A NOTE ON THE KERNEL OF THE NORM MAP

MAREK SZYJEWSKI

Abstract

We investigate kernel of the norm map on power classes for cyclic field extensions.

1. Introduction

For fixed integer p and for a field K let $g(K)=K^{*} / K^{* p}$ be p-th powers class group. For $p=2$ there is well known Gross-Fischer exact sequence

$$
\begin{equation*}
\{1, a\} \hookrightarrow g(K) \rightarrow g(K(\sqrt[p]{a})) \xrightarrow{N} g(K) . \tag{1.1}
\end{equation*}
$$

(c.f. [3, p. 203].) The group $g(K)$ may be expressed as Galois cohomology group

$$
g(K)=H^{1}\left(K, \mu_{p}\right)=H^{1}\left(G\left(K_{s} / K\right), \mu_{p}\left(K_{s}\right)\right)
$$

which is the group $\operatorname{Hom}\left(G\left(K_{s} / K\right), \mu_{p}(K)\right)$, provided K contains a primitive p-th root of unity. The norm map $H^{1}\left(L, \mu_{p}\right) \rightarrow H^{1}\left(K, \mu_{p}\right)$ is corestriction. In the case $p=2, L=K(\sqrt{a})$ the sequence above may be included in long exact sequence

$$
\begin{aligned}
\cdots \rightarrow H^{i-1}\left(K, \mu_{2}\right) \xrightarrow{\cup(a)} H^{i}\left(K, \mu_{2}\right) & \longrightarrow H^{i}\left(L, \mu_{2}\right) \\
& \longrightarrow H^{i}\left(K, \mu_{2}\right) \xrightarrow{\cup(a)} H^{i+1}\left(K, \mu_{2}\right) \rightarrow \cdots
\end{aligned}
$$

(e.g. [1, Cor. 4.6].)

A generalization of the sequence (1.1) for $p=2$ and several square roots (a multiquadratic extension) appeared in [2, Th. 2.1].

We are interested in a direct generalization for other values of p, assuming that K contains all p-th roots of unity. We show that in general the sequence (1.1) need not to be exact even for $p=3$. We show that this sequence is exact for p prime if K is a finite or local field, except the case p is characteristic of residue field. Thus we produce counterexamples that show that well-known zero sequence

$$
H^{1}\left(K, \mu_{p}\right) \xrightarrow{r e s} H^{1}\left(L, \mu_{p}\right) \xrightarrow{c o r} H^{1}\left(K, \mu_{p}\right)
$$

[^0]need not be exact for $p>2$.

2. Notation and basic facts

Let p be fixed positive integer. In this section we don't need p to be a prime.

With a field K we associate an abelian group $g(K)$ - the cokernel of the homomorphism $\pi_{K}: x \mapsto x^{p}$. The usual notation is following:

$$
\begin{aligned}
K^{* p} & =\operatorname{im}\left(\pi_{K}\right) \\
K^{*} / K^{* p} & =g(K),
\end{aligned}
$$

altough $K^{* p}$ looks like p-th cartesian power.
The operation g is functorial: an embedding $r: K \rightarrow L$ induces a homomorfizm $\breve{r}: g(K) \rightarrow g(L)$.

$$
\operatorname{coim}(\breve{r})=K^{*} / r^{-1}\left(L^{* p}\right) \cong\left(r\left(K^{*}\right) L^{* p}\right) / L^{* p}=\operatorname{im}(\breve{r}) .
$$

If L / K is a finite field extension, then there is a norm homomorphism $N=N_{L / K}$, which commutes with π :

$$
N \circ \pi_{L}=\pi_{K} \circ N
$$

thus $N: L^{*} \rightarrow K^{*}$ induces a homomorfizm $\stackrel{N}{ }: g(L) \rightarrow g(K)$.
For every finite extension L / K of degree p (the same p fixed in the beginning to define g) if $r: K \rightarrow L$ is a K-embedding, then

$$
\breve{N} \circ \breve{r}=0
$$

where 0 is a trivial homomorphism $g(K) \rightarrow g(K)$ (it follows from $N \circ r=$ $N \mid{ }_{K^{*}}=\pi_{K}$.)

In other words: the sequence

$$
\begin{equation*}
g(K) \xrightarrow{\breve{r}} g(L) \xrightarrow{\breve{N}} g(K) \tag{2.1}
\end{equation*}
$$

is a zero-sequence, or is a complex, for $(L: K)=p$.
A natural question is if for a degree p extension image of \breve{r} is the kernel of \breve{N}, or if this sequence is exact. The answer is positive for:

- $p=2$ and all K of characteristic different from 2 (Gross-Fischer theorem);
- finite K and either arbitrary p dividing $|K|-1$ or prime p different from $\operatorname{char}(K)$;
- local K and prime p different from characteritic of the residue field.

Proposition 1. If K is a finite field and either p divides $|K|-1$ or p is a prime different form char $(K),(L: K)=p$ then the sequence (2.1) is exact.

Proof. A finite field K has unique extension L of degree p. Let v be a generator of the cyclic group L^{*}. Its norm is a product of its conjugates:

$$
N_{L / K}(v)=v^{1+|K|+|K|^{2}+\cdots+|K|^{p-1}}=v^{\left(|K|^{p}-1\right) /(|K|-1)}
$$

and has order $|K|-1$. Thus $N_{L / K}: L^{*} \rightarrow K^{*}$ is surjective, and so is $\breve{N}: g(L) \rightarrow g(K)$.

The assumption that p divides $|K|-1$ yields that $L=K(\sqrt[p]{u})$, where u is a generator of $K^{*}: K^{*}=\langle u\rangle$. Moreover

$$
\mu_{p}(K)=\operatorname{Ker}\left(\pi_{K}\right)=\left\langle u^{(|K|-1) / p}\right\rangle
$$

is a cyclic group of order p. Thus $i m\left(\pi_{K}\right)$ is a cyclic group of order $\frac{|K|-1}{p}$ and $g(K)$ is a cyclic group of order p. Since $|K|-1$ divides $|L|-1$, the same holds for L :

$$
|g(K)|=|g(L)|=p
$$

A generator $u K^{* p}$ of $g(K)$ is a p-th power in L, so $\breve{r}: g(K) \rightarrow g(L)$ is trivial and $N: g(L) \rightarrow g(K)$ is surjective; hence $N: g(L) \rightarrow g(K)$ is bijective.

In the case of p prime not dividing $|K|$ it is easy to see that $\operatorname{gcd}(p,|L|-1)=$ $\operatorname{gcd}(p,|K|-1)$ since $|L|=|K|^{p} \equiv|K|(\bmod p)$. Thus L contains $K(\sqrt[p]{u})$ (and $(K(\sqrt[p]{u}): K)=\operatorname{gcd}(p,|K|-1),) \breve{r}: g(K) \rightarrow g(L)$ is trivial and $|g(K)|=|g(L)|=\operatorname{gcd}(p,|K|-1)$; hence N is bijective.

3. The first counterexample

Let $p=3$. Let moreover $L=\mathbb{C}(t)$ be the field of rational functions in one variable t, and $K=\mathbb{C}\left(t^{3}\right) . K$ is also a field of rational functions in one variable t^{3} (we find the standard notation $K=\mathbb{C}(X), t=\sqrt[3]{X}$ cumbersome.) Choose $\varepsilon=\frac{-1+\sqrt{-3}}{2}$ a primitive root of 1 .
Proposition 2. If $p=3, L=\mathbb{C}(t)$ and $K=\mathbb{C}\left(t^{3}\right)$, then the norm of $h(t)=\frac{t-1}{\varepsilon t-1}$ is a cube, while $h(t)$ is not a product of element of K and a cube.

Proof. L / K is cyclic and the automorphism σ of L defined by

$$
\sigma(t)=\varepsilon t,\left.\quad \sigma\right|_{\mathbb{C}}=i d_{\mathbb{C}}
$$

generates the Galois group $G(L / K)$. It is easy to express norm $N_{L / K}$ in terms of decomposition of irreducibles in $\mathbb{C}[t]$:

$$
N_{L / K}\left(a(t-b)^{k}\right)=a^{3}\left(t^{3}-b^{3}\right)^{k} .
$$

Let $\varphi: L^{*} \longrightarrow \mathbb{Z}^{3}$ (a cartesian product here) be a homomorphism

$$
\varphi(f(t))=\left(v_{t-1}(f(t)), v_{\varepsilon t-1}(f(t)), v_{\varepsilon^{2} t-1}(f(t))\right)
$$

which assigns orders of zeros in $1, \varepsilon^{2}, \varepsilon$ to a rational function $f(t)$.

Firstly note that

$$
\varphi\left(L^{* 3}\right)=3 \mathbb{Z}^{3}
$$

Secondly

$$
\varphi\left(K^{*}\right)=\mathbb{Z} \cdot(1,1,1)
$$

The first observation enables a reduction $\bmod 3$:

$$
\breve{\varphi}: g(L) \longrightarrow \mathbb{Z}_{3}^{3}, \quad \breve{\varphi}\left(f L^{* 3}\right)=\varphi(f)(\bmod 3)
$$

where $\mathbb{Z}_{3}{ }^{3}$ is again a cartesian power. The second observation yields that $\breve{\varphi}(\breve{r}(g(K)))=\operatorname{lin}((1,1,1))$ is a line through $(1,1,1)$ in $\mathbb{Z}_{3}{ }^{3}$.

Now the rational function

$$
h(t)=\frac{t-1}{\varepsilon t-1}=\frac{t-1}{\sigma(t-1)} \in L^{*}
$$

has norm $1, N_{L / K}(h(t))=1$, so the coset $h(t) L^{* 3}$ is in the kernel of $\stackrel{N}{N}$: $g(L) \longrightarrow g(K)$. On the other hand

$$
\breve{\varphi}\left(h(t) L^{* 3}\right)=(1,-1,0)
$$

does not belong to the line $\breve{\varphi}(\breve{r}(g(K)))=\operatorname{lin}((1,1,1))$, hence $h(t) L^{* 3}$ does not belong to $\breve{r}(g(K))$, i.e. is not a product of element of K and a cube.

4. Local fields

We shall prove that for prime p, and local K containing primitive p-th root of unity, and L / K cyclic, the sequence 2.1 is exact except the case when p is characteristic of the residue field.
Lemma 1. For a finite extension L / K of degree p the equality $\operatorname{Ker}(\breve{N})=$ $\operatorname{im}(\breve{r})$ holds iff every α in L such that $N_{L / K}(\alpha)=1$ is of the form $\alpha=x \beta^{p}$ for some $x \in K^{*}, \beta \in L^{*}$.
Proof. If $\operatorname{Ker}(\breve{N})=\operatorname{im}(\breve{r})$ and $N(\alpha)=1$, then $\alpha L^{* p} \in \operatorname{Ker}(\breve{N})$, so $\alpha L^{* p}=\breve{r}(x)$ for suitable $x \in K^{*}$; therefore $\alpha L^{* p}=x L^{* p}$.

Conversely, if $N(\alpha)=1$ implies that $\alpha L^{* p}=\breve{r}(x)$ and $\gamma \in L^{*}$ is such that $\breve{N}(\gamma)=K^{* p}$, then

$$
\begin{aligned}
N(\gamma) & =y^{p} \text { for suitable } y \in K^{*} \\
N\left(y^{-1} \gamma\right) & =1
\end{aligned}
$$

and substitution $\alpha=y^{-1} \gamma$ shows that

$$
\begin{aligned}
y^{-1} \gamma & =x \beta^{p} \\
\gamma & =y x \beta^{p} \\
\gamma L^{* p} & \in i m(\breve{r}) .
\end{aligned}
$$

Thus $\operatorname{Ker}(\breve{N}) \subset \operatorname{im}(\breve{r})$.

Theorem 1. If p is a prime, K is a local field with the residue field \bar{K} of characteristic different from p, K contains a primitive degree p root of unity, L / K is a cyclic extension and $L=K(\sqrt[p]{a})$, then the image of \breve{r} : $g(K) \rightarrow g(L)$ is the kernel of $\breve{N}: g(L) \rightarrow g(K)$.

Note that for $p=2$ (the case of Gross-Fischer theorem), every field K of characteristic different from 2 contains a primitive degree p root of 1 and every extension of degree p is cyclic.
Proof. Let $|\bar{K}|=q$, let O_{K} be the ring of integers, and let $x \longmapsto \bar{x}$ be the residue homomorphism $O_{K} \rightarrow \bar{K}$. By assumption K contains p-th primitive root ε of 1 ; the residue $\bar{\varepsilon} \in \bar{K}$ is a primitive p-th root of 1 , so $p \mid q-1$.

Consider following two cases:
Case 1. L / K is unramified.
If L / K is unramified and \bar{L} is the residue field of the local field L, then \bar{L} / \bar{K} is cyclic. If $N_{L / K}(\alpha)=1$, then $N_{\bar{L} / \bar{K}}(\bar{\alpha})=1$; thus there exist $t \in \bar{K}^{*}$ and $b \in \bar{L}^{*}$ such that

$$
\bar{\alpha}=t b^{p}
$$

If $\theta \in K^{*}$ has residue $\bar{\theta}=t$, then the polynomial

$$
X^{p}-\theta^{-1} \alpha \in O_{K}[X]
$$

has a root b in \bar{L}, thus $X^{p}-\theta^{-1} \alpha$ has a root β in L by Hensel Lemma; therefore

$$
\beta^{p}-\theta^{-1} \alpha=0, \quad \alpha=\theta \beta^{p}
$$

The lemma above yields that $\operatorname{Ker}(\breve{N})=\operatorname{im}(\breve{r})$.
Case 2. L / K is ramified.
Since p is a prime, $\bar{L}=\bar{K}$ and $L=K(\sqrt[p]{\pi})$, where π generates the maximal ideal of the ring O_{K}. Let $N(\alpha)=1$. Then $\bar{\alpha}$ is a p-th root of 1 :

$$
\begin{aligned}
\overline{N(\alpha)} & =1 \\
\bar{\alpha}^{p} & =1
\end{aligned}
$$

Let $\rho \in K^{*}$ be a p-th root of 1 such that $\bar{\rho}=\bar{\alpha}$. Obviously,

$$
\begin{aligned}
N\left(\rho^{-1} \alpha\right) & =\left(\rho^{-1}\right)^{p} N(\alpha)=1 \\
\overline{\rho^{-1} \alpha} & =1
\end{aligned}
$$

The polynomial

$$
X^{p}-\rho^{-1} \alpha \in O_{K}[X]
$$

has root 1 in \bar{L}, hence it has root β in L (even in K);

$$
\beta^{p}-\rho^{-1} \alpha=0, \quad \alpha=\rho \beta^{p}
$$

and the lemma above yields that $\operatorname{Ker}(\breve{N})=\operatorname{im}(\breve{r})$.

The other case is $p=\operatorname{char}(\bar{K})$. In this case there is another counterexample.

Proposition 3. If $p=3, K=\mathbb{Q}_{3}(\sqrt{-3}), \bar{K}=\mathbb{F}_{3}, L=K(\sqrt[6]{-3})$, then the image of $\breve{r}: g(K) \rightarrow g(L)$ is smaller than the kernel of $\breve{N}: g(L) \rightarrow g(K)$.
Proof. The subring $O_{K} / 3 O_{K}$ of the factor ring

$$
O_{L} / 3 O_{L} \cong \mathbb{F}_{3}[X] /\left(X^{6}\right)
$$

corresponds to $\mathbb{F}_{3}\left[X^{3}\right] /\left(X^{6}\right)$. It is easy to see that

$$
\left(a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}+a_{4} X^{4}+a_{5} X^{5}\right)^{3}=a_{0}+a_{1} X^{3}
$$

so any product $x \alpha^{3}$ with $x \in O_{K}, \alpha \in O_{L}$ reduces $\bmod 3$ to an element of $\mathbb{F}_{3}\left[X^{3}\right] /\left(X^{6}\right)$.
$\varepsilon=\frac{\sqrt{-3}-1}{2}$ is a primitive root of unity. If σ is the generator of Galois group $G(L / K)$ such that

$$
\sigma(\sqrt[6]{-3})=\varepsilon \sqrt[6]{-3}
$$

then

$$
\frac{1-\varepsilon \sqrt[6]{-3}}{1-\sqrt[6]{-3}}=\frac{\sigma(1-\sqrt[6]{-3})}{1-\sqrt[6]{-3}}
$$

has norm 1. Since

$$
\begin{aligned}
& \frac{1-\varepsilon \sqrt[6]{-3}}{1-\sqrt[6]{-3}}=\frac{1}{2} \sqrt[6]{-3}\left(1+\sqrt[6]{-3}+(\sqrt[6]{-3})^{2}\right)+\frac{1}{1-\sqrt[6]{-3}} \\
&=1+(\sqrt[6]{-3})^{4}+(\sqrt[6]{-3})^{5}+(\sqrt[6]{-3})^{6} \\
&+\frac{1}{2}\left((\sqrt[6]{-3})^{7}+(\sqrt[6]{-3})^{8}+(\sqrt[6]{-3})^{9}\right) \\
&+\frac{(\sqrt[6]{-3})^{10}}{1-\sqrt[6]{-3}}
\end{aligned}
$$

if $\frac{1-\varepsilon \sqrt[6]{-3}}{1-\sqrt[6]{-3}}$ is a product $x \alpha^{3}$ with $x \in K, \alpha \in L$, then clearing denominators one may assume that $x \in O_{K}^{*}, \alpha \in O_{L}^{*}$. Thus $\frac{1-\varepsilon \sqrt[6]{-3}}{1-\sqrt[6]{-3}}$ should reduce $\bmod 3$ to an invertible element of $\mathbb{F}_{3}\left[X^{3}\right] /\left(X^{6}\right)$, while actually it reduces to $1+$ $X^{4}+X^{5}$.

5. Global fields

Theorem 2. Let p be a prime, $p>2$, and let K be a global field. If L / K is a cyclic Galois extension of degree p, then the factor group $\operatorname{Ker}(\breve{N}) / \operatorname{im}(\breve{r})$ is infinite.

Proof. Denote R, S the ring of integers in K, L respectively. Let σ be a generator of the Galois group $G(L / K)$. There exist infinitely many prime ideals q of R which split completely in S :

$$
q S=\mathfrak{q} \cdot \sigma(\mathfrak{q}) \cdot \sigma^{2}(\mathfrak{q}) \cdots \cdots \sigma^{p-1}(\mathfrak{q}) .
$$

There exists $c \in \mathfrak{q} \backslash \mathfrak{q}^{2}$ which is coprime with

$$
q S \cdot \mathfrak{q}^{-1}=\sigma(\mathfrak{q}) \cdot \sigma^{2}(\mathfrak{q}) \cdots \cdots \sigma^{p-1}(\mathfrak{q}) .
$$

The choice of c yields that \mathfrak{q}-adic valuation of c equals 1 and \mathfrak{q}-adic valuation of $\sigma(c)$ and $\sigma^{2}(c)$ is 0 . The element $h(q)=\frac{c}{\sigma(c)} \bmod L^{* p}$ belongs to $\operatorname{Ker}(\breve{N})$. There is no $x \in K^{*}$ and $\beta \in L^{*}$ such that

$$
h=\frac{c}{\sigma(c)}=x \beta^{p},
$$

because it would imply that

$$
\begin{aligned}
\frac{h}{\sigma(h)} & =\frac{\frac{c}{\sigma(c)}}{\sigma\left(\frac{c}{\sigma(c)}\right)}=\frac{x \beta^{p}}{x \sigma(\beta)^{p}}=\left(\frac{\beta}{\sigma(\beta)}\right)^{p} \\
\frac{h}{\sigma(h)} & =\frac{c \sigma^{2}(c)}{(\sigma(c))^{2}}=\left(\frac{\beta}{\sigma(\beta)}\right)^{p}
\end{aligned}
$$

while \mathfrak{q}-adic valuation of $\frac{c \sigma^{2}(c)}{(\sigma(c))^{2}}$ is exactly 1 , so it is not divisible by p.
Thus there is infinte set of distinct elements

$$
h L^{* p}=\frac{c}{\sigma(c)} L^{* p} \in \operatorname{Ker}(\breve{N})
$$

which are not in $i m(\breve{r})$.
Remark 1. In the setup of Proposition 2 one may use $h(t)=\frac{t-a}{\varepsilon t-a}$ for $a \in \mathbb{C}^{*}$ to see that $\operatorname{Ker}(\breve{N}) / \operatorname{im}(\breve{r})$ has cardinality of the continuum. One may use an algebraically closed field of arbitrary transfinite cardinality to obtain the same cardinality of $\operatorname{Ker}(\breve{N}) / \operatorname{im}(\breve{r})$.
Acknowledgment. We thank the referee for pointing out to us the argument in the proof of Theorem 2.

References

[1] Jon Kr. Arason Cohomologische Invarianten Quadratischer Formen J. of Algebra 36 (1975), pp. 448-491
[2] Richard Elman, T.Y. Lam, Adrian R. Wadsworth Quadratic Forms under Multiquadratic Extensions, Indagationes Mathematicae v. 42 fasc. 2 (1980), .pp. 131 145
[3] T. Y. Lam The Algebraic Theory of Quadratic Forms W. A. Benjamin, Reading, Mass., 1973
(Marek Szyjewski) ul. Mieszka I 15/97, PL40-877 Katowice
E-mail address, M. Szyjewski: szyjewsk@ux2.math.us.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary 12E99; Secondary 12F99.
 Key words and phrases. field extension, norm.

