrics

$C Q$: closure of the image of the set of invertible matrices under the map

$$
\varphi: \mathbb{P}\left(S^{2} V\right) \rightarrow \mathbb{P}\left(S^{2} V\right) \times \mathbb{P}\left(S^{2}\left(\bigwedge^{2} V\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\bigwedge^{n-1} V\right)\right)
$$

sending a matrix A to $\left(A, \bigwedge^{2} A, \ldots, \bigwedge^{n-1} A\right)$.
Equvalently: blow-up of rank $1,2, \ldots, n-2$ matrices
Two types of divisors:

- L_{i} : pull-back of $H_{i} \subset \mathbb{P}\left(S^{2}\left(\bigwedge^{i} V\right)\right)$
- S_{i} : exceptional divisor from rank i matrices

$$
\phi(n, d)=L_{1}^{\binom{n+1}{2}-d-1} L_{n-1}^{d}
$$

Theorem (Schubert)

The classes L_{1}, \ldots, L_{n-1} form a basis of $\operatorname{Pic}(C Q(V))$, in which the classes S_{1}, \ldots, S_{n-1} are given by the relations

$$
S_{i}=-L_{i-1}+2 L_{i}-L_{i+1}
$$

with $L_{0}=L_{n}:=0$.

- L_{i} : twice the fundamental roots
- S_{i} : twice the simple positive roots

$$
\begin{aligned}
\phi(n, d) & =L_{1}^{\binom{n+1}{2}-d-1} L_{n-1}^{d} \\
& =\frac{1}{n} \sum_{s=1}^{n-1} L_{1}^{\binom{n+1}{2}-d-2} L_{n-1}^{d} S_{n-s}
\end{aligned}
$$

$$
\mathbb{P}\left(S^{2} \mathcal{U}\right) \times_{G(r, n)} \mathbb{P}\left(S^{2} \mathcal{Q}^{*}\right) \text { model of } S_{r}
$$

$L_{1}^{\left(\begin{array}{r}n+1\end{array}\right)-d-2} L_{n-1}^{d} S_{n-s} \rightarrow$
intersection theory on $\mathbb{P}\left(S^{2} \mathcal{U}\right) \times_{G(r, n)} \mathbb{P}\left(S^{2} \mathcal{Q}^{*}\right) \rightarrow$ intersection theory on $G(r, n)$

$$
\mathbb{P}\left(S^{2} \mathcal{U}\right) \times_{G(r, n)} \mathbb{P}\left(S^{2} \mathcal{Q}^{*}\right) \text { model of } S_{r}
$$

$L_{1}^{(n+1}{ }^{(n+d-2} L_{n-1}^{d} S_{n-s} \rightarrow$
intersection theory on $\mathbb{P}\left(S^{2} \mathcal{U}\right) \times_{G(r, n)} \mathbb{P}\left(S^{2} \mathcal{Q}^{*}\right) \rightarrow$
intersection theory on $G(r, n)$
Main advantage: we may use a very well developed theory of Pragacz, Lascoux and others
Crucial role: Segre class of symmetric square of a bundle

Definition

For I be a set of integers of cardinality r let:

$$
s_{(d)}\left(\left\{x_{i}+x_{j} \mid 1 \leq i \leq j \leq r\right\}\right)=\sum_{\substack{\lambda(I) \vdash d \\ \# I=r}} \psi_{I} s_{\lambda(I)}\left(x_{1}, \ldots, x_{r}\right) .
$$

Equivalently:

$$
\operatorname{Seg}_{d}\left(S^{2} \mathcal{U}\right)=\sum_{\substack{\lambda(I) \vdash d \\ \# I=r}} \psi_{I} \sigma_{\lambda(I)}
$$

where σ_{λ} denote the Schubert classes in the Chow ring of the Grassmannian.
In both

$$
\lambda(I):=\left(i_{r}-(r-1), i_{r-1}-(r-2), \ldots, i_{2}-1, i_{1}\right) .
$$

Example

Consider $G(2,4) . \mathcal{U}$ has two Chern roots x_{1}, x_{2}.

$$
x_{1}+x_{2}=-\square, \quad x_{1} \cdot x_{2}=\square
$$

Chern roots of $S^{2} \mathcal{U}$ are $2 x_{1}, x_{1}+x_{2}, 2 x_{2}$. Three respective Chern classes:

By inverting the Chern polynomial we obtain the Segre classes:

Their coefficients are the Lascoux coefficients, namely:

$$
\psi_{0,2}=3, \quad \psi_{0,3}=\mathbf{7}, \quad \psi_{1,2}=3, \quad \psi_{1,3}=10, \quad \psi_{2,3}=10
$$

Example

Equivalently:

$$
\begin{gathered}
s_{(2)}\left(2 x_{1}, x_{1}+x_{2}, 2 x_{2}\right)=7 x_{1}^{2}+7 x_{2}^{2}+10 x_{1} x_{2}= \\
=7\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)+3 x_{1} x_{2}=7 s_{(2,0)}\left(x_{1}, x_{2}\right)+3 s_{(1,1)}\left(x_{1}, x_{2}\right)
\end{gathered}
$$

Central results

- Pfaffian formulas for ψ_{I} by Pragacz
- Recursive formulas for ψ_{I} by Pragacz and Laksov, Lascoux, Thorup

Theorem (Bothmer, Ranestad)

$$
\left.S_{r} L_{1}^{(n+1}{ }^{(n+1}\right)-m-1 L_{n-1}^{m-1}=\sum_{\substack{I \subset[n] \\ \# I=n-r \\ \sum I=m-n+r}} \psi_{I} \psi_{[n] \backslash I}
$$

Lemma

$\psi_{[n] \backslash I}$ is a polynomial in n

Corollary (Conjectured by Sturmfels and Uhler)
For any d the function $\phi(n, d)$ is a polynomial in n.

$$
\begin{aligned}
& \phi(n, 1)=n-1 \\
& \phi(n, 2)= \\
& \phi(n, 3)=
\end{aligned}
$$

$$
\begin{aligned}
& \phi(n, 1)=n-1 \\
& \phi(n, 2)=(n-1)^{2} \\
& \phi(n, 3)=
\end{aligned}
$$

$$
\begin{aligned}
& \phi(n, 1)=n-1 \\
& \phi(n, 2)=(n-1)^{2} \\
& \phi(n, 3)=(n-1)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \phi(n, 1)=n-1 \\
& \phi(n, 2)=(n-1)^{2} \\
& \phi(n, 3)=(n-1)^{3}-\text { deg base locus }=\frac{1}{6}(5 n-3)(n-1)(n-2)
\end{aligned}
$$

$$
\begin{aligned}
& \phi(n, 1)=n-1 \\
& \phi(n, 2)=(n-1)^{2} \\
& \phi(n, 3)=(n-1)^{3}-\text { deg base locus }=\frac{1}{6}(5 n-3)(n-1)(n-2)
\end{aligned}
$$

Theorem (Stückrad/ Chardin, Eisenbud, Ulrich)

$\phi(n, 4)=\frac{1}{12}(n-1)(n-2)\left(7 n^{2}-19 n+6\right)$

$$
\begin{aligned}
& \phi(n, 1)=n-1 \\
& \phi(n, 2)=(n-1)^{2} \\
& \phi(n, 3)=(n-1)^{3}-\text { deg base locus }=\frac{1}{6}(5 n-3)(n-1)(n-2)
\end{aligned}
$$

Theorem (Stückrad/ Chardin, Eisenbud, Ulrich)
$\phi(n, 4)=\frac{1}{12}(n-1)(n-2)\left(7 n^{2}-19 n+6\right)$

1	2	4	4	2	1	0	0		
1	3	9	17	21	21	17	\ldots		
1	4	16	44	86	137	188	212	188	\ldots

Consequence:

How many quadrics in n variables pass through d (general) points and are tangent to $\binom{n+1}{2}-d-1$ (general) hyperplanes?

Consequence:

How many quadrics in n variables pass through d (general) points and are tangent to $\binom{n+1}{2}-d-1$ (general) hyperplanes?
For fixed d the answer is a polynomial in n.

$$
\begin{gathered}
\phi(n, 17)=\frac{1}{355687428096000}(n-5)(n-4)(n-3)(n-2)(n-1) \\
\left(3024902557 n^{12}-111489409997 n^{11}+1862235028288 n^{10}-\right. \\
18676382506290 n^{9}+125446336704681 n^{8}-594987544526781 n^{7}+ \\
2047718727437714 n^{6}-5214795516381220 n^{5}+10138037306327912 n^{4} \\
-15696938913831072 n^{3}+18622763914779648 n^{2} \\
-12286614789872640 n+2964061900800)
\end{gathered}
$$

Further results

- Types A and D
- Proof of NRS conjecture

$$
\begin{gathered}
S_{n-s} L_{1}^{\binom{n+1}{2}-m-1} L_{n-1}^{m-1}= \\
\sum_{\sum I \leq m-s,|I|=s}(-1)^{m-s-\sum I} \psi_{I} b_{I}(n)\binom{m-1}{m-s-\sum I}
\end{gathered}
$$

- Explicit formulas in terms of dimensions of representations

Future directions

- Does the log-concavity of the coefficients of $\phi(\cdot, d)$ suggest some cohomology theory on infinite dimensional algebraic varieties?
- What is the degree of the dual variety to: matrices of fixed rank intersected with a space of fixed dimension?
- What if we intersect other cohomology classes with $L_{n-1}^{\binom{n+1}{2}-d}$?
- Can we define noncommutative matroids?
- What about graphical Gaussian models?
- What about linear covariance models?

Thank you!

Bibliography

- Michałek, Monin and Wiśniewski. Maximum likelihood degree and space of orbits of a \mathbb{C}^{*} action. arXiv:2004.07735 (2020).
- Manivel, Michałek, Monin, Seynnaeve, Vodicka. Complete quadrics: Schubert calculus for Gaussian models and semidefinite programming. arXiv:2011.08791 (2020).

Bibliography

- Graf von Bothmer, Ranestad. A general formula for the algebraic degree in semidefinite programming. Bulletin of the London Mathematical Society 41.2 (2009): 193-197.
- Laksov, Lascoux, and Thorup. On Giambelli's theorem on complete correlations. Acta Mathematica 162.1 (1989): 143-199.
- Nie, Ranestad, and Sturmfels. The algebraic degree of semidefinite programming. Mathematical Programming 122.2 (2010): 379-405.
- Pragacz. Enumerative geometry of degeneracy loci. Annales scientifiques de l'École Normale Supérieure. Vol. 21. No. 3. 1988.
- Pragacz. Symmetric polynomials and divided differences in formulas of intersection theory. Banach Center Publications 36.1 (1996): 125-177.
- Sturmfels, Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. Annals of the Institute of Statistical Mathematics 62.4 (2010): 603-638.

