A NOTE ON THE KERNEL OF THE NORM MAP

MAREK SZYJEWSKI

ABSTRACT. We investigate kernel of the norm map on power classes for
cyclic field extensions.

1. INTRODUCTION

For fixed integer p and for a field K let g(K) = K*/K*P be p-th powers
class group. For p = 2 there is well known Gross-Fischer exact sequence

(1.1) {1,a} = g(K) = g (K (¢/a)) =5 g (K).
(c.f. [3, p. 203].) The group g(K) may be expressed as Galois cohomology
group
g(K) = H' (K,p,) = H' (G (K/K) , 1, (K5))
which is the group Hom (G (K,/K), pp (K ), provided K contains a primi-
tive p-th root of unity. The norm map H* (L, ,up) — H! (K , ,up) is corestric-

tion. In the case p = 2, L = K (y/a) the sequence above may be included
in long exact sequence

i— U(a i i
.S H 1(K’M2)*;H (K,,Ug)—>H (L7,u2)

— Hz (Kal’LQ) MHiJrl (K7N2) —

(e.g. [1, Cor. 4.6].)

A generalization of the sequence (1.1) for p = 2 and several square roots
(a multiquadratic extension) appeared in [2, Th. 2.1].

We are interested in a direct generalization for other values of p, assuming
that K contains all p-th roots of unity. We show that in general the sequence
(1.1) need not to be exact even for p = 3. We show that this sequence
is exact for p prime if K is a finite or local field, except the case p is
characteristic of residue field. Thus we produce counterexamples that show
that well-known zero sequence

TeSs

H' (K, p,) =5 H' (L, p

cor 1

p) — H (K, /‘p)
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need not be exact for p > 2.

2. NOTATION AND BASIC FACTS

Let p be fixed positive integer. In this section we don’t need p to be a
prime.

With a field K we associate an abelian group g(K) - the cokernel of the
homomorphism g :  — zP. The usual notation is following:

K = im(rg)
K*/K™ = g(K),
altough K*P looks like p-th cartesian power.

The operation g is functorial: an embedding r : K — L induces a homo-
morfizm 7 : g(K) — g(L).

coim (F) = K* /r~1 (L*P) 2 (r (K*) L*P) /L*P = im (¥) .

If L/K is a finite field extension, then there is a norm homomorphism
N = Ny, which commutes with 7:

Nomnp =7k oN;

thus N : L* — K* induces a homomorfizm N : g (L) — g(K).
For every finite extension L/K of degree p (the same p fixed in the be-
ginning to define g) if r : K — L is a K-embedding, then

No#=0

where 0 is a trivial homomorphism ¢g(K) — ¢(K) (it follows from N or =
N ‘K*: 7TK.)
In other words: the sequence

(2.1) g(K) 5 g(L) 5 g(K)

is a zero-sequence, or is a complex, for (L : K) = p.
A natural question is if for a degree p extension image of 7 is the kernel
of N, or if this sequence is exact. The answer is positive for:

e p = 2 and all K of characteristic different from 2 (Gross-Fischer
theorem);

e finite K and either arbitrary p dividing |K| — 1 or prime p different
from char (K);

e local K and prime p different from characteritic of the residue field.

Proposition 1. If K is a finite field and either p divides |K|—1 or p is a
prime different form char (K), (L : K) = p then the sequence (2.1) is exact.
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Proof. A finite field K has unique extension L of degree p. Let v be a
generator of the cyclic group L*. Its norm is a product of its conjugates:

Np i (0) = o IR KPT (K P=D/(K =)

and has order |K| — 1. Thus Ny, : L* — K* is surjective, and so is
N g(L) = g(K).

The assumption that p divides |K| — 1 yields that L = K ({/u), where u
is a generator of K*: K* = (u). Moreover

py (K) = Ker (1x) = (uIKI=1)/py

is a cyclic group of order p. Thus im (1) is a cyclic group of order I&]-1

and g (K) is a cyclic group of order p. Since |K| — 1 divides |L| — 1, the
same holds for L:

9(K)] = lg(L)| = p.
A generator uK*? of g(K) is a p-th power in L, so 7 : g(K) — g(L) is trivial
and N : g(L) — g(K) is surjective; hence N : g(L) — g(K) is bijective.

In the case of p prime not dividing | K| it is easy to see that ged (p, |L| — 1) =
ged (p, |K| — 1) since |L| = |K|? = |K| (modp). Thus L contains K ({/u)
(and (K (Yu): K) = ged(p,|K|—1),) 7 : g(K) — g(L) is trivial and
lg (K)| = |g(L)| = ged (p, | K| — 1); hence N is bijective. O

3. THE FIRST COUNTEREXAMPLE

Let p = 3. Let moreover L = C(t) be the field of rational functions
in one variable ¢, and K = C (t3). K is also a field of rational functions
in one variable t3 (we find the standard notation K = C(X), t = VX
—14+v/=3

2

cumbersome.) Choose € = a primitive root of 1.

Proposition 2. If p =3, L = C(t) and K = C (t3), then the norm of
h(t) = L=L is a cube, while h(t) is not a product of element of K and a
cube.

Proof. L/K is cyclic and the automorphism o of L defined by
o(t) = et, o ’(c: ide

generates the Galois group G(L/K). It is easy to express norm Ny k in
terms of decomposition of irreducibles in C [¢]:

Ny (a(t=0)%) =a (£ = 0%)".
Let ¢ : L* — Z3 (a cartesian product here) be a homomorphism

@ (f (1) = (i1 (f (£)) , ver—1 (F (1)) ;0241 (f (1))

which assigns orders of zeros in 1,2, ¢ to a rational function f(t).
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Firstly note that
¢ (L*?) = 3Z°.
Secondly
o(K*)=7Z-(1,1,1).
The first observation enables a reduction mod 3:
prg(L) — 23  @(fL) = o(f) (mod3)
where Z33 is again a cartesian power. The second observation yields that

@ (# (g (K))) = lin((1,1,1)) is a line through (1,1,1) in Z,3.
Now the rational function

t—1 t—1
h(t) = =
®) et—1 o(t—1)

has norm 1, Ny (h(t)) = 1, so the coset h(t)L*3 is in the kernel of N :
g(L) — g(K). On the other hand

P (h(t)L*%) = (1,-1,0)

does not belong to the line ¢ (# (g (K))) = lin ((1,1,1)), hence h(t)L*3 does
not belong to 7 (g (K)), i.e. is not a product of element of K and a cube. [

eL*

4. LOCAL FIELDS

We shall prove that for prime p, and local K containing primitive p-th
root of unity, and L/K cyclic, the sequence 2.1 is exact except the case
when p is characteristic of the residue field.

Lemma 1. For a finite extension L/K of degree p the equality Ker (N) =
im (7) holds iff every a in L such that Ny i (o) = 1 is of the form a = z3¥
for some x € K*, B € L*.

Proof. If Ker (N) = im (7) and N (o) = 1, then aL*? € Ker (N), S0
aL*? =71 (z) for suitable z € K*; therefore aL*P = xL*P.

Conversely, if N («) = 1 implies that «L*? = 7 (z) and v € L* is such
that N (v) = K*P, then

N (v) = 4P for suitable y € K™,
N (y_lfy) = 1
and substitution o = !5 shows that
y v = ap’
o= yapl

YL e im (7).
Thus Ker (N) C im (). O
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Theorem 1. If p is a prime, K is a local field with the residue field K
of characteristic different from p, K contains a primitive degree p root of
unity, L/K is a cyclic extension and L = K ({/a), then the image of 7 :
g(K) — g (L) is the kernel of N : g (L) — g (K).

Note that for p = 2 (the case of Gross-Fischer theorem), every field K of
characteristic different from 2 contains a primitive degree p root of 1 and
every extension of degree p is cyclic.

Proof. Let }f} = q, let Ok be the ring of integers, and let  — T be the
residue homomorphism Oy — K. By assumption K contains p-th primitive
root ¢ of 1; the residue € € K is a primitive p-th root of 1, so p | ¢ — 1.

Consider following two cases:

Case 1. L/K is unramified.

If L/K is unramified and L is the residue field of the local field L, then
L/K is cyclic. If Np i (a) = 1, then Nt i (@) = 1; thus there exist ¢ € K
and b € L" such that

a = thP.
If € K* has residue 6 = ¢, then the polynomial
XP — 07 'a € Ok [X]

has a root b in L, thus X? — 6 'a has a root § in L by Hensel Lemma,;
therefore
BF—0ta=0, a=0p"

The lemma above yields that Ker (]\7 ) =1im (7).

Case 2. L/K is ramified.
Since p is a prime, L = K and L = K (¢/m), where 7 generates the
maximal ideal of the ring Og. Let N (o) = 1. Then @ is a p-th root of 1:

N(a) = 1
o = 1
Let p € K* be a p-th root of 1 such that p = @. Obviously,
N (p_loz) = (p_l)pN(a) =1,
pla = 1.

The polynomial
XP — pla € Ok [X]
has root 1 in L, hence it has root 8 in L (even in K);
Br—pla=0, a=pp
and the lemma above yields that Ker (]\7) =1m (7). O
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The other case is p = char (F) In this case there is another counterex-
ample.

Proposition 3. Ifp =3, K = Q3 (vV-3), K =Fs3, L = K (v/-3), then the
image of ¥ : g(K) — g (L) is smaller than the kernel of N : g (L) — g (K).

Proof. The subring Ok /30 of the factor ring
01/30 2 F3[X]/ (X%)
corresponds to [ [X3] / (X6). It is easy to see that
(ao +a X +aX? + agX3 +as X+ a5X5)3 =ag+ a1X3,

so any product zao? with = € Ok, o € O, reduces mod 3 to an element of
Fs [X?] / (X9).

€= \/_;3_1 is a primitive root of unity. If ¢ is the generator of Galois
group G (L/K) such that

o (V-3) =eV-3,
then
1—ey/=3 o(1-+/-3)
1-y=3  1-V-3

has norm 1. Since

1—ev=3 1, . s 2 1
m:§m<1+\/j3+(\/jg) >+1—76—3

=1+ (V=3)" + (V=3)" + (V=3)"
+5 ((V=3)"+ (V=3 + (V-3)")

1
2
(v=3)"

[

is a product za? with z € K, o € L, then clearing denominators

+

lf 1—¢ \6/773

1-Y-3 .
one may assume that z € O}, o € O7. Thus 11:5{)/*/;? should reduce mod 3
to an invertible element of [ [X 3} / (X 6), while actually it reduces to 1 +
X4+ X5, O

5. GLOBAL FIELDS

Theorem 2. Let p be a prime, p > 2, and let K be a global field. If L/K is
a cyclic Galois extension of degree p, then the factor group Ker (N) Jim ()
is infinite.
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Proof. Denote R, S the ring of integers in K, L respectively. Let o be a
generator of the Galois group G (L/K). There exist infinitely many prime
ideals ¢ of R which split completely in S:

gS=q-0(q)-0*(q)--- a? ! (q).

There exists ¢ € q\ g which is coprime with

¢S g t=0(q) -0 (q) 0" (a).

The choice of ¢ yields that g-adic valuation of ¢ equals 1 and g-adic valu-

ation of o (¢) and o2 (c) is 0. The element h (q) = U(CC) mod L*P belongs to

Ker (N) There is no x € K* and 8 € L* such that

c

h =

because it would imply that

- e ()
a?h) - (C:?c()(;)f(a(ﬁﬂ))p’

co?(c) .

()2 is exactly 1, so it is not divisible by p.
Thus there is infinte set of distinct elements

WP = —C € Ker (]\7)
o (c)

which are not in im (7). O

while g-adic valuation of

Remark 1. In the setup of Proposition 2 one may use h(t) = =% for

a € C* to see that Ker <N) /im (¥') has cardinality of the continuum. One
may use an algebraically closed field of arbitrary transfinite cardinality to
obtain the same cardinality of Ker (N) Jim (7).
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