
A NOTE ON THE KERNEL OF THE NORM MAP

MAREK SZYJEWSKI

Abstract. We investigate kernel of the norm map on power classes for
cyclic field extensions.

1. Introduction

For fixed integer p and for a field K let g(K) = K∗/K∗p be p-th powers
class group. For p = 2 there is well known Gross-Fischer exact sequence

(1.1) {1, a} ↪→ g(K)→ g
(
K

(
p
√
a
)) N−→ g (K) .

(c.f. [3, p. 203].) The group g(K) may be expressed as Galois cohomology
group

g(K) = H1
(
K,µp

)
= H1

(
G (Ks/K) , µp (Ks)

)
which is the group Hom

(
G (Ks/K) , µp (K)

)
, provided K contains a primi-

tive p-th root of unity. The norm map H1
(
L, µp

)
→ H1

(
K,µp

)
is corestric-

tion. In the case p = 2, L = K (
√
a) the sequence above may be included

in long exact sequence

· · · → H i−1 (K,µ2)
∪(a)−→ H i (K,µ2) −→ H i (L, µ2)

−→ H i (K,µ2)
∪(a)−→ H i+1 (K,µ2)→ · · ·

(e.g. [1, Cor. 4.6].)
A generalization of the sequence (1.1) for p = 2 and several square roots

(a multiquadratic extension) appeared in [2, Th. 2.1].
We are interested in a direct generalization for other values of p, assuming

that K contains all p-th roots of unity. We show that in general the sequence
(1.1) need not to be exact even for p = 3. We show that this sequence
is exact for p prime if K is a finite or local field, except the case p is
characteristic of residue field. Thus we produce counterexamples that show
that well-known zero sequence

H1
(
K,µp

) res−→ H1
(
L, µp

) cor−→ H1
(
K,µp

)
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need not be exact for p > 2.

2. Notation and basic facts

Let p be fixed positive integer. In this section we don’t need p to be a
prime.

With a field K we associate an abelian group g(K) - the cokernel of the
homomorphism πK : x 7→ xp. The usual notation is following:

K∗p = im (πK)

K∗/K∗p = g(K),

altough K∗p looks like p-th cartesian power.
The operation g is functorial: an embedding r : K → L induces a homo-

morfizm r̆ : g(K)→ g(L).

coim (r̆) = K∗/r−1 (L∗p) ∼= (r (K∗)L∗p) /L∗p = im (r̆) .

If L/K is a finite field extension, then there is a norm homomorphism
N = NL/K , which commutes with π:

N ◦ πL = πK ◦N ;

thus N : L∗ → K∗ induces a homomorfizm N̆ : g (L)→ g(K).
For every finite extension L/K of degree p (the same p fixed in the be-

ginning to define g) if r : K → L is a K-embedding, then

N̆ ◦ r̆ = 0

where 0 is a trivial homomorphism g(K) → g(K) (it follows from N ◦ r =
N |K∗= πK .)

In other words: the sequence

(2.1) g(K)
r̆−→ g(L)

N̆−→ g(K)

is a zero-sequence, or is a complex, for (L : K) = p.
A natural question is if for a degree p extension image of r̆ is the kernel

of N̆ , or if this sequence is exact. The answer is positive for:

• p = 2 and all K of characteristic different from 2 (Gross-Fischer
theorem);
• finite K and either arbitrary p dividing |K| − 1 or prime p different

from char (K);
• local K and prime p different from characteritic of the residue field.

Proposition 1. If K is a finite field and either p divides |K| − 1 or p is a
prime different form char (K), (L : K) = p then the sequence (2.1) is exact.
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Proof. A finite field K has unique extension L of degree p. Let v be a
generator of the cyclic group L∗. Its norm is a product of its conjugates:

NL/K (v) = v1+|K|+|K|2+···+|K|p−1

= v(|K|p−1)/(|K|−1)

and has order |K| − 1. Thus NL/K : L∗ → K∗ is surjective, and so is

N̆ : g(L)→ g(K).
The assumption that p divides |K| − 1 yields that L = K ( p

√
u), where u

is a generator of K∗: K∗ = 〈u〉. Moreover

µp (K) = Ker (πK) = 〈u(|K|−1)/p〉

is a cyclic group of order p. Thus im (πK) is a cyclic group of order |K|−1
p

and g (K) is a cyclic group of order p. Since |K| − 1 divides |L| − 1, the
same holds for L:

|g (K)| = |g(L)| = p.

A generator uK∗p of g(K) is a p-th power in L, so r̆ : g(K)→ g(L) is trivial
and N : g(L)→ g(K) is surjective; hence N : g(L)→ g(K) is bijective.

In the case of p prime not dividing |K| it is easy to see that gcd (p, |L| − 1) =
gcd (p, |K| − 1) since |L| = |K|p ≡ |K| (mod p). Thus L contains K ( p

√
u)

(and (K ( p
√
u) : K) = gcd (p, |K| − 1),) r̆ : g(K) → g(L) is trivial and

|g (K)| = |g(L)| = gcd (p, |K| − 1); hence N is bijective. �

3. The first counterexample

Let p = 3. Let moreover L = C (t) be the field of rational functions
in one variable t, and K = C

(
t3
)
. K is also a field of rational functions

in one variable t3 (we find the standard notation K = C (X), t = 3
√
X

cumbersome.) Choose ε = −1+
√
−3

2 a primitive root of 1.

Proposition 2. If p = 3, L = C (t) and K = C
(
t3
)
, then the norm of

h(t) = t−1
εt−1 is a cube, while h(t) is not a product of element of K and a

cube.

Proof. L/K is cyclic and the automorphism σ of L defined by

σ(t) = εt, σ |C= idC

generates the Galois group G(L/K). It is easy to express norm NL/K in
terms of decomposition of irreducibles in C [t]:

NL/K

(
a (t− b)k

)
= a3

(
t3 − b3

)k
.

Let ϕ : L∗ −→ Z3 (a cartesian product here) be a homomorphism

ϕ (f (t)) = (vt−1 (f (t)) , vεt−1 (f (t)) , vε2t−1 (f (t)))

which assigns orders of zeros in 1, ε2, ε to a rational function f(t).
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Firstly note that
ϕ
(
L∗3

)
= 3Z3.

Secondly
ϕ (K∗) = Z · (1, 1, 1) .

The first observation enables a reduction mod 3:

ϕ̆ : g(L) −→ Z 3
3 , ϕ̆

(
fL∗3

)
= ϕ(f) (mod 3)

where Z 3
3 is again a cartesian power. The second observation yields that

ϕ̆ (r̆ (g (K))) = lin ((1, 1, 1)) is a line through (1, 1, 1) in Z 3
3 .

Now the rational function

h(t) =
t− 1

εt− 1
=

t− 1

σ (t− 1)
∈ L∗

has norm 1, NL/K (h (t)) = 1, so the coset h(t)L∗3 is in the kernel of N̆ :
g(L) −→ g(K). On the other hand

ϕ̆
(
h(t)L∗3

)
= (1,−1, 0)

does not belong to the line ϕ̆ (r̆ (g (K))) = lin ((1, 1, 1)), hence h(t)L∗3 does
not belong to r̆ (g (K)), i.e. is not a product of element of K and a cube. �

4. Local fields

We shall prove that for prime p, and local K containing primitive p-th
root of unity, and L/K cyclic, the sequence 2.1 is exact except the case
when p is characteristic of the residue field.

Lemma 1. For a finite extension L/K of degree p the equality Ker
(
N̆
)

=

im (r̆) holds iff every α in L such that NL/K (α) = 1 is of the form α = xβp

for some x ∈ K∗, β ∈ L∗.

Proof. If Ker
(
N̆
)

= im (r̆) and N (α) = 1, then αL∗p ∈ Ker
(
N̆
)

, so

αL∗p = r̆ (x) for suitable x ∈ K∗; therefore αL∗p = xL∗p.
Conversely, if N (α) = 1 implies that αL∗p = r̆ (x) and γ ∈ L∗ is such

that N̆ (γ) = K∗p, then

N (γ) = yp for suitable y ∈ K∗,
N

(
y−1γ

)
= 1

and substitution α = y−1γ shows that

y−1γ = xβp

γ = yxβp

γL∗p ∈ im (r̆) .

Thus Ker
(
N̆
)
⊂ im (r̆). �
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Theorem 1. If p is a prime, K is a local field with the residue field K
of characteristic different from p, K contains a primitive degree p root of
unity, L/K is a cyclic extension and L = K ( p

√
a), then the image of r̆ :

g(K)→ g (L) is the kernel of N̆ : g (L)→ g (K).

Note that for p = 2 (the case of Gross-Fischer theorem), every field K of
characteristic different from 2 contains a primitive degree p root of 1 and
every extension of degree p is cyclic.

Proof. Let
∣∣K∣∣ = q, let OK be the ring of integers, and let x 7−→ x be the

residue homomorphism OK → K. By assumption K contains p-th primitive
root ε of 1; the residue ε ∈ K is a primitive p-th root of 1, so p | q − 1.

Consider following two cases:
Case 1. L/K is unramified.
If L/K is unramified and L is the residue field of the local field L, then

L/K is cyclic. If NL/K (α) = 1, then NL/K (α) = 1; thus there exist t ∈ K∗

and b ∈ L∗ such that
α = tbp.

If θ ∈ K∗ has residue θ = t, then the polynomial

Xp − θ−1α ∈ OK [X]

has a root b in L, thus Xp − θ−1α has a root β in L by Hensel Lemma;
therefore

βp − θ−1α = 0, α = θβp.

The lemma above yields that Ker
(
N̆
)

= im (r̆).

Case 2. L/K is ramified.
Since p is a prime, L = K and L = K ( p

√
π), where π generates the

maximal ideal of the ring OK . Let N (α) = 1. Then α is a p-th root of 1:

N (α) = 1

αp = 1

Let ρ ∈ K∗ be a p-th root of 1 such that ρ = α. Obviously,

N
(
ρ−1α

)
=

(
ρ−1

)p
N (α) = 1,

ρ−1α = 1.

The polynomial
Xp − ρ−1α ∈ OK [X]

has root 1 in L, hence it has root β in L (even in K);

βp − ρ−1α = 0, α = ρβp

and the lemma above yields that Ker
(
N̆
)

= im (r̆). �
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The other case is p = char
(
K
)
. In this case there is another counterex-

ample.

Proposition 3. If p = 3, K = Q3

(√
−3

)
, K = F3, L = K

(
6
√
−3

)
, then the

image of r̆ : g(K)→ g (L) is smaller than the kernel of N̆ : g (L)→ g (K).

Proof. The subring OK/3OK of the factor ring

OL/3OL ∼= F3 [X] /
(
X6

)
corresponds to F3

[
X3

]
/
(
X6

)
. It is easy to see that(

a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5
)3

= a0 + a1X
3,

so any product xα3 with x ∈ OK , α ∈ OL reduces mod 3 to an element of
F3

[
X3

]
/
(
X6

)
.

ε =
√
−3−1

2 is a primitive root of unity. If σ is the generator of Galois
group G (L/K) such that

σ
(

6
√
−3

)
= ε 6
√
−3,

then
1− ε 6

√
−3

1− 6
√
−3

=
σ
(
1− 6
√
−3

)
1− 6
√
−3

has norm 1. Since

1− ε 6
√
−3

1− 6
√
−3

=
1

2
6
√
−3

(
1 + 6
√
−3 +

(
6
√
−3

)2
)

+
1

1− 6
√
−3

= 1 +
(

6
√
−3

)4
+
(

6
√
−3

)5
+
(

6
√
−3

)6

+
1

2

((
6
√
−3

)7
+
(

6
√
−3

)8
+
(

6
√
−3

)9
)
+

(
6
√
−3

)10

1− 6
√
−3

,

if 1−ε 6√−3
1− 6√−3

is a product xα3 with x ∈ K, α ∈ L, then clearing denominators

one may assume that x ∈ O∗K , α ∈ O∗L. Thus 1−ε 6√−3
1− 6√−3

should reduce mod 3

to an invertible element of F3

[
X3

]
/
(
X6

)
, while actually it reduces to 1 +

X4 +X5. �

5. Global fields

Theorem 2. Let p be a prime, p > 2, and let K be a global field. If L/K is

a cyclic Galois extension of degree p, then the factor group Ker
(
N̆
)
/im (r̆)

is infinite.
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Proof. Denote R, S the ring of integers in K, L respectively. Let σ be a
generator of the Galois group G (L/K). There exist infinitely many prime
ideals q of R which split completely in S:

qS = q · σ (q) · σ2 (q) · · · · · σp−1 (q) .

There exists c ∈ q \ q2 which is coprime with

qS · q−1 = σ (q) · σ2 (q) · · · · · σp−1 (q) .

The choice of c yields that q-adic valuation of c equals 1 and q-adic valu-
ation of σ (c) and σ2 (c) is 0. The element h (q) = c

σ(c) modL∗p belongs to

Ker
(
N̆
)

. There is no x ∈ K∗ and β ∈ L∗ such that

h =
c

σ (c)
= xβp,

because it would imply that

h

σ (h)
=

c
σ(c)

σ
(

c
σ(c)

) =
xβp

xσ (β)p
=

(
β

σ (β)

)p
,

h

σ (h)
=

cσ2 (c)

(σ (c))2 =

(
β

σ (β)

)p
,

while q-adic valuation of cσ2(c)

(σ(c))2
is exactly 1, so it is not divisible by p.

Thus there is infinte set of distinct elements

hL∗p =
c

σ (c)
L∗p ∈ Ker

(
N̆
)

which are not in im (r̆). �

Remark 1. In the setup of Proposition 2 one may use h(t) = t−a
εt−a for

a ∈ C∗ to see that Ker
(
N̆
)
/im (r̆) has cardinality of the continuum. One

may use an algebraically closed field of arbitrary transfinite cardinality to

obtain the same cardinality of Ker
(
N̆
)
/im (r̆).
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