Complete quadrics: Schubert calculus for Gaussian models and semidefinite programming

Mateusz Michałek

University of Konstanz

Joint work with: Laurent Manivel, Leonid Monin, Tim Seynnaeve, Martin Vodicka and Jarosław Wiśniewski

False coin

False coin: 60% vs. 40% How to detect?

False coin

False coin: 60% vs. 40% How to detect? Throw 100 times: 57 heads, 43 tails

False coin

False coin: 60% vs. 40% How to detect? Throw 100 times: 57 heads, 43 tails What is the probability of this result for two cases? $1.75 \cdot 10^{-30} \cdot \binom{100}{57}$ vs. $6 \cdot 10^{-33} \cdot \binom{100}{57}$

False coin

False coin: 60% vs. 40% How to detect? Throw 100 times: 57 heads, 43 tails What is the probability of this result for two cases? $1.75 \cdot 10^{-30} \cdot \binom{100}{57}$ vs. $6 \cdot 10^{-33} \cdot \binom{100}{57}$ We maximize the likelihood to find the correct probability distribution

False coin

False coin: 60% vs. 40% How to detect? Throw 100 times: 57 heads, 43 tails What is the probability of this result for two cases? $1.75 \cdot 10^{-30} \cdot \binom{100}{57}$ vs. $6 \cdot 10^{-33} \cdot \binom{100}{57}$ We maximize the likelihood to find the correct probability distribution

 $\begin{array}{c} \mathsf{Example} \rightarrow \mathsf{statistical} \ \mathsf{model} \\ \mathsf{two} \ \mathsf{points} \rightarrow \mathsf{variety} \end{array}$

Gaussian model

 \bullet one dimensional Gaussian distribution: mean μ and variance $\Sigma>0$

Gaussian model

- \bullet one dimensional Gaussian distribution: mean μ and variance $\Sigma>0$
- Multivariate Gaussian distribution on \mathbb{R}^n :

$$f_{\mu,\Sigma}(x) := \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

Here $\mu \in \mathbb{R}^n$ and Σ symmetric PD matrix

Gaussian model

- \bullet one dimensional Gaussian distribution: mean μ and variance $\Sigma>0$
- Multivariate Gaussian distribution on \mathbb{R}^n :

$$f_{\mu,\Sigma}(x) := \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

Here $\mu \in \mathbb{R}^n$ and Σ symmetric PD matrix

Linear concentration models

Concentration matrix $K=\Sigma^{-1}$

Concentration matrix $K = \Sigma^{-1}$

• Anderson 1970: model $K \in \mathcal{L} \subset S^2 \mathbb{R}^n = S^2 V$ for a linear space

Concentration matrix $K = \Sigma^{-1}$

• Anderson 1970: model $K \in \mathcal{L} \subset S^2 \mathbb{R}^n = S^2 V$ for a linear space

Our variety/model:

$$\mathcal{L}^{-1} = \{ K^{-1} : K \in \mathcal{L} \} \subset S^2 V^*$$

Concentration matrix $K = \Sigma^{-1}$

• Anderson 1970: model $K \in \mathcal{L} \subset S^2 \mathbb{R}^n = S^2 V$ for a linear space

Our variety/model:

$$\mathcal{L}^{-1} = \{K^{-1} : K \in \mathcal{L}\} \subset S^2 V^*$$

Data gives: sample covariance matrix Σ_0

Concentration matrix $K = \Sigma^{-1}$

• Anderson 1970: model $K \in \mathcal{L} \subset S^2 \mathbb{R}^n = S^2 V$ for a linear space

Our variety/model:

$$\mathcal{L}^{-1} = \{ K^{-1} : K \in \mathcal{L} \} \subset S^2 V^*$$

Data gives: sample covariance matrix Σ_0 Main question: Which $\Sigma \in \mathcal{L}^{-1}$ maximizes the likelihood?

Concentration matrix $K = \Sigma^{-1}$

• Anderson 1970: model $K \in \mathcal{L} \subset S^2 \mathbb{R}^n = S^2 V$ for a linear space

Our variety/model:

$$\mathcal{L}^{-1} = \{ K^{-1} : K \in \mathcal{L} \} \subset S^2 V^*$$

Data gives: sample covariance matrix Σ_0 Main question: Which $\Sigma \in \mathcal{L}^{-1}$ maximizes the likelihood?

Theorem

Let
$$\pi : \mathbb{P}(S^2V^*) \dashrightarrow \mathbb{P}(S^2V^*/(\mathcal{L}^{\perp}))$$
.
There is a unique $PD \Sigma \in \mathcal{L}^{-1}$ such that $\pi(\Sigma) = \pi(\Sigma_0)$. This is the MLE.

Geometric setting

$$\mathbb{P}(S^2V) \supset \mathcal{L} \dashrightarrow \mathcal{L}^{-1} \subset \mathbb{P}(S^2V^*) \dashrightarrow \mathbb{P}\left(S^2V^*/(\mathcal{L}^{\perp})\right)$$

Our interest: fibers of $\pi_{|\mathcal{L}^{-1}}$

Definition

The maximum likelihood degree is the degree of the (finite) map $\pi_{\mathcal{L}^{-1}}$. For \mathcal{L} general, the ML-degree depends on: $d = \dim \mathcal{L}$ and n. It is denoted by $\phi(n, d)$.

Geometric setting

$$\mathbb{P}(S^2V) \supset \mathcal{L} \dashrightarrow \mathcal{L}^{-1} \subset \mathbb{P}(S^2V^*) \dashrightarrow \mathbb{P}\left(S^2V^*/(\mathcal{L}^{\perp})\right)$$

Our interest: fibers of $\pi_{|\mathcal{L}^{-1}}$

Definition

The maximum likelihood degree is the degree of the (finite) map $\pi_{\mathcal{L}^{-1}}$. For \mathcal{L} general, the ML-degree depends on: $d = \dim \mathcal{L}$ and n. It is denoted by $\phi(n, d)$.

Theorem (Teissier)

For general \mathcal{L} we have $\mathcal{L}^{-1} \cap \mathcal{L}^{\perp} = \emptyset$.

Geometric setting

$$\mathbb{P}(S^2V) \supset \mathcal{L} \dashrightarrow \mathcal{L}^{-1} \subset \mathbb{P}(S^2V^*) \dashrightarrow \mathbb{P}\left(S^2V^*/(\mathcal{L}^{\perp})\right)$$

Our interest: fibers of $\pi_{|\mathcal{L}^{-1}}$

Definition

The maximum likelihood degree is the degree of the (finite) map $\pi_{\mathcal{L}^{-1}}$. For \mathcal{L} general, the ML-degree depends on: $d = \dim \mathcal{L}$ and n. It is denoted by $\phi(n, d)$.

Theorem (Teissier)

For general \mathcal{L} we have $\mathcal{L}^{-1} \cap \mathcal{L}^{\perp} = \emptyset$.

Corollary

 $\phi(n,d) = \deg \mathcal{L}^{-1}$

understand $\phi(n,\cdot) \Leftrightarrow \text{understand}$ the cohomology class $[\Delta]$

understand $\phi(n, \cdot) \Leftrightarrow$ understand the cohomology class $[\Delta]$ ldea: look at a resolution CQ

Complete Quadrics

CQ: closure of the image of the set of invertible matrices under the map

$$\varphi: \mathbb{P}(S^2V) \dashrightarrow \mathbb{P}\left(S^2V\right) \times \mathbb{P}\left(S^2(\bigwedge^2 V)\right) \times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1}V)\right),$$

sending a matrix A to $(A, \bigwedge^2 A, \dots, \bigwedge^{n-1} A)$.

Complete Quadrics

CQ: closure of the image of the set of invertible matrices under the map

$$\varphi: \mathbb{P}(S^2V) \dashrightarrow \mathbb{P}\left(S^2V\right) \times \mathbb{P}\left(S^2(\bigwedge^2 V)\right) \times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1}V)\right),$$

sending a matrix A to $(A, \bigwedge^2 A, \dots, \bigwedge^{n-1} A)$. Equvalently: blow-up of rank $1, 2, \dots, n-2$ matrices

Complete Quadrics

CQ: closure of the image of the set of invertible matrices under the map

$$\varphi: \mathbb{P}(S^2V) \dashrightarrow \mathbb{P}\left(S^2V\right) \times \mathbb{P}\left(S^2(\bigwedge^2 V)\right) \times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1} V)\right),$$

sending a matrix A to $(A, \bigwedge^2 A, \ldots, \bigwedge^{n-1} A)$. Equvalently: blow-up of rank $1, 2, \ldots, n-2$ matrices Two types of divisors:

- L_i : pull-back of $H_i \subset \mathbb{P}\left(S^2(\bigwedge^i V)\right)$
- S_i : exceptional divisor from rank i matrices

Complete Quadrics

CQ: closure of the image of the set of invertible matrices under the map

$$\varphi: \mathbb{P}(S^2V) \dashrightarrow \mathbb{P}\left(S^2V\right) \times \mathbb{P}\left(S^2(\bigwedge^2 V)\right) \times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1}V)\right),$$

sending a matrix A to $(A, \bigwedge^2 A, \dots, \bigwedge^{n-1} A)$. Equvalently: blow-up of rank $1, 2, \dots, n-2$ matrices Two types of divisors:

- L_i : pull-back of $H_i \subset \mathbb{P}\left(S^2(\bigwedge^i V)\right)$
- S_i : exceptional divisor from rank i matrices

$$\phi(n,d) = L_1^{\binom{n+1}{2}-d-1} L_{n-1}^d$$

Theorem (Schubert)

The classes L_1, \ldots, L_{n-1} form a basis of Pic(CQ(V)), in which the classes S_1, \ldots, S_{n-1} are given by the relations

$$S_i = -L_{i-1} + 2L_i - L_{i+1},$$

with $L_0 = L_n := 0$.

- L_i: twice the fundamental roots
- S_i : twice the simple positive roots

$$\phi(n,d) = L_1^{\binom{n+1}{2}-d-1} L_{n-1}^d$$
$$= \frac{1}{n} \sum_{s=1}^{n-1} L_1^{\binom{n+1}{2}-d-2} L_{n-1}^d S_{n-s}$$

$$\mathbb{P}(S^2\mathcal{U})\times_{G(r,n)}\mathbb{P}(S^2\mathcal{Q}^*)$$
 model of S_r

 $\begin{array}{c} L_1^{\binom{n+1}{2}-d-2}L_{n-1}^dS_{n-s} \rightarrow \\ \text{intersection theory on } \mathbb{P}(S^2\mathcal{U})\times_{G(r,n)}\mathbb{P}(S^2\mathcal{Q}^*) \rightarrow \\ \text{intersection theory on } G(r,n) \end{array}$

$$\mathbb{P}(S^2\mathcal{U}) \times_{G(r,n)} \mathbb{P}(S^2\mathcal{Q}^*)$$
 model of S_r

 $\begin{array}{l} L_1^{\binom{n+1}{2}-d-2}L_{n-1}^dS_{n-s}\rightarrow\\ \text{intersection theory on }\mathbb{P}(S^2\mathcal{U})\times_{G(r,n)}\mathbb{P}(S^2\mathcal{Q}^*)\rightarrow\\ \text{intersection theory on }G(r,n)\\ \text{Main advantage: we may use a very well developed theory of Pragacz,}\\ \text{Lascoux and others} \end{array}$

Crucial role: Segre class of symmetric square of a bundle

Definition

For I be a set of integers of cardinality r let:

$$s_{(d)}(\{x_i + x_j \mid 1 \le i \le j \le r\}) = \sum_{\substack{\lambda(I) \vdash d \\ \#I = r}} \psi_I s_{\lambda(I)}(x_1, \dots, x_r).$$

Equivalently:

$$Seg_d(S^2\mathcal{U}) = \sum_{\substack{\lambda(I) \vdash d \\ \#I = r}} \psi_I \sigma_{\lambda(I)},$$

where σ_{λ} denote the Schubert classes in the Chow ring of the Grassmannian.

In both

$$\lambda(I) := (i_r - (r-1), i_{r-1} - (r-2), \dots, i_2 - 1, i_1).$$

Example

Consider G(2,4). U has two Chern roots x_1, x_2 .

$$x_1 + x_2 = -\Box, \quad x_1 \cdot x_2 = \Box$$

Chern roots of $S^2\mathcal{U}$ are $2x_1, x_1 + x_2, 2x_2$. Three respective Chern classes:

By inverting the Chern polynomial we obtain the Segre classes:

Their coefficients are the Lascoux coefficients, namely:

$$\psi_{0,2} = 3$$
, $\psi_{0,3} = 7$, $\psi_{1,2} = 3$, $\psi_{1,3} = 10$, $\psi_{2,3} = 10$.

Mateusz Michałek Complete quadrics and algebraic statistics

Example

Equivalently:

$$s_{(2)}(2x_1, x_1 + x_2, 2x_2) = 7x_1^2 + 7x_2^2 + 10x_1x_2 =$$
$$= 7(x_1^2 + x_1x_2 + x_2^2) + 3x_1x_2 = 7s_{(2,0)}(x_1, x_2) + 3s_{(1,1)}(x_1, x_2).$$

Central results

- Pfaffian formulas for ψ_I by Pragacz
- ullet Recursive formulas for ψ_I by Pragacz and Laksov, Lascoux, Thorup

Theorem (Bothmer, Ranestad)

$$S_{r}L_{1}^{\binom{n+1}{2}-m-1}L_{n-1}^{m-1} = \sum_{\substack{I \subset [n] \\ \#I = n-r \\ \sum I = m-n+r}} \psi_{I}\psi_{[n]\setminus I}$$

Lemma

 $\psi_{[n] \setminus I}$ is a polynomial in n

Corollary (Conjectured by Sturmfels and Uhler)

For any d the function $\phi(n, d)$ is a polynomial in n.

$$\phi(n,1) = n - 1$$

$$\phi(n,2) =$$

$$\phi(n,3) =$$

$$\phi(n, 1) = n - 1$$

 $\phi(n, 2) = (n - 1)^2$
 $\phi(n, 3) =$

$$\begin{aligned} \phi(n,1) &= n-1 \\ \phi(n,2) &= (n-1)^2 \\ \phi(n,3) &= (n-1)^3 \end{aligned}$$

$$\begin{array}{l} \phi(n,1)=n-1\\ \phi(n,2)=(n-1)^2\\ \phi(n,3)=(n-1)^3-\deg \text{ base locus}=\frac{1}{6}(5n-3)(n-1)(n-2) \end{array}$$

$$\begin{array}{l} \phi(n,1)=n-1\\ \phi(n,2)=(n-1)^2\\ \phi(n,3)=(n-1)^3-\deg \text{ base locus}=\frac{1}{6}(5n-3)(n-1)(n-2) \end{array}$$

Theorem (Stückrad/ Chardin, Eisenbud, Ulrich)

$$\phi(n,4) = \frac{1}{12}(n-1)(n-2)(7n^2 - 19n + 6)$$

$$egin{aligned} \phi(n,1) &= n-1 \ \phi(n,2) &= (n-1)^2 \ \phi(n,3) &= (n-1)^3 - \deg \ \mathsf{base} \ \mathsf{locus} &= rac{1}{6}(5n-3)(n-1)(n-2) \end{aligned}$$

Theorem (Stückrad/ Chardin, Eisenbud, Ulrich)

$$\phi(n,4) = \frac{1}{12}(n-1)(n-2)(7n^2 - 19n + 6)$$

 $1 \quad 2 \quad 4 \quad 4 \quad 2 \quad 1 \qquad 0 \quad 0$

 $1 \quad 3 \quad 9 \quad 17 \quad 21 \quad 21 \quad 17 \quad \cdots$

 $1 \quad 4 \quad 16 \quad 44 \quad 86 \quad 137 \quad 188 \quad 212 \qquad 188 \quad \cdots$

Consequence:

How many quadrics in n variables pass through d (general) points and are tangent to $\binom{n+1}{2} - d - 1$ (general) hyperplanes?

Consequence:

How many quadrics in n variables pass through d (general) points and are tangent to $\binom{n+1}{2} - d - 1$ (general) hyperplanes? For fixed d the answer is a polynomial in n.

$$\begin{split} \phi(n,17) &= \frac{1}{355687428096000} (n-5)(n-4)(n-3)(n-2)(n-1) \\ &(3024902557n^{12} - 111489409997n^{11} + 1862235028288n^{10} - \\ &18676382506290n^9 + 125446336704681n^8 - 594987544526781n^7 + \\ &2047718727437714n^6 - 5214795516381220n^5 + 10138037306327912n^4 \\ &- 15696938913831072n^3 + 18622763914779648n^2 \\ &- 12286614789872640n + 2964061900800) \end{split}$$

Further results

- Types A and D
- Proof of NRS conjecture

$$S_{n-s}L_1^{\binom{n+1}{2}-m-1}L_{n-1}^{m-1} =$$

$$\sum_{\sum I \le m-s, |I|=s} (-1)^{m-s-\sum I} \psi_I b_I(n) \binom{m-1}{m-s-\sum I}$$

• Explicit formulas in terms of dimensions of representations

Future directions

- Does the log-concavity of the coefficients of $\phi(\cdot, d)$ suggest some cohomology theory on infinite dimensional algebraic varieties?
- What is the degree of the dual variety to: matrices of fixed rank intersected with a space of fixed dimension?
- What if we intersect other cohomology classes with $L_{n-1}^{\binom{n+1}{2}-d}$?
- Can we define noncommutative matroids?
- What about graphical Gaussian models?
- What about linear covariance models?

Thank you!

Mateusz Michałek Complete quadrics and algebraic statistics

Bibliography

- Michałek, Monin and Wiśniewski. Maximum likelihood degree and space of orbits of a C^{*} action. arXiv:2004.07735 (2020).
- Manivel, Michałek, Monin, Seynnaeve, Vodicka. Complete quadrics: Schubert calculus for Gaussian models and semidefinite programming. arXiv:2011.08791 (2020).

Bibliography

- Graf von Bothmer, Ranestad. A general formula for the algebraic degree in semidefinite programming. Bulletin of the London Mathematical Society 41.2 (2009): 193-197.
- Laksov, Lascoux, and Thorup. On Giambelli's theorem on complete correlations. Acta Mathematica 162.1 (1989): 143-199.
- Nie, Ranestad, and Sturmfels. The algebraic degree of semidefinite programming. Mathematical Programming 122.2 (2010): 379-405.
- Pragacz. Enumerative geometry of degeneracy loci. Annales scientifiques de l'École Normale Supérieure. Vol. 21. No. 3. 1988.
- Pragacz. Symmetric polynomials and divided differences in formulas of intersection theory. Banach Center Publications 36.1 (1996): 125-177.
- Sturmfels, Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. Annals of the Institute of Statistical Mathematics 62.4 (2010): 603-638.