On stratified vector bundles in characteristic p Talk at IMPANGA, 15th Jan., 2021

V. Srinivas

School of Mathematics, Tata Institute of Fundamental Research, Mumbai srinivas@math.tifr.res.in

크

イロト イヨト イヨト イヨト

Let X be a smooth variety over a perfect field k, and let D_X be the sheaf of (algebraic) differential operators on X.

< 🗇 🕨 < 🖃 🕨

Let *X* be a smooth variety over a perfect field *k*, and let D_X be the sheaf of (algebraic) differential operators on *X*. We recall:

Definition

A stratified vector bundle on X is a vector bundle (locally free coherent sheaf) equipped with a compatible D_X -module structure.

Let *X* be a smooth variety over a perfect field *k*, and let D_X be the sheaf of (algebraic) differential operators on *X*. We recall:

Definition

A stratified vector bundle on X is a vector bundle (locally free coherent sheaf) equipped with a compatible D_X -module structure.

char. k=0: stratified vector bundles are the same as vector bundles endowed with an algebraic connection, with vanishing curvature. Thus if k = C and X is proper, there is a (Riemann-Hilbert) correspondence

{stratified vector bundles of rank n on X}

 $\leftrightarrow \left\{ \text{representations } \pi_1^{\text{top}}(X_{an}) \to \text{GL}_n(\mathbb{C}) \right\}$

• char.k = p > 0: N. Katz obtained an equivalence

{stratified vector bundles of rank *r* on *X*} \uparrow {sequences $(\mathcal{E}_n, \sigma_n)_{n \ge 0}$, where each \mathcal{E}_n is a vector bundle of rank *r*, and $\sigma_n : F^* \mathcal{E}_{n+1} \xrightarrow{\cong} \mathcal{E}_n$ is an isomorphism}

Here $F : X \rightarrow X$ is the (absolute) Frobenius morphism.

 $(\mathcal{E}_n, \sigma_n)_{n \ge 0} \mapsto \{\mathcal{E}_0, \text{ endowed with its 'tautological' } \mathcal{D}_X \text{-structure.}\}$

A (10) A (10) A (10)

 $(\mathcal{E}_n, \sigma_n)_{n \ge 0} \mapsto \{\mathcal{E}_0, \text{ endowed with its 'tautological' } \mathcal{D}_X \text{-structure.}\}$

If $\mathcal{E}_0 \cong F^* \mathcal{E}_1$, then \mathcal{E}_0 has 'distinguished' local trivializations with transition matrices whose entries are p^{th} powers of functions.

 $(\mathcal{E}_n, \sigma_n)_{n \ge 0} \mapsto \{\mathcal{E}_0, \text{ endowed with its 'tautological' } \mathcal{D}_X \text{-structure.}\}$

If $\mathcal{E}_0 \cong F^* \mathcal{E}_1$, then \mathcal{E}_0 has 'distinguished' local trivializations with transition matrices whose entries are p^{th} powers of functions.

Hence there is an associated 'tautological' connection on \mathcal{E}_0 , for which the 'distinguished' local basis sections are flat.

 $(\mathcal{E}_n, \sigma_n)_{n \ge 0} \mapsto \{\mathcal{E}_0, \text{ endowed with its 'tautological' } \mathcal{D}_X \text{-structure.}\}$

If $\mathcal{E}_0 \cong F^* \mathcal{E}_1$, then \mathcal{E}_0 has 'distinguished' local trivializations with transition matrices whose entries are p^{th} powers of functions.

Hence there is an associated 'tautological' connection on \mathcal{E}_0 , for which the 'distinguished' local basis sections are flat.

The 'tautological' \mathcal{D}_X -structure is given along similar lines.

Basic Ref: Gieseker, D., "Flat vector bundles and the fundamental group in non-zero characteristics", Ann. Sc. Norm. Pisa (1975).

If $\rho : \pi_1^{et}(X) \to GL_n(k)$ is a continuous representation (i.e. ρ has finite image), and $f : Y \to X$ is the Galois étale covering associated to ker ρ , then ρ defines descent data on $\mathcal{O}_Y^{\oplus n}$, and so determines a vector bundle \mathcal{E} on X with a $\pi_1^{et}(X)$ -equivariant isomorphism

 $f^*\mathcal{E}\cong \mathcal{O}_Y^{\oplus n}.$

If $\rho : \pi_1^{et}(X) \to GL_n(k)$ is a continuous representation (i.e. ρ has finite image), and $f : Y \to X$ is the Galois étale covering associated to ker ρ , then ρ defines descent data on $\mathcal{O}_Y^{\oplus n}$, and so determines a vector bundle \mathcal{E} on X with a $\pi_1^{et}(X)$ -equivariant isomorphism

 $f^*\mathcal{E}\cong \mathcal{O}_Y^{\oplus n}.$

One checks that \mathcal{E} supports a natural \mathcal{D}_X -action so that the above isomorphism is also $f^*\mathcal{D}_X = \mathcal{D}_Y$ -equivariant.

If $\rho : \pi_1^{et}(X) \to GL_n(k)$ is a continuous representation (i.e. ρ has finite image), and $f : Y \to X$ is the Galois étale covering associated to ker ρ , then ρ defines descent data on $\mathcal{O}_Y^{\oplus n}$, and so determines a vector bundle \mathcal{E} on X with a $\pi_1^{et}(X)$ -equivariant isomorphism

$$f^*\mathcal{E}\cong \mathcal{O}_Y^{\oplus n}.$$

One checks that \mathcal{E} supports a natural \mathcal{D}_X -action so that the above isomorphism is also $f^*\mathcal{D}_X = \mathcal{D}_Y$ -equivariant.

Such a stratified bundle \mathcal{E} is called a *finite stratified bundle*.

(Lange-Stuhler, 1977) If k is alg. closed of characteristic p > 0, then a vector bundle \mathcal{E} satisfying $(F^N)^*\mathcal{E} \cong \mathcal{E}$, for some $N \ge 1$, is a finite stratified bundle. The converse holds with $k = \overline{\mathbb{F}}_p$, or if \mathcal{E} is stable.

Here $F : X \rightarrow X$ is the Frobenius map.

(Lange-Stuhler, 1977) If k is alg. closed of characteristic p > 0, then a vector bundle \mathcal{E} satisfying $(F^N)^*\mathcal{E} \cong \mathcal{E}$, for some $N \ge 1$, is a finite stratified bundle. The converse holds with $k = \overline{\mathbb{F}}_p$, or if \mathcal{E} is stable.

Here $F : X \rightarrow X$ is the Frobenius map.

In one direction, if *E* corresponds to a representation ρ which is conjugate to a representation into $\operatorname{GL}_n(\mathbb{F}_q)$, with $q = p^N$, then $(F^N)^*\mathcal{E} \cong \mathcal{E}$. (This condition on ρ may not hold unless $k = \overline{\mathbb{F}}_p$, or ρ is irreducible.)

(Lange-Stuhler, 1977) If k is alg. closed of characteristic p > 0, then a vector bundle \mathcal{E} satisfying $(F^N)^*\mathcal{E} \cong \mathcal{E}$, for some $N \ge 1$, is a finite stratified bundle. The converse holds with $k = \overline{\mathbb{F}}_p$, or if \mathcal{E} is stable.

Here $F : X \rightarrow X$ is the Frobenius map.

In one direction, if *E* corresponds to a representation ρ which is conjugate to a representation into $\operatorname{GL}_n(\mathbb{F}_q)$, with $q = p^N$, then $(F^N)^*\mathcal{E} \cong \mathcal{E}$. (This condition on ρ may not hold unless $k = \overline{\mathbb{F}}_p$, or ρ is irreducible.)

The converse is a sort of "non-abelian Artin-Schreier" argument, using the Lang torsor.

In characteristic 0, it is easy to see that if *X* is proper, and $\pi_1^{et}(X) = 0$, then all stratified vector bundles are trivial (that is, isomorphic to $\mathcal{O}_X^{\oplus n}$ as a stratified bundle, for some *n*).

In characteristic 0, it is easy to see that if *X* is proper, and $\pi_1^{et}(X) = 0$, then all stratified vector bundles are trivial (that is, isomorphic to $\mathcal{O}_X^{\oplus n}$ as a stratified bundle, for some *n*).

A similar result holds even for non-proper X, if we restrict ourselves to stratified bundles with *regular singularities at infinity* (i.e., admitting a coherent extension to a good compactification as a 'logarithmic connection'). This is a consequence of results of Deligne.

< 🗇 🕨 < 🖻 🕨

Gieseker conjectured the following.

Conjecture

Let *k* be an alg. closed field *k* of char. p > 0. (*i*) If *X* is smooth and projective over *k*, with $\pi_1^{et}(X) = 0$, then all stratified bundles on *X* are trivial. Gieseker conjectured the following.

Conjecture

Let *k* be an alg. closed field *k* of char. p > 0. (*i*) If *X* is smooth and projective over *k*, with $\pi_1^{et}(X) = 0$, then all stratified bundles on *X* are trivial. (*ii*) If $X = \overline{X} \setminus D$ where \overline{X} is smooth and projective over *k*, *D* an SNCD, and if $\pi_1^{tame}(X) = 0$, then all regular singular stratified bundles on *X* are trivial.

Gieseker gave a suitable definition of "regular singular stratified bundles" in the setup of (ii).

イロト イ押ト イヨト イヨト

Conjecture (i) was proved by Esnault-Mehta (Inventiones, 2010).

< **-□** > <

Conjecture (i) was proved by Esnault-Mehta (Inventiones, 2010). Conjecture (ii) is open (Esnault and Kindler have some positive results).

< 17 ▶

Conjecture (i) was proved by Esnault-Mehta (Inventiones, 2010).

Conjecture (ii) is open (Esnault and Kindler have some positive results).

The proof of Esnault-Mehta uses standard vector bundle techniques, as well as a result of Hrushovski, obtained using the viewpoint of *model theory*.

Conjecture (i) was proved by Esnault-Mehta (Inventiones, 2010).

Conjecture (ii) is open (Esnault and Kindler have some positive results).

The proof of Esnault-Mehta uses standard vector bundle techniques, as well as a result of Hrushovski, obtained using the viewpoint of *model theory*.

Subsequently, Esnault and I used related techniques to get some further results, which I discuss next.

(E-VS,2014) Let X be smooth quasi-projective over $\overline{\mathbb{F}}_p$, with $\pi_1^{et}(X) = 0$. Assume there exists a normal projective variety \overline{X} containing X as a dense open, such that $\operatorname{codim}_{\overline{X}}(\overline{X} \setminus X) \ge 2$. Then all stratified bundles on X are trivial.

(E-VS,2014) Let X be smooth quasi-projective over $\overline{\mathbb{F}}_p$, with $\pi_1^{et}(X) = 0$. Assume there exists a normal projective variety \overline{X} containing X as a dense open, such that $\operatorname{codim}_{\overline{X}}(\overline{X} \setminus X) \ge 2$. Then all stratified bundles on X are trivial.

We note that $\pi_1^{et}(X) = 0$ implies $\Gamma(X, \mathcal{O}_X) = k$ (since $\pi_1^{et}(\mathbb{A}_k^1) \neq 0$); the existence of a compactification with "small" boundary is a similar, but stronger, condition.

(E-VS,2014) Let X be smooth quasi-projective over $\overline{\mathbb{F}}_p$, with $\pi_1^{et}(X) = 0$. Assume there exists a normal projective variety \overline{X} containing X as a dense open, such that $\operatorname{codim}_{\overline{X}}(\overline{X} \setminus X) \ge 2$. Then all stratified bundles on X are trivial.

We note that $\pi_1^{et}(X) = 0$ implies $\Gamma(X, \mathcal{O}_X) = k$ (since $\pi_1^{et}(\mathbb{A}_k^1) \neq 0$); the existence of a compactification with "small" boundary is a similar, but stronger, condition.

On the other hand, the result is for $\pi_1^{et} = 0$, rather than π_1^{tame} , and regular singularities are not imposed.

イロト イ理ト イヨト イヨト

Our results-2

Theorem

(E-VS,2017) Let $f : Y \to X$ be a morphism of smooth projective varieties over an alg. closed field k of char. p > 0 such that $f_* : \pi_1^{et}(Y) \to \pi_1^{et}(X)$ is trivial. Then any stratified bundle on X has trivial pullback to Y, as a stratified bundle.

This is a relative version of the Gieseker Conjecture (i). There is related work of X. Sun, giving another approach.

Our results-2

Theorem

(E-VS,2017) Let $f : Y \to X$ be a morphism of smooth projective varieties over an alg. closed field k of char. p > 0 such that $f_* : \pi_1^{et}(Y) \to \pi_1^{et}(X)$ is trivial. Then any stratified bundle on X has trivial pullback to Y, as a stratified bundle.

This is a relative version of the Gieseker Conjecture (i). There is related work of X. Sun, giving another approach. But it is not the only possible such statement:

Question

If *X*, *Y* are projective smooth over an alg. closed *k* of char. p > 0, such that $f : Y \to X$ induces an iso. on π_1^{et} , does f^* induce an equivalence on stratified bundles?

I believe this is still an open question.

• • • • • • • • • • • •

Let *Y* be a nonsingular proper variety over an alg. closed *k* of char. p > 0. Let $\mathcal{L} \in Pic(Y)$ be an invertible sheaf, such that (i) $\mathcal{L} \notin \mathcal{O}_Y$

(ii) there exists a non-zero $s \in \Gamma(Y, \mathcal{L})$. Define

 $X = \operatorname{\mathbf{Spec}}_Y \oplus_{n \ge 0} \mathcal{L}^{-n}.$

Then the structure morphism $f : X \to Y$ is an \mathbb{A}^1 -bundle, and X is in particular non-proper; also $\Gamma(X, \mathcal{O}_X) = k$.

Let *Y* be a nonsingular proper variety over an alg. closed *k* of char. p > 0. Let $\mathcal{L} \in Pic(Y)$ be an invertible sheaf, such that (i) $\mathcal{L} \notin \mathcal{O}_Y$

(ii) there exists a non-zero $s \in \Gamma(Y, \mathcal{L})$. Define

 $X = \operatorname{\mathbf{Spec}}_Y \oplus_{n \ge 0} \mathcal{L}^{-n}.$

Then the structure morphism $f : X \to Y$ is an \mathbb{A}^1 -bundle, and X is in particular non-proper; also $\Gamma(X, \mathcal{O}_X) = k$.

Claim: $f_* : \pi_1^{et}(X) \to \pi_1^{et}(Y)$ is an isomorphism.

In particular, taking *Y* to be (say) a smooth complete intersection of dimension ≥ 2 , we get plenty of examples of simply connected *X*.

・ロ・・ (日・・ モ・・ ・ 日・・

To prove the Claim, consider the inclusion $\mathcal{L}^{-1} \hookrightarrow \mathcal{O}_Y$ determined by *s*. This gives a graded inclusion

$$\oplus_{n\geq 0}\mathcal{L}^{-n} \hookrightarrow \mathcal{O}_{Y}[t], \ \mathbf{s}^{n}: \mathcal{L}^{-n} \hookrightarrow \mathcal{O}_{Y}t^{n}$$

and hence on applying $\textbf{Spec}_{\textbf{Y}},$ we obtain a commutative diagram of $\mathbb{A}^1\text{-}\text{fibrations}$

Note that (i) $s^* : \mathbb{A}^1_Y \to X$ induces a surjection on π_1^{et} , since it is dominant and birational

Note that

(i) $s^* : \mathbb{A}^1_Y \to X$ induces a surjection on π_1^{et} , since it is dominant and birational

(ii) if we fix a base point $y \in Y$, then the pointed inclusions

 $(Y, y) \rightarrow (\mathbb{A}^1_Y, (0, y))$ (the zero section),

 $(\mathbb{A}^1_k, \mathbf{0}) \to (\mathbb{A}^1_Y, (\mathbf{0}, y))$ (fibre over y)

induce an *isomorphism*

 $\pi_1^{et}(Y,y)\times\pi_1^{et}(\mathbb{A}^1_k,0)\to\pi_1^{et}(\mathbb{A}^1_Y,(0,y))=\pi_1^{et}((\mathbb{A}^1_k,0)\times(Y,0)).$

Here (ii) holds even though \mathbb{A}_k^1 is non-proper, since the other factor *Y* is proper.

く 戸 と く ヨ と く ヨ と …

An example

Now take $y \in Y$ to be a point with s(y) = 0 (such a point y always exists, since \mathcal{L} is a *nontrivial* line bundle). We then see that the composition

$$(\mathbb{A}^1_k, \mathbf{0}) \to (\mathbb{A}^1_Y, (\mathbf{0}, y)) \to (X, s^*(\mathbf{0}, y))$$

maps \mathbb{A}^1_k to the origin in the fibre $f^{-1}(y) \cong \mathbb{A}^1_k$.

An example

Now take $y \in Y$ to be a point with s(y) = 0 (such a point y always exists, since \mathcal{L} is a *nontrivial* line bundle). We then see that the composition

$$(\mathbb{A}^1_k,0) \to (\mathbb{A}^1_Y,(0,y)) \to (X,s^*(0,y))$$

maps \mathbb{A}_k^1 to the origin in the fibre $f^{-1}(y) \cong \mathbb{A}_k^1$. Hence the composition

$$\pi_1^{et}(Y, y) \times \pi_1^{et}(\mathbb{A}^1_k, 0) \xrightarrow{\cong} \pi_1^{et}(\mathbb{A}^1_Y, (0, y)) \twoheadrightarrow \pi_1^{et}(X, s^*(0, y))$$

is trivial on the second factor, i.e. the inclusion $Y \rightarrow X$, as the 0-section of $f: X \rightarrow Y$, induces a surjection on π_1^{et} . This easily gives the Claim, that f_* induces an iso. on π_1^{et} .

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Fix a very ample $\mathcal{O}_X(1)$, so that there are associated notions of Hilbert polynomials, slopes μ , stability, Harder-Narasimhan filtrations, moduli etc.

Fix a very ample $\mathcal{O}_X(1)$, so that there are associated notions of Hilbert polynomials, slopes μ , stability, Harder-Narasimhan filtrations, moduli etc.

Observe that under Frobenius pullbacks, we have

$$\mu((F^{n})^{*}\mathcal{G}) = p^{n}\mu(\mathcal{G}), \quad \mu_{max}((F^{n})^{*}\mathcal{G}) \ge p^{n}\mu_{max}(\mathcal{G}),$$
$$\mu_{min}((F^{n})^{*}\mathcal{G}) \le p^{n}\mu_{min}(\mathcal{G}).$$

Fix a very ample $\mathcal{O}_X(1)$, so that there are associated notions of Hilbert polynomials, slopes μ , stability, Harder-Narasimhan filtrations, moduli etc.

Observe that under Frobenius pullbacks, we have

$$\mu((F^{n})^{*}\mathcal{G}) = p^{n}\mu(\mathcal{G}), \quad \mu_{max}((F^{n})^{*}\mathcal{G}) \ge p^{n}\mu_{max}(\mathcal{G}),$$
$$\mu_{min}((F^{n})^{*}\mathcal{G}) \le p^{n}\mu_{min}(\mathcal{G}).$$

Hence if $\mathcal{E} = (F^n)^* \mathcal{G}$ with $p^n > (\mu_{max}(\mathcal{E}) - \mu_{min}(\mathcal{E}))(\operatorname{rank} \mathcal{E})$, then \mathcal{G} must be μ -semistable.

For stratified bundles $\mathbb{E} = (\mathcal{E}_n, \sigma_n)_{n \ge 0}$ this implies the following.

- The Hilbert polynomials χ(E_n(m)) ∈ Q[m] all coincide with (rank E)χ(O_X(m))
- Any $\mathbb E$ has a Jordan-Holder filtration by stratified subbundles

$$\mathbb{E} \supset F^1\mathbb{E} \supset \cdots \supset F^s\mathbb{E} \supset F^{s+1}\mathbb{E} = 0$$

such that, for some $n_0 = n_0(\mathbb{E}) \ge 0$, the vector bundles $(F^i \mathbb{E}/F^{i+1}\mathbb{E})_n$ occuring in the quotient stratifications are all μ -stable, for all $n \ge n_0$.

For stratified bundles $\mathbb{E} = (\mathcal{E}_n, \sigma_n)_{n \ge 0}$ this implies the following.

- The Hilbert polynomials χ(E_n(m)) ∈ Q[m] all coincide with (rank E)χ(O_X(m))
- Any $\mathbb E$ has a Jordan-Holder filtration by stratified subbundles

$$\mathbb{E} \supset F^1\mathbb{E} \supset \cdots \supset F^s\mathbb{E} \supset F^{s+1}\mathbb{E} = 0$$

such that, for some $n_0 = n_0(\mathbb{E}) \ge 0$, the vector bundles $(F^i \mathbb{E}/F^{i+1}\mathbb{E})_n$ occuring in the quotient stratifications are all μ -stable, for all $n \ge n_0$.

So it suffices to prove that (i) all *irreducible* stratified bundles are trivial, and (ii) all *unipotent* stratified bundles are trivial.

Here (ii) follows easily from Artin-Schreier theory, so (i) is the main point to prove.

伺 ト イヨト イヨト

We'll use a result of Hrushovski, originally obtained from a Model Theory perspective:

Theorem

(Hrushovski) Let $\Phi : Z \to Z$ be a dominant rational map of $\overline{\mathbb{F}}_p$ -schemes which is defined over \mathbb{F}_q . Then the graph $\Gamma_{\Phi} \subset Z \times Z$ has a Zariski dense set of points $(x, F_q^s(x))$ where x is a closed point at which Φ is defined, F_q is the geometric Frobenius (associated to the \mathbb{F}_q structure), and s is some positive integer (which may depend on x).

This easily implies *Z* has a dense set of Φ -periodic points.

We'll use a result of Hrushovski, originally obtained from a Model Theory perspective:

Theorem

(Hrushovski) Let $\Phi : Z \to Z$ be a dominant rational map of $\overline{\mathbb{F}}_p$ -schemes which is defined over \mathbb{F}_q . Then the graph $\Gamma_{\Phi} \subset Z \times Z$ has a Zariski dense set of points $(x, F_q^s(x))$ where x is a closed point at which Φ is defined, F_q is the geometric Frobenius (associated to the \mathbb{F}_q structure), and s is some positive integer (which may depend on x).

This easily implies *Z* has a dense set of Φ -periodic points.

Hrushovski's results are now obtainable using "standard" arithmetic geometry methods (Y. Varshavsky, and K. V. Shuddhodan).

Esnault-Mehta (continued)

If *X* has an irreducible stratified \mathbb{E} of rank *r*, where we may also assume \mathcal{E}_n are all μ -stable, and if \mathcal{M}_X^r is the moduli of μ -stable rank *r* bundles \mathcal{E} with Hilbert polynomial $\chi(\mathcal{E}(m)) = r\chi(\mathcal{O}_X(m))$, then each \mathcal{E}_n in \mathbb{E} gives a point $x_n \in \mathcal{M}_X^r(k)$. Using this, one can construct a Zariski closed $Z \subset \mathcal{M}_X^r$, together with a dominant rational map $\Phi : Z \to Z$ such that $\Phi([\mathcal{E}]) = [F^*\mathcal{E}]$.

・ 何 ト ・ ヨ ト ・ ヨ

Esnault-Mehta (continued)

If *X* has an irreducible stratified \mathbb{E} of rank *r*, where we may also assume \mathcal{E}_n are all μ -stable, and if \mathcal{M}_X^r is the moduli of μ -stable rank *r* bundles \mathcal{E} with Hilbert polynomial $\chi(\mathcal{E}(m)) = r\chi(\mathcal{O}_X(m))$, then each \mathcal{E}_n in \mathbb{E} gives a point $x_n \in \mathcal{M}_X^r(k)$. Using this, one can construct a Zariski closed $Z \subset \mathcal{M}_X^r$, together with a dominant rational map $\Phi : Z \rightarrow Z$ such that $\Phi([\mathcal{E}]) = [F^*\mathcal{E}]$.

If $k = \overline{\mathbb{F}}_p$, then Hrushovski's theorem yields Φ -period points of Z, which by Lange-Stuhler, are finite stratified bundles, lying in \mathcal{M}_X^r . Hence X has nontrivial étale fundamental group, unless r = 1, and \mathbb{E} is trivial.

A (10) A (10) A (10)

If *X* has an irreducible stratified \mathbb{E} of rank *r*, where we may also assume \mathcal{E}_n are all μ -stable, and if \mathcal{M}_X^r is the moduli of μ -stable rank *r* bundles \mathcal{E} with Hilbert polynomial $\chi(\mathcal{E}(m)) = r\chi(\mathcal{O}_X(m))$, then each \mathcal{E}_n in \mathbb{E} gives a point $x_n \in \mathcal{M}_X^r(k)$. Using this, one can construct a Zariski closed $Z \subset \mathcal{M}_X^r$, together with a dominant rational map $\Phi : Z \rightarrow Z$ such that $\Phi([\mathcal{E}]) = [F^*\mathcal{E}]$.

If $k = \overline{\mathbb{F}}_p$, then Hrushovski's theorem yields Φ -period points of *Z*, which by Lange-Stuhler, are finite stratified bundles, lying in \mathcal{M}_X^r . Hence *X* has nontrivial étale fundamental group, unless r = 1, and \mathbb{E} is trivial.

In general, one makes a (slightly tricky) specialization argument, using that a specialization of a proper, simply connected variety is itself simply connected.

イロト イヨト イヨト イヨト

Comments on E-VS I

I recall the statement:

Theorem

(E-VS,2014) Let X be smooth quasi-projective over $\overline{\mathbb{F}}_p$, with $\pi_1^{et}(X) = 0$. Assume there exists a normal projective variety \overline{X} containing X as a dense open, such that $\operatorname{codim}_{\overline{X}}(\overline{X} \setminus X) \ge 2$. Then all stratified bundles on X are trivial.

Comments on E-VS I

I recall the statement:

Theorem

(E-VS,2014) Let X be smooth quasi-projective over $\overline{\mathbb{F}}_p$, with $\pi_1^{et}(X) = 0$. Assume there exists a normal projective variety \overline{X} containing X as a dense open, such that $\operatorname{codim}_{\overline{X}}(\overline{X} \setminus X) \ge 2$. Then all stratified bundles on X are trivial.

We need the condition that $k = \overline{\mathbb{F}}_p$ because we do not know an answer to the following:

Question

Let \overline{X} be a normal projective *k*-variety with simply connected smooth locus. Do "most" specializations of \overline{X} to $\overline{\mathbb{F}}_{\rho}$ have the same property?

イロト 不得 トイヨト イヨト

We also use a (corollary of a) Lefschetz theorem of J-B. Bost:

Theorem

Let \overline{X} be a normal projective variety, X its smooth locus, and $C \subset \overline{X}$ a complete intersection curve which is contained in X. Then $\pi_1^{strat}(C) \rightarrow \pi_1^{strat}(X)$ is surjective.

Here π_1^{strat} denotes the (Tannakian) group scheme determined by stratified bundles; π_1^{et} turns out to be the analogue of the "group of connected components", in the smooth projective case.

Comments on E-VS 1 (continued)

Let $\overline{X} \supset X$ be the compactification with "small" boundary, on which we fix a very ample $\mathcal{O}_{\overline{X}}(1)$, and let $j : X \hookrightarrow \overline{X}$ the inclusion.

Comments on E-VS 1 (continued)

Let $\overline{X} \supset X$ be the compactification with "small" boundary, on which we fix a very ample $\mathcal{O}_{\overline{X}}(1)$, and let $j : X \hookrightarrow \overline{X}$ the inclusion. A stratified bundle $\mathbb{E} = (\mathcal{E}_n, \sigma_n)$ on X yields a sequence $(j_* \mathcal{E}_n)_{n \ge 0}$ of reflexive sheaves with "bonding maps" given as compositions

$$F^*j_*\mathcal{E}_{n+1} \xrightarrow{\theta_{n+1}} j_*F^*\mathcal{E}_{n+1} \xrightarrow{j_*\circ\sigma_n} j_*\mathcal{E}_n$$

which may not be isomorphisms.

Comments on E-VS 1 (continued)

Let $\overline{X} \supset X$ be the compactification with "small" boundary, on which we fix a very ample $\mathcal{O}_{\overline{X}}(1)$, and let $j : X \hookrightarrow \overline{X}$ the inclusion. A stratified bundle $\mathbb{E} = (\mathcal{E}_n, \sigma_n)$ on X yields a sequence $(j_* \mathcal{E}_n)_{n \ge 0}$ of reflexive sheaves with "bonding maps" given as compositions

$$F^*j_*\mathcal{E}_{n+1} \xrightarrow{\theta_{n+1}} j_*F^*\mathcal{E}_{n+1} \xrightarrow{j_*\circ\sigma_n} j_*\mathcal{E}_n$$

which may not be isomorphisms.

The Mehta-Esnault argument can be adapted, after making the following key observation:

Proposition

There are a finite number of polynomials $p_1(t), \ldots, p_m(t) \in \mathbb{Q}[t]$ such that for any stratified bundle $\mathbb{E} = (\mathcal{E}_n, \sigma_n)$ on X of rank r, there exists $n_0 = n_0(\mathbb{E})$ so that if $n \ge n_0$, the Hilbert polynomial of $j_*\mathcal{E}_n$ on \overline{X} is one of the $p_j(t)$.

On the proof of the Proposition

The proof involves some steps, which use two theorems of Adrian Langer.

• • • • • • • • • • • • •

On the proof of the Proposition

The proof involves some steps, which use two theorems of Adrian Langer.

The first is the Boundedness Theorem for a family of μ -semistable sheaves whose first three Hilbert coefficients are bounded, in char. p > 0. This reduces the Proposition to the surface case.

On the proof of the Proposition

The proof involves some steps, which use two theorems of Adrian Langer.

The first is the Boundedness Theorem for a family of μ -semistable sheaves whose first three Hilbert coefficients are bounded, in char. p > 0. This reduces the Proposition to the surface case.

In that case, arguments from an older work of Langer's on " c_2 " for sheaves on a normal (complex) surface, adapted here, shows that if $\pi : \widetilde{X} \to \overline{X}$ is a resolution of singularities, then

$$\deg_{\overline{X}} [ch_2((\pi^* j_* \mathcal{E}_n)^{\vee \vee})]$$

is bounded by a constant depending only on *r* and the geometry of $\pi : \widetilde{X} \to \overline{X}$, for all $n \ge n_0 = n_0(\mathbb{E})$.

Comments on E-VS 2

I restate our second result:

Theorem

(E-VS,2017) Let $f : Y \to X$ be a morphism of smooth projective varieties over an alg. closed field k of char. p > 0 such that $f_* : \pi_1^e(Y) \to \pi_1^{et}(X)$ is trivial. Then any stratified bundle on X has trivial pullback to Y, as a stratified bundle.

I restate our second result:

Theorem

(E-VS,2017) Let $f : Y \to X$ be a morphism of smooth projective varieties over an alg. closed field k of char. p > 0 such that $f_* : \pi_1^e(Y) \to \pi_1^{et}(X)$ is trivial. Then any stratified bundle on X has trivial pullback to Y, as a stratified bundle.

Following the reasoning of Mehta-Esnault, one sees readily that any *irreducible* stratified \mathbb{E} has trivial pullback.

I restate our second result:

Theorem

(E-VS,2017) Let $f : Y \to X$ be a morphism of smooth projective varieties over an alg. closed field k of char. p > 0 such that $f_* : \pi_1^e(Y) \to \pi_1^{et}(X)$ is trivial. Then any stratified bundle on X has trivial pullback to Y, as a stratified bundle.

Following the reasoning of Mehta-Esnault, one sees readily that any *irreducible* stratified \mathbb{E} has trivial pullback. The new issue is of non-trivial extensions; the Jordan-Holder property implies any stratified $\mathbb{E} = (\mathcal{E}_n, \sigma_n)$ has *unipotent* pullback.

ヘロト ヘアト ヘビト ヘ

If in addition one has that each \mathcal{E}_n is "F-nilpotent" (ie, has trivial pullback under some power of Frobenius), then we are able to show $f^*\mathbb{E}$ is in fact trivial (by a sort of Artin-Schreier argument).

If in addition one has that each \mathcal{E}_n is "F-nilpotent" (ie, has trivial pullback under some power of Frobenius), then we are able to show $f^*\mathbb{E}$ is in fact trivial (by a sort of Artin-Schreier argument).

The F-nilpotence is proved by another tricky application of Hrushovski's theorem to a product of moduli spaces; I won't try to elaborate here. If in addition one has that each \mathcal{E}_n is "F-nilpotent" (ie, has trivial pullback under some power of Frobenius), then we are able to show $f^*\mathbb{E}$ is in fact trivial (by a sort of Artin-Schreier argument).

The F-nilpotence is proved by another tricky application of Hrushovski's theorem to a product of moduli spaces; I won't try to elaborate here.

THANK YOU FOR YOUR ATTENTION!