
Automorphism groups of affine spherical varieties

Andriy Regeta

University of Jena

June 5, 2020

Andriy Regeta (University of Jena) Warsaw June 5, 2020 1 / 34



Is a geometric object uniquely determined by its group of symmetries?
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Example

S = {1, 2, ..., n}.

Sym(S) = {bijective maps S → S} is the group of symmetries of S

Let S and S ′ be finite sets. If Sym(S) ∼= Sym(S ′), then there is a bijective
map φ : S → S ′.

Group of symmetries of a finite set S determines the set S (in the category
of finite sets).

Andriy Regeta (University of Jena) Warsaw June 5, 2020 3 / 34



Example

S = {1, 2, ..., n}.

Sym(S) = {bijective maps S → S} is the group of symmetries of S

Let S and S ′ be finite sets. If Sym(S) ∼= Sym(S ′), then there is a bijective
map φ : S → S ′.

Group of symmetries of a finite set S determines the set S (in the category
of finite sets).

Andriy Regeta (University of Jena) Warsaw June 5, 2020 3 / 34



Example

S = {1, 2, ..., n}.

Sym(S) = {bijective maps S → S} is the group of symmetries of S

Let S and S ′ be finite sets. If Sym(S) ∼= Sym(S ′), then there is a bijective
map φ : S → S ′.

Group of symmetries of a finite set S determines the set S (in the category
of finite sets).

Andriy Regeta (University of Jena) Warsaw June 5, 2020 3 / 34



Example

S = {1, 2, ..., n}.

Sym(S) = {bijective maps S → S} is the group of symmetries of S

Let S and S ′ be finite sets. If Sym(S) ∼= Sym(S ′), then there is a bijective
map φ : S → S ′.

Group of symmetries of a finite set S determines the set S (in the category
of finite sets).

Andriy Regeta (University of Jena) Warsaw June 5, 2020 3 / 34



Erlangen Program

In 1872 Felix Klein in his Erlangen Program proposed that group theory, a
branch of mathematics that uses algebraic methods to abstract the idea of
symmetry, was the most useful way of organizing geometrical knowledge.

Study geometrical objects via their transformation (diffeomorphisms,
isometries, automorphism, etc.) groups.
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Erlangen Program

This approach was very fruitful in many areas of mathematics, for
example, to study manifolds via their diffeomorphism groups

Theorem(R. P. Filipkewicz, 1982)
Let M and N be smooth (i.e. C∞) manifolds without boundary and let
Diff(M) and Diff(N) denote the groups of C∞ diffeomorphisms of M and
N respectively. If φ : Diff(M) ∼−→ Diff(N) is a group isomorphism then
there is a C∞ diffeomorphism w : M ∼−→ N.
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Is a geometric object uniquely determined by its group symmetries?

algebraic variety

In algebraic geometry there are at least two natural possibilities for the
group of symmetries:

Regular automorphism group Aut(X )

Birational automorphism group Bir(X )

Aut(X ) ⊂ Bir(X )

Andriy Regeta (University of Jena) Warsaw June 5, 2020 6 / 34



Is a geometric object uniquely determined by its group symmetries?

algebraic variety

In algebraic geometry there are at least two natural possibilities for the
group of symmetries:

Regular automorphism group Aut(X )

Birational automorphism group Bir(X )

Aut(X ) ⊂ Bir(X )

Andriy Regeta (University of Jena) Warsaw June 5, 2020 6 / 34



Is a geometric object uniquely determined by its group symmetries?

algebraic variety

In algebraic geometry there are at least two natural possibilities for the
group of symmetries:

Regular automorphism group Aut(X )

Birational automorphism group Bir(X )

Aut(X ) ⊂ Bir(X )

Andriy Regeta (University of Jena) Warsaw June 5, 2020 6 / 34



Theorem(Cantat, Xie)
Let X be an n-dimensional quasi-projective variety, where n ≥ 2. If Bir(X )
is isomorphic to Bir(Pn), then X is rational.

Moreover, if X is a variety of dimension n and there exist an injective
morphism of groups SL(n + 1,Z) ↪→ Bir(X ), then X is rational.

Pn is uniquely determined (up to birational equivalence) among
n-dimensional varieties by its group of birational transformations.
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If we want to characterize rational varieties, we should look whether
Aut(X ) determines X .

Most toric projective varieties have automorphism group isomorphic to
algebraic torus. Hence, projective toric variety is not determined by its

automorphism group.
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Let X be an affine irreducible variety with a “rich” automorphism group
and Y be any irreducible variety such that there is an isomorphism

ϕ : Aut(X ) ∼−→ Aut(Y ). How similar X and Y are?

Definition
Let G be a reductive, B ⊂ G a Borel subgroup. An affine normal G-variety
X is called spherical if B acts on X with an open orbit.

There exists an affine surface and an isomorphism ψ : Aut(S) ∼−→ Aut(S)
such that for any algebraic subgroup H ⊂ Aut(S), ψ(H) is not an
algebraic subgroup of Aut(S).
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Isomorphism that preserves algebraic subgroups
An isomorphism ϕ : Aut(X )→ Aut(Y ) that sends an algebraic subgroup
G ⊂ Aut(X ) to an algebraic subgroup ϕ(G) ⊂ Aut(Y ) and restriction of ϕ
to G is an isomorphism of algebraic groups
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Characterization of spherical varieties

Weight Monoid
O(X ) is a multiplicity free G-module, that is, the multiplicity of every
irreducible module in O(X ) is at most 1. By the weight monoid Λ+(X ) of
X we mean the set of all highest weights of the G-module O(X ).

Theorem(van Santen, R.)
Let X be a spherical affine variety different from algebraic torus and Y be
an affine irreducible normal variety. If there is an isomorphism
ϕ : Aut(Y ) ' Aut(X ) that preserves algebraic subgroups, then Y is also
spherical and Λ+(X ) = Λ+(Y ).
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Corollary
if X is toric, then Y ' X .
if X and Y are smooth, then Y ' X .
in general, for a given X there are finitely many spherical varieties
Y1, . . . ,Yl such that Aut(Yj) ' Aut(X ).

Example (the case of algebraic torus)
Let T be an algebraic torus and let C be a smooth affine curve. If C has
trivial automorphism group and no invertible global functions, then there is
an isomorphism Aut(T )→ Aut(C ×T ) that preserves algebraic subgroups.
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Non-spherical case

Example(Danielewski surfaces)
Let Dp = {xy = p(z)} ⊂ A3 be a Danielewski surface, where p is a
polynomial without multible roots. Note that Dp is smooth. Then for two
generic polynomials p and q, there is an isomorphism

ϕ : Aut(Dp)→ Aut(Dq)

that maps isomoprhically algebraic subgroups of Aut(Dp) to algebraic
subgorups of Aut(Dq).

Remark

Aut(Dp) ' Aut(Dq)

as a so-called ind-group if and only if Dp ' Dq.
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Definition
Let X be an affine spherical G-variety. A unipotent subgroup H ⊂ Aut(X )
is called a generalized root subgroup (with respect to B) if H is
commutative and every one-dimensional subgroup of H is normalized by B.

the weights of all the one-dimensional subgroups of a generalized root
subgroups are the same. This weight, we call the weight of the generalized
root group.

Proposition
Let Y be an irreducible normal affine G-variety. The following statements
are equivalent:

Y is G-spherical;
there exists a constant C such that dimH ≤ C for each generalized
root subgroup H ⊂ Aut(Y ).
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Idea of the proof

Let ϕ : Aut(X ) ∼−→ Aut(Y ) be an isomorphism that preserves algebraic
groups.

For every algebraic subgroup K ⊂ Aut(X ), the isomorphism ϕ restricts to
an isomorphism of algebraic groups K and ϕ(K ). In particular, a
generalized root subgroup of weight λ is maped to generalized root
subgroup with the same weight.

The set of weights of generalized root subgroups determines the weight
monoid of spherical variety.
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What if Aut(X ) and Aut(Y ) are isomorphic only as abstract groups?
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Characterization of affine spherical surfaces

Theorem(Liendo, Urech, R.)
Let X and Y be affine surfaces and there is an isomorphism
ϕ : Aut(X ) ∼−→ Aut(Y ) of groups. Then the following is satisfied.
(1) If H is a connected non-unipotent algebraic subgroup of Aut(X ), then
ϕ(H) is an algebraic subgroup of Aut(Y ) isomorphic to H.
(2) If X is spherical G-variety, then Y is also spherical G-variety that is
isomorphic to X .
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Topology on Bir(S)

Let A be a variety and f : A× S → A× S be an A-birational map, i.e.,

f is the identity in the first factor
f induces an isomorphism between open subsets U and V of A× S
such that the projections from U and from V to A are both surjective.

Each a ∈ A defines an element in Bir(S) and hence we obtain a map
A→ Bir(S) that we call a morphism.

The Zariski topology on Bir(S) is the finest topology making all such
morphisms continuous.

Andriy Regeta (University of Jena) Warsaw June 5, 2020 18 / 34



Algebraic elements in Bir(S)

Definition
An algebraic subgroup of Bir(S) is the image of an algebraic group G by a
morphism G → Bir(S) that is also an injective homomorphism of groups.
An element g ∈ Bir(S) is called algebraic if it is contained in an algebraic
subgroup.

Lemma
Let S be a surface and f ∈ Bir(S).
Then the following two conditions are equivalent:

There exists a k > 0 such that f k is divisible,
f is algebraic.
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Algebraic elements in Aut(S)

Definition
An element g ∈ Aut(S) is called algebraic if it is contained in an algebraic
subgroup

Lemma
Let S be an affine surface and let g ∈ Aut(S) be an automorphism. Then
g is an algebraic element in Bir(S) if and only if g is an algebraic element
in Aut(S).
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Algebraic elements are preserved

Proposition
Let X and Y be affine surfaces, ϕ : Aut(X )→ Aut(Y ) a group
homomorphism, and g ∈ Aut(X ) an algebraic element. Then ϕ(g) is an
algebraic element in Aut(Y ).
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Spherical surfaces

Any spherical surface different from toric surface is isomorphic either to
SL(2,C)/D or to SL(2,C)/N.

Therefore, we have to deal, mainly, with toric surfaces.
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Torus goes to 2-dimensional torus

Lemma
Let X and Y be normal affine surfaces with X toric and
ϕ : Aut(X ) ∼−→ Aut(Y ) a group isomorphism.
Then ϕ(T ) is a maximal subtorus in Aut(Y ).

Lemma
Let X and Y be normal affine surfaces with X toric,
ϕ : Aut(X ) ∼−→ Aut(Y ) a group isomorphism, and U ⊂ Aut(X ) a root
subgroup. Then ϕ(U) is a root subgroup in Aut(Y ) with respect to ϕ(T ).
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End of the proof

We know now that Y is a toric surface and we have a bijection on the root
subgroups of Aut(X ) and Aut(Y ) with respect to T and ϕ(T ).

To finish the proof, it is enough to show that we can retrieve a toric
surface X from the abstract group structure of its root subgroups and
their relationship with the torus.

Recall that any affine toric surface X without torus factor is isomorphic to
Xd ,e , the quotient of A2 under the µd = {ξ ∈ C∗ | ξd = 1}-action

g : (x , y) 7→ (ξex , ξy)

where ξ is a d-th primitive root of unity 0 ≤ e < d , (e, d) = 1.

Xd ,e is isomorphic to Xd ′,e′ if and only if d = d ′ and e = e′ or d = d ′ and
e · e′ = 1 mod d.
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End of the proof

The center of Ga o T is {0} × kerχ, so we can recover kerχ.

There are two families K and L of commuting root subgroups in Aut(X ).
We define the following subsets of Z≥0 :

KU = {| kerχ ∩ kerχ′ |, ∀U ′ ∈ L} ∀U ∈ K

LU = {| kerχ ∩ kerχ′ |,∀U ′ ∈ K} ∀U ∈ L

After some finite part, they form arithmetic progressions.

The two shortest common differences in this arithmetic progressions are

d and d + e or d and d + e′ with e · e′ = 1 mod d .

Hence, these sets uniquely determine X .
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What about higher dimensional case?

Theorem(Cantat, Xie, R.)
Let the base field be uncountable algberaically closed field (of any
characteristic). Let X be a connected affine variety such that
Aut(X ) ' Aut(An), then X ' An as a variety.

Remark
Note that if X is quasi-projective in the Theorem above, then the result
does not hold: for example,

Aut(An) ' Aut(An × Z ),

where Z is projective with trivial automorphism group.
Moreover, the condition on X to be connected is crucial:

Aut(An) ' Aut(An t Z ),

where Z is affine with trivial automorphism group.
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We can weaken the requirement on uncountability of the base field (of
characteristic zero) in the Theorem above, but in this case we need to
require that dimX ≤ n.

More precisely, we classify n-dimenisonal quasi-affine varieties X endowed
with faithful action of a finite index subgroup Γ < SLn(Z): X is either
isomorphic to
(i) An/µk , where µk = 〈ξ | ξk = 1〉 acts on An by scalar multiplication:

ξ · (x1, . . . , xn) = (ξx1, . . . , ξxn).

In this case Γ acts on An/µk linearly.
(ii) Gn

m and the action of Γ on Gn
m is monomial.

(iii) Gn
m/〈τ〉, where τ : (x1, . . . , xn) 7→ (x−1

1 , . . . , x−1
n ) and Γ acts

monomially.
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As a consequence from this classification we prove the following result:
If X is quasi-affine variety of dimension ≤ n and Aut(X ) ' Aut(An) as an
abstract group, then X ' An as a variety.

The last result is mainly based on p-adic analisys and birational geometry.
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Ind-groups

Definition
By an ind-variety we mean a set V together with an ascending filtration
V0 ⊂ V1 ⊂ V2 ⊂ . . . such that the following is satised:
(1) V = ∪k∈NVk ;
(2) each Vk has the structure of an algebraic variety.
(3) for all k ∈ N the inclusion Vk ⊂ Vk+1 is a closed in Zariski topology.

Topology
An ind-variety V = ∪kVk has a natural Zariski topology: S ⊂ V is closed
(resp. open) if Sk = S ∩ Vk ⊂ Vk is closed (resp. open) for every k.

Morphism
A map Φ: V →W between ind-varieties V = ∪kVk and W = ∪lWl is a
morphism if for each k there is l ∈ N such that Φ(Vk) ⊂Wl and the
induced map Φk : Vk →Wl is a morphism of algebraic varieties.
Isomorphisms of ind-varieties are defined in the usual way.
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(1) V = ∪k∈NVk ;
(2) each Vk has the structure of an algebraic variety.
(3) for all k ∈ N the inclusion Vk ⊂ Vk+1 is a closed in Zariski topology.

Topology
An ind-variety V = ∪kVk has a natural Zariski topology: S ⊂ V is closed
(resp. open) if Sk = S ∩ Vk ⊂ Vk is closed (resp. open) for every k.

Morphism
A map Φ: V →W between ind-varieties V = ∪kVk and W = ∪lWl is a
morphism if for each k there is l ∈ N such that Φ(Vk) ⊂Wl and the
induced map Φk : Vk →Wl is a morphism of algebraic varieties.
Isomorphisms of ind-varieties are defined in the usual way.
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Ind-groups

Definition
The product of two ind-varieties is defined in the obvious way. An
ind-variety G is called an ind-group if the underlying set G is a group such
that the map G × G → G , dened by (g , h) 7→ gh−1, is a morphism of
ind-varieties.

Theorem
Let X be an affine variety. Then Aut(X ) has the structure of an ind-group
acting “morphically” on X ; this means that the action Aut(X )× X → X
of Aut(X ) on X induces a morphism of algebraic varieties
Aut(X )i × X → X for every i ∈ N, where

Aut(X )1 ⊂ Aut(X )2 ⊂ . . .

is a filtration of the ind-group Aut(X ).

Andriy Regeta (University of Jena) Warsaw June 5, 2020 30 / 34



Example

Ind-structure on Aut(An).
For example, if X = An, the ind-group filtration (Aut(An)d )d≥1 of
Aut(An) is defined in the following way:

Aut(An)d = {f = (f1, . . . , fn) ∈ Aut(An) | deg f = max
i

deg fi , deg f −1 ≤ d}
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The main ingridient of the proof

Proposition
Let X be an affine variety and V ⊂ Aut(X ) be an irreducible subvariety
that consists of commuting elements and identity element belongs to V .
Then the group 〈V 〉 is an algebraic subgroup of Aut(X ).

Basically we use this Proposition to reduce problems for infinite-
dimensional subgroups of Aut(X ) to problems for algebraic subgroups.

Remark
It is crucial to assume that id ∈ V . Indeed, one can pick a single
automorphism f with {deg f n | n ∈ N} unbounded. Then {f n | n ∈ Z} is
not algebraic.
Note that such f exists, take for example f : (x , y) 7→ (y , x + y2).
In this case deg f n = 2n.
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Proposition does not hold for the group of birational transformations
For X = A2 consider

V = {(x , y) 7→ (x , (1 + ax)y) | a ∈ C}.

Then id ∈ V , but 〈V 〉 is not an algebraic group since it is not of bounded
degree.

Corollary
Connected commutative ind-subgroup of Aut(X ) is the inductive limit of
commutative linear algebraic groups.

Idea of the proof of Corollary
By definition, a connected commutative ind-subgroup G ⊂ Aut(X ) is a
union of closed irreducible algberaic subvarieties Gi . By Proposition above
〈Gi〉 = Gi is a connected algebraic group.
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