A NOTE ON THE KERNEL OF THE NORM MAP

MAREK SZYJEWSKI

ABSTRACT. We investigate kernel of the norm map on power classes for cyclic field extensions.

1. Introduction

For fixed integer p and for a field K let $g(K) = K^*/K^{*p}$ be p-th powers class group. For p = 2 there is well known Gross-Fischer exact sequence

$$(1.1) \{1, a\} \hookrightarrow g(K) \to g\left(K\left(\sqrt[p]{a}\right)\right) \xrightarrow{N} g\left(K\right).$$

(c.f. [3, p. 203].) The group g(K) may be expressed as Galois cohomology group

$$g(K) = H^{1}(K, \mu_{p}) = H^{1}(G(K_{s}/K), \mu_{p}(K_{s}))$$

which is the group $Hom\left(G\left(K_s/K\right),\mu_p\left(K\right)\right)$, provided K contains a primitive p-th root of unity. The norm map $H^1\left(L,\mu_p\right)\to H^1\left(K,\mu_p\right)$ is corestriction. In the case $p=2,\ L=K\left(\sqrt{a}\right)$ the sequence above may be included in long exact sequence

$$\cdots \to H^{i-1}\left(K,\mu_{2}\right) \stackrel{\cup(a)}{\longrightarrow} H^{i}\left(K,\mu_{2}\right) \longrightarrow H^{i}\left(L,\mu_{2}\right)$$
$$\longrightarrow H^{i}\left(K,\mu_{2}\right) \stackrel{\cup(a)}{\longrightarrow} H^{i+1}\left(K,\mu_{2}\right) \to \cdots$$

A generalization of the sequence (1.1) for p=2 and several square roots (a multiquadratic extension) appeared in [2, Th. 2.1].

We are interested in a direct generalization for other values of p, assuming that K contains all p-th roots of unity. We show that in general the sequence (1.1) need not to be exact even for p=3. We show that this sequence is exact for p prime if K is a finite or local field, except the case p is characteristic of residue field. Thus we produce counterexamples that show that well-known zero sequence

$$H^{1}\left(K,\mu_{p}\right) \xrightarrow{res} H^{1}\left(L,\mu_{p}\right) \xrightarrow{cor} H^{1}\left(K,\mu_{p}\right)$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 12E99; Secondary 12F99. Key words and phrases. field extension, norm.

need not be exact for p > 2.

2. NOTATION AND BASIC FACTS

Let p be fixed positive integer. In this section we don't need p to be a prime.

With a field K we associate an abelian group g(K) - the cokernel of the homomorphism $\pi_K : x \mapsto x^p$. The usual notation is following:

$$K^{*p} = im(\pi_K)$$

$$K^*/K^{*p} = g(K),$$

altough K^{*p} looks like p-th cartesian power.

The operation g is functorial: an embedding $r: K \to L$ induces a homomorfizm $\check{r}: g(K) \to g(L)$.

$$coim(\breve{r}) = K^*/r^{-1}(L^{*p}) \cong (r(K^*)L^{*p})/L^{*p} = im(\breve{r}).$$

If L/K is a finite field extension, then there is a norm homomorphism $N = N_{L/K}$, which commutes with π :

$$N \circ \pi_L = \pi_K \circ N;$$

thus $N: L^* \to K^*$ induces a homomorfizm $\check{N}: g\left(L\right) \to g(K)$.

For every finite extension L/K of degree p (the same p fixed in the beginning to define q) if $r: K \to L$ is a K-embedding, then

$$\breve{N} \circ \breve{r} = 0$$

where 0 is a trivial homomorphism $g(K) \to g(K)$ (it follows from $N \circ r = N \mid_{K^*} = \pi_K$.)

In other words: the sequence

$$(2.1) g(K) \xrightarrow{\check{r}} g(L) \xrightarrow{\check{N}} g(K)$$

is a zero-sequence, or is a complex, for (L:K) = p.

A natural question is if for a degree p extension image of \check{r} is the kernel of \check{N} , or if this sequence is exact. The answer is positive for:

- p = 2 and all K of characteristic different from 2 (Gross-Fischer theorem);
- finite K and either arbitrary p dividing |K|-1 or prime p different from char(K);
- local K and prime p different from characteritic of the residue field.

Proposition 1. If K is a finite field and either p divides |K| - 1 or p is a prime different form char (K), (L:K) = p then the sequence (2.1) is exact.

Proof. A finite field K has unique extension L of degree p. Let v be a generator of the cyclic group L^* . Its norm is a product of its conjugates:

$$N_{L/K}\left(v\right) = v^{1+|K|+|K|^2+\cdots+|K|^{p-1}} = v^{(|K|^p-1)/(|K|-1)}$$

and has order |K|-1. Thus $N_{L/K}:L^*\to K^*$ is surjective, and so is $\check{N}:g(L)\to g(K)$.

The assumption that p divides |K|-1 yields that $L=K(\sqrt[p]{u})$, where u is a generator of K^* : $K^*=\langle u\rangle$. Moreover

$$\mu_p(K) = Ker(\pi_K) = \langle u^{(|K|-1)/p} \rangle$$

is a cyclic group of order p. Thus $im(\pi_K)$ is a cyclic group of order $\frac{|K|-1}{p}$ and g(K) is a cyclic group of order p. Since |K|-1 divides |L|-1, the same holds for L:

$$|g(K)| = |g(L)| = p.$$

A generator uK^{*p} of g(K) is a p-th power in L, so $\check{r}: g(K) \to g(L)$ is trivial and $N: g(L) \to g(K)$ is surjective; hence $N: g(L) \to g(K)$ is bijective.

In the case of p prime not dividing |K| it is easy to see that $\gcd(p,|L|-1) = \gcd(p,|K|-1)$ since $|L| = |K|^p \equiv |K| \pmod{p}$. Thus L contains $K(\sqrt[p]{u})$ (and $(K(\sqrt[p]{u}):K) = \gcd(p,|K|-1)$,) $\check{r}:g(K) \to g(L)$ is trivial and $|g(K)| = |g(L)| = \gcd(p,|K|-1)$; hence N is bijective. \square

3. The first counterexample

Let p=3. Let moreover $L=\mathbb{C}(t)$ be the field of rational functions in one variable t, and $K=\mathbb{C}\left(t^3\right)$. K is also a field of rational functions in one variable t^3 (we find the standard notation $K=\mathbb{C}(X),\ t=\sqrt[3]{X}$ cumbersome.) Choose $\varepsilon=\frac{-1+\sqrt{-3}}{2}$ a primitive root of 1.

Proposition 2. If p = 3, $L = \mathbb{C}(t)$ and $K = \mathbb{C}(t^3)$, then the norm of $h(t) = \frac{t-1}{\varepsilon t-1}$ is a cube, while h(t) is not a product of element of K and a cube.

Proof. L/K is cyclic and the automorphism σ of L defined by

$$\sigma(t) = \varepsilon t, \qquad \sigma \mid_{\mathbb{C}} = id_{\mathbb{C}}$$

generates the Galois group G(L/K). It is easy to express norm $N_{L/K}$ in terms of decomposition of irreducibles in $\mathbb{C}[t]$:

$$N_{L/K} \left(a (t - b)^k \right) = a^3 (t^3 - b^3)^k.$$

Let $\varphi: L^* \longrightarrow \mathbb{Z}^3$ (a cartesian product here) be a homomorphism

$$\varphi\left(f\left(t\right)\right)=\left(v_{t-1}\left(f\left(t\right)\right),v_{\varepsilon t-1}\left(f\left(t\right)\right),v_{\varepsilon^{2} t-1}\left(f\left(t\right)\right)\right)$$

which assigns orders of zeros in $1, \varepsilon^2, \varepsilon$ to a rational function f(t).

Firstly note that

$$\varphi\left(L^{*3}\right) = 3\mathbb{Z}^3.$$

Secondly

$$\varphi\left(K^{*}\right)=\mathbb{Z}\cdot\left(1,1,1\right).$$

The first observation enables a reduction mod 3:

$$\ddot{\varphi}: g(L) \longrightarrow \mathbb{Z}_3^3, \qquad \ddot{\varphi}(fL^{*3}) = \varphi(f) \pmod{3}$$

where \mathbb{Z}_3^3 is again a cartesian power. The second observation yields that $\check{\varphi}\left(\check{r}\left(g\left(K\right)\right)\right)=lin\left(\left(1,1,1\right)\right)$ is a line through $\left(1,1,1\right)$ in \mathbb{Z}_3^{-3} .

Now the rational function

$$h(t) = \frac{t-1}{\varepsilon t - 1} = \frac{t-1}{\sigma(t-1)} \in L^*$$

has norm 1, $N_{L/K}(h(t)) = 1$, so the coset $h(t)L^{*3}$ is in the kernel of $\check{N}: g(L) \longrightarrow g(K)$. On the other hand

$$\ddot{\varphi}\left(h(t)L^{*3}\right) = (1, -1, 0)$$

does not belong to the line $\check{\varphi}\left(\check{r}\left(g\left(K\right)\right)\right)=lin\left((1,1,1)\right)$, hence $h(t)L^{*3}$ does not belong to $\check{r}\left(g\left(K\right)\right)$, i.e. is not a product of element of K and a cube. \Box

4. Local fields

We shall prove that for prime p, and local K containing primitive p-th root of unity, and L/K cyclic, the sequence 2.1 is exact except the case when p is characteristic of the residue field.

Lemma 1. For a finite extension L/K of degree p the equality $Ker\left(\breve{N}\right) = im\left(\breve{r}\right)$ holds iff every α in L such that $N_{L/K}\left(\alpha\right) = 1$ is of the form $\alpha = x\beta^p$ for some $x \in K^*$, $\beta \in L^*$.

Proof. If $Ker\left(\check{N}\right)=im\left(\check{r}\right)$ and $N\left(\alpha\right)=1$, then $\alpha L^{*p}\in Ker\left(\check{N}\right)$, so $\alpha L^{*p}=\check{r}\left(x\right)$ for suitable $x\in K^{*};$ therefore $\alpha L^{*p}=xL^{*p}.$

Conversely, if $N(\alpha) = 1$ implies that $\alpha L^{*p} = \check{r}(x)$ and $\gamma \in L^*$ is such that $\check{N}(\gamma) = K^{*p}$, then

$$N\left(\gamma\right) = y^{p} \text{ for suitable } y \in K^{*},$$

 $N\left(y^{-1}\gamma\right) = 1$

and substitution $\alpha = y^{-1}\gamma$ shows that

$$y^{-1}\gamma = x\beta^{p}$$

$$\gamma = yx\beta^{p}$$

$$\gamma L^{*p} \in im(\check{r}).$$

Thus
$$Ker\left(\breve{N}\right)\subset im\left(\breve{r}\right)$$
.

Theorem 1. If p is a prime, K is a local field with the residue field \overline{K} of characteristic different from p, K contains a primitive degree p root of unity, L/K is a cyclic extension and $L = K(\sqrt[p]{a})$, then the image of F: $g(K) \to g(L)$ is the kernel of N: $g(L) \to g(K)$.

Note that for p=2 (the case of Gross-Fischer theorem), every field K of characteristic different from 2 contains a primitive degree p root of 1 and every extension of degree p is cyclic.

Proof. Let $|\overline{K}| = q$, let O_K be the ring of integers, and let $x \longmapsto \overline{x}$ be the residue homomorphism $O_K \to \overline{K}$. By assumption K contains p-th primitive root ε of 1; the residue $\overline{\varepsilon} \in \overline{K}$ is a primitive p-th root of 1, so $p \mid q - 1$.

Consider following two cases:

Case 1. L/K is unramified.

If L/K is unramified and \overline{L} is the residue field of the local field L, then $\overline{L}/\overline{K}$ is cyclic. If $N_{L/K}(\alpha) = 1$, then $N_{\overline{L}/\overline{K}}(\overline{\alpha}) = 1$; thus there exist $t \in \overline{K}^*$ and $b \in \overline{L}^*$ such that

$$\overline{\alpha} = tb^p$$
.

If $\theta \in K^*$ has residue $\overline{\theta} = t$, then the polynomial

$$X^p - \theta^{-1}\alpha \in O_K[X]$$

has a root b in \overline{L} , thus $X^p - \theta^{-1}\alpha$ has a root β in L by Hensel Lemma; therefore

$$\beta^p - \theta^{-1}\alpha = 0, \qquad \alpha = \theta\beta^p.$$

The lemma above yields that $Ker\left(\check{N}\right)=im\left(\check{r}\right).$

Case 2. L/K is ramified.

Since p is a prime, $\overline{L} = \overline{K}$ and $L = K(\sqrt[p]{\pi})$, where π generates the maximal ideal of the ring O_K . Let $N(\alpha) = 1$. Then $\overline{\alpha}$ is a p-th root of 1:

$$\overline{N(\alpha)} = 1$$

$$\overline{\alpha}^p = 1$$

Let $\rho \in K^*$ be a p-th root of 1 such that $\overline{\rho} = \overline{\alpha}$. Obviously,

$$\begin{split} N\left(\rho^{-1}\alpha\right) &= \left(\rho^{-1}\right)^p N\left(\alpha\right) = 1, \\ \overline{\rho^{-1}\alpha} &= 1. \end{split}$$

The polynomial

$$X^p - \rho^{-1}\alpha \in O_K[X]$$

has root 1 in \overline{L} , hence it has root β in L (even in K);

$$\beta^p - \rho^{-1}\alpha = 0, \qquad \alpha = \rho\beta^p$$

and the lemma above yields that $Ker\left(\breve{N}\right)=im\left(\breve{r}\right)$.

The other case is $p = char(\overline{K})$. In this case there is another counterexample.

Proposition 3. If p = 3, $K = \mathbb{Q}_3(\sqrt{-3})$, $\overline{K} = \mathbb{F}_3$, $L = K(\sqrt[6]{-3})$, then the image of $\check{r}: g(K) \to g(L)$ is smaller than the kernel of $\check{N}: g(L) \to g(K)$.

Proof. The subring $O_K/3O_K$ of the factor ring

$$O_L/3O_L \cong \mathbb{F}_3[X]/(X^6)$$

corresponds to $\mathbb{F}_3\left[X^3\right]/\left(X^6\right)$. It is easy to see that

$$(a_0 + a_1X + a_2X^2 + a_3X^3 + a_4X^4 + a_5X^5)^3 = a_0 + a_1X^3,$$

so any product $x\alpha^3$ with $x \in O_K$, $\alpha \in O_L$ reduces mod 3 to an element of $\mathbb{F}_3[X^3]/(X^6)$.

 $\varepsilon=\frac{\sqrt{-3}-1}{2}$ is a primitive root of unity. If σ is the generator of Galois group G(L/K) such that

$$\sigma\left(\sqrt[6]{-3}\right) = \varepsilon\sqrt[6]{-3},$$

then

$$\frac{1 - \varepsilon \sqrt[6]{-3}}{1 - \sqrt[6]{-3}} = \frac{\sigma \left(1 - \sqrt[6]{-3}\right)}{1 - \sqrt[6]{-3}}$$

has norm 1. Since

$$\frac{1 - \varepsilon \sqrt[6]{-3}}{1 - \sqrt[6]{-3}} = \frac{1}{2} \sqrt[6]{-3} \left(1 + \sqrt[6]{-3} + \left(\sqrt[6]{-3} \right)^2 \right) + \frac{1}{1 - \sqrt[6]{-3}}$$

$$= 1 + \left(\sqrt[6]{-3} \right)^4 + \left(\sqrt[6]{-3} \right)^5 + \left(\sqrt[6]{-3} \right)^6$$

$$+ \frac{1}{2} \left(\left(\sqrt[6]{-3} \right)^7 + \left(\sqrt[6]{-3} \right)^8 + \left(\sqrt[6]{-3} \right)^9 \right)$$

$$+ \frac{\left(\sqrt[6]{-3} \right)^{10}}{1 - \sqrt[6]{-3}},$$

if $\frac{1-\varepsilon\sqrt[6]{-3}}{1-\sqrt[6]{-3}}$ is a product $x\alpha^3$ with $x\in K$, $\alpha\in L$, then clearing denominators one may assume that $x\in O_K^*$, $\alpha\in O_L^*$. Thus $\frac{1-\varepsilon\sqrt[6]{-3}}{1-\sqrt[6]{-3}}$ should reduce mod 3 to an invertible element of $\mathbb{F}_3\left[X^3\right]/\left(X^6\right)$, while actually it reduces to $1+X^4+X^5$.

5. Global fields

Theorem 2. Let p be a prime, p > 2, and let K be a global field. If L/K is a cyclic Galois extension of degree p, then the factor group $Ker\left(\breve{N}\right)/im\left(\breve{r}\right)$ is infinite.

Proof. Denote R, S the ring of integers in K, L respectively. Let σ be a generator of the Galois group G(L/K). There exist infinitely many prime ideals q of R which split completely in S:

$$qS = \mathfrak{q} \cdot \sigma(\mathfrak{q}) \cdot \sigma^2(\mathfrak{q}) \cdot \cdots \cdot \sigma^{p-1}(\mathfrak{q}).$$

There exists $c \in \mathfrak{q} \setminus \mathfrak{q}^2$ which is coprime with

$$qS \cdot \mathfrak{q}^{-1} = \sigma(\mathfrak{q}) \cdot \sigma^2(\mathfrak{q}) \cdot \cdots \cdot \sigma^{p-1}(\mathfrak{q}).$$

The choice of c yields that \mathfrak{q} -adic valuation of c equals 1 and \mathfrak{q} -adic valuation of $\sigma\left(c\right)$ and $\sigma^{2}\left(c\right)$ is 0. The element $h\left(q\right)=\frac{c}{\sigma\left(c\right)}\operatorname{mod}L^{*p}$ belongs to $\operatorname{Ker}\left(\breve{N}\right)$. There is no $x\in K^{*}$ and $\beta\in L^{*}$ such that

$$h = \frac{c}{\sigma(c)} = x\beta^p,$$

because it would imply that

$$\frac{h}{\sigma(h)} = \frac{\frac{c}{\sigma(c)}}{\sigma\left(\frac{c}{\sigma(c)}\right)} = \frac{x\beta^p}{x\sigma(\beta)^p} = \left(\frac{\beta}{\sigma(\beta)}\right)^p,$$

$$\frac{h}{\sigma(h)} = \frac{c\sigma^2(c)}{(\sigma(c))^2} = \left(\frac{\beta}{\sigma(\beta)}\right)^p,$$

while \mathfrak{q} -adic valuation of $\frac{c\sigma^2(c)}{(\sigma(c))^2}$ is exactly 1, so it is not divisible by p.

Thus there is infinte set of distinct elements

$$hL^{*p} = \frac{c}{\sigma\left(c\right)}L^{*p} \in Ker\left(\breve{N}\right)$$

which are not in $im(\breve{r})$.

Remark 1. In the setup of Proposition 2 one may use $h(t) = \frac{t-a}{\varepsilon t-a}$ for $a \in \mathbb{C}^*$ to see that $Ker\left(\check{N}\right)/im\left(\check{r}\right)$ has cardinality of the continuum. One may use an algebraically closed field of arbitrary transfinite cardinality to obtain the same cardinality of $Ker\left(\check{N}\right)/im\left(\check{r}\right)$.

Acknowledgment. We thank the referee for pointing out to us the argument in the proof of Theorem 2.

References

- Jon Kr. Arason Cohomologische Invarianten Quadratischer Formen J. of Algebra 36 (1975), pp. 448 - 491
- [2] Richard Elman, T.Y. Lam, Adrian R. Wadsworth Quadratic Forms under Multiquadratic Extensions, Indagationes Mathematicae v. 42 fasc. 2 (1980), .pp. 131 -145

[3] T. Y. Lam *The Algebraic Theory of Quadratic Forms* W. A. Benjamin, Reading, Mass., 1973

(Marek Szyjewski) ul. Mieszka I 15/97, PL40-877 Katowice $E\text{-}mail\ address,\ M.$ Szyjewski: <code>szyjewsk@ux2.math.us.edu.pl</code>