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Introduction

A joint project with D. Abramovich and J. Włodarczyk on resolution of
singularities of morphisms and log varieties.

References:

[ATW17] "Principalization of ideals on logarithmic orbifolds", JEMS
22, 2020.
[ATW20] "Relative desingularization and principalization of ideals".
[ATW19] "Functorial embedded resolution via weighted blowings
up".
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Introduction

Classical resolution

For simplicity, we only consider varieties over a field k . The
characteristic is zero. Also, can take k = C and work with analytic
spaces (using the usual topology instead of the étale one).
Resolution of singularities associates to an integral variety Z a
modification (i.e. proper birational) Zres → Z with a smooth Zres.
Hironaka 1964 (the Fields medal work): a resolution exists.
Hironaka, Giraud 70ies: simplifications, maximal contact.
Villamayor, Bierstone-Milman 80ies-90ies: algorithmic and
canonical resolution.
Włodarczyk 2005: smooth-functoriality, i.e. Z ′res = Z ′ ×Z Zres for
any smooth Z ′ → Z . This both simplifies the arguments and has
stronger applications (e.g. equivariant resolution).
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Introduction

Relative and logarithmic resolution

[ATW17] The classical algorithm has a logarithmic analogue
associating to each generically log smooth log variety X a
modification Xres → X with a log smooth log DM stack Xres. It is
functorial w.r.t. log smooth morphisms Y → X .
[ATW20] The same logarithmic resolution algorithm applies to a
morphism f : X → B of log schemes: it constructs Xres → X with a
log smooth Xres → B, but can fail when dim(B) > 1.
The new ingredient: there exists a modification h : B′ → B s.t. the
algorithm does not fail for the base change f ′ : X ′ → B′. Moreover,
X ′res → Xres is compatible with further base changes B′′ → B′.
In the current version h is not canonical, so resolution of
morphisms is only relatively functorial.
Work in progress: h can be chosen canonically.
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Classical resolution General framework

Embedded resolution

All canonical methods before [ATW17] construct essentially the
same algorithm built on Hironaka’s framework. Everything is done
locally and glues due to the functoriality.
The resolution is embedded: one (locally) embeds X into a
manifold (i.e. a smooth variety) M. To the pair (M,X ) one
associates a modification of manifolds f : Mres → M and
Xres ↪→ X ×M Mres is a certain transform of X under f .
Functorial embedded resolution implies functorial non-embedded
one because an embedding X ↪→ M with minimal dim(M) is
unique (étale) locally.

M. Temkin (Hebrew University) Logarithmic Resolution of Singularities 6 / 27



Classical resolution General framework

Main choices

The following choices are done in the classical resolution:
(1) Class of modifications: the algorithm iteratively blows up

submanifolds V ⊂ M. Notation: fi : Mi+1 = BlVi (Mi)→ Mi .
(2) Transforms: one pullbacks X and subtracts a multiple of the

exceptional divisor: Xi+1 = f−1
i (Xi)− dEfi .

(3) Choice of centers: the order d = d1 of I = IX at x ∈ M is a (very
crude) primary invariant.

(4) The history: to avoid loops the algorithm encodes history in the
iterated exceptional sncd E . The number s(x) of its components
at x is another primary invariant.

(5) Induction: one iteratively restricts to hypersurfaces of maximal
contact, getting induction on n = dim(M). The actual invariant,
whose maximal locus is blown up, is closer to
(d1, s1,d2, s2, . . . ,dn) with the lex order.
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Classical resolution General framework

History and a dream algorithm

The classical algorithm has a subtle inductive structure and encodes
history of the process in the boundary. With our choices a no-history
algorithm does not exist:

Example (No progress.)

Let φ = x2 − yzt and X = V (φ) in M = A4. Then V = 0 is the only
smooth S3-equivariant subscheme containing 0 in Xsing, but
M ′ = BlV (M) has charts with X ′ = f−1(X )− 2E having the same
singularity, e.g. in M ′y we have
φ = (x ′y ′)2 − y ′(y ′z ′)(y ′t ′) = y ′2(x ′2 − y ′z ′t ′).

A similar computation shows that blowing up the pinch point of
Whitney umbrella V (x2 − y2z) yields a pinch point again.

Using weighted blow ups we have constructed in [ATW19] a dream
algorithm which just iteratively blows up the maximal invariant locus, so
that the invariant drops. No history is needed there.
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Classical resolution General framework

The boundary

After a blow up f : M ′ → M each point x ∈ E = V (t) has a god
given coordinate t (unique up to a unit) coming from the history of
the resolution. One only uses coordinate systems which include t .
Inductively, for a sequence fi : Mi+1 → Mi we set
Ei+1 = f−1

i (Ei) ∪ Efi and call it the accumulated boundary of M.
We always work with coordinates t1, . . . ,tn s.t. Vi = V (ti1 , . . . ,til )
and Ei = (tn−r+1 . . . tn). So, Ei is an snc (simple normal crossings)
divisor and Vi has simple normal crossings with Ei (lies in few
components and is transversal to others).
We call the boundary coordinates exceptional or monomial and
denote them m1, . . . ,mr . So, (t1, . . . ,tn) = (t1, . . . ,tn−r ,m1, . . . ,mr ).
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Classical resolution General framework

The role of the boundary

Good news:

Using canonical monomial coordinates decreases choices, makes
the construction more canonical, helps to avoid loops.
Boundary can accumulate parts of I = IX : we set I = ImonIpure,
where Imon = (ml1

1 . . .m
lr
r ) and Ipure is purely non-monomial.

Bad news/another side of the same coin:
Must treat E and monomial coordinates with a special care.
Less possibilities for coordinates, centers must have snc with E .

Remark
Many technical complications of the classical algorithm are due to a
bad separation of regular and exceptional coordinates because both
are used to define the order.
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Classical resolution General framework

Principalization

All algorithms operate algebraically with I = IX and solve the
following principalization problem: find a sequence of submanifold
blow ups (Mn,En)→ · · · → (M,E) such that In = IXOXn is
invertible and monomial (i.e. supported on En).
Magic: the last non-empty strict transform Xl ⊂ Ml of X equals to
Vl . So, it is smooth and transversal to El .
Thus, principalization implies resolution Xl → X and even resolves
the boundary El |Xl (a strong smell of a log geometry).
A great profit: working with ideals provides a lot of flexibility.
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Classical resolution General framework

Order reduction

The main invariant of the algorithm is d = ord(Ipure), where
ord(J) = minf∈J ord(f ). For example, ord(x2 − yz2) is 2 at any point
of the z-axis and ordO(x5 + y7, x3z3) = 5.
One works with marked (or weighted) ideals (I,d) where d ≥ 1,
only uses M ′ = BlV (M) with V ⊆ (I,d)sing := {x ∈ M|ordx (I) ≥ d},
and updates I by I′ = (IOM′)I−d

E ′ . E.g., as we have computed
earlier (x2 − yzt ,2)′ = (x ′2 − y ′z ′t ′,2) on the y -chart.
Order reduction finds a sequence Mn → · · · → M of such
(I,d)-admissible blow ups so that (In,d)sing = ∅. Its existence
implies principalization just by taking d = 1.

Remark
The so-called max order case when d = ord(Ipure) is the main one. It
implies the general one relatively easily (and characteristic free). One
has to consider the general case due to a bad (inductive) karma.
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Classical resolution Induction on dimension

Maximal contact

The miracle enabling induction on dimension is that in the
maximal order case, order reduction of (I,d) is equivalent to that
of (C(I)|H ,d !), i.e. a blow up sequence reduces the order of (I,d)
iff it reduces the order of (C(I)|H ,d !). Here C(I) is a coefficient
ideal and H is a hypersurface of maximal contact.
The Main Example: if I = (td + a2td−2 + · · ·+ ad ) with t = t1 and
ai(t2, . . . ,tn), then H = V (t) and C(I) = (ad!/2

2 , . . . ,ad!/d
d ).

Remark
(i) Why coefficient ideal? Because, unlike C(I)|H , the stupid restriction
I|H = (ad )|H looses a lot of information.
(ii) Each coefficient ai has natural weight i .
(iii) No problem to have a1 = 0 in characteristic zero (enough d ∈ k×).
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Classical resolution Induction on dimension

Derivations

The main tool for a choice-free description of the algorithm is the
derivation ideals D(I) = D1(I) generated by the elements of I and their
derivations, and its iterations Dn(I) = D(Dn−1(I)). Note that
ordx (I) = ordx (D(I)) + 1 for x ∈ V (I). The derivation provides a
conceptual way to define all basic ingredients excluding the monomial
ones:

(1) ordx (I) is the minimal d such that Dd (Ix ) = Ox .
(2) Maximal contact is any H = V (t), where t is a regular coordinate

in Dd−1(Ix ) (in particular, H is smooth).
(3) The coefficient ideal C(I) is just

∑d−1
i=0 (Di(I))d!/(d−i).

Remark
The only serious difficulty in proving canonicity of the algorithm is to
show independence of the choice of a maximal contact.
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Classical resolution Induction on dimension

Log derivations

The module of logarithmic derivations Dlog is spanned by mj∂mj and ∂ti
for regular ti ’s. These are the derivations preserving E (i.e. taking IE to
itself). For almost all needs it is easier and more conceptual to use
Dlog, but it does not compute the order. This is why one has to use the
usual derivations and runs into two complications as follows.
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Classical resolution Induction on dimension

Choice of the maximal contact

(1) If E is not transversal to H then E |H makes no sense for us, hence
we loose the control on the choice of centers having snc with E .

Solution: new boundary is transversal to H (and any center lying in it),
so first iteratively reduce the order of I along the locus where the
multiplicity s of the old boundary is maximal (practically, work with
I + Id

E(s)). Thus, our primary invariant is (d , sold) ordered
lexicographically.
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Classical resolution Induction on dimension

Monomial contribution to the order

(2) When ord(I) ≥ d but ord(Ipure) < d we cannot proceed by looking
only at Ipure. This happens because Imon contributes to the order
and causes that (I,d)sing 6= ∅ = (Ipure,d)sing.

Solution:
1. Reduce e = ord(Ipure) only along the locus where ord(Imon) ≥ d − e.
Practically, we resolve the so-called companion ideal, which is the
weighted sum of (Ipure,e) and (Imon,d − e).
2. Once e = 0 (i.e. Ipure = (1)), apply a purely combinatorial step to
Imon.
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Logarithmic geometry

What is the boundary?

To proceed let us try to understand what the boundary really is.
Unlike the embedded scheme X , I think it is wrong to view E as a
subscheme of M (though it is determined by it). This is hinted at by
functoriality: we consider blow ups (M ′,E ′)→ (M,E) which do not
take E ′ to E : one has that f−1(E) ↪→ E ′ instead of E ′ ↪→ f−1(E).
The boundary is also determined by the sheaf of monomials
MM =MM(log E) = O×M\E ∩OM ⊂ (OM , ·) consisting of elements
invertible outside of E . This gives the right functoriality:
f ∗(MM(log E))→MM′(log E ′).
In fact, the sheaf of monomialsMM(log E) is precisely what we
need from E !
LocallyMM = O×M × Ns but this splitting (called a monoidal chart)
is non-canonical: it is given by fixing exceptional coordinates
m1, . . . ,ms.
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Logarithmic geometry

Logarithmic varieties

Definition
A logarithmic variety (X ,MX ) consists of a variety X with a sheaf of
monoidsMX and a homomorphism αX : MX → (OX , ·) such that
M×X = α−1

X (O×X ). A morphism is a compatible pair f : X ′ → X and
f ∗MX →MX ′ .

The example covering our needs is (X ,MX (log D)) for a divisor D.
Morphisms are f : X ′ → X s.t. f−1(D) ↪→ D′.
Many constructions extend to log geometry, e.g. Ω(X ,MX ) is
generated by ΩX and elements δm for m ∈ MX subject to relations
dα(m) = α(m)δm (i.e. δm is the log differential of m).
One also defines log smooth morphisms. As in the classical case,
they have locally free sheaves of relative differentials of expected
rank.
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Logarithmic geometry

Toroidal varieties

Log smooth varieties are just toroidal ones: étale (analytically or
formally) locally it suffices to work with the chart
X = Spec C[M][t1, . . . ,tl ] at its origin O, where M is the monoid of
integral points in a rational polyhedral cone. The log structure is
induced by M, and Ω(X ,M) is freely generated by dti and δmi ,
where {mi} is any basis of Mgp. The classical notation is (X ,U) or
(X ,D) with D = ∪m∈MV (m) and U = X \ D.
In other words, OX ,x = C[[M]][[t1, . . . ,tl ]]. We view ti as regular
coordinates and all elements of M as monomial coordinates.
Monomial democracy: M does not have to be free anymore and
there is no canonical base of Mgp.

M. Temkin (Hebrew University) Logarithmic Resolution of Singularities 20 / 27



Logarithmic geometry

Toroidal morphisms

Log smooth morphisms of toroidal varieties are just toroidal
morphisms, i.e. they are (étale-locally) modelled on toric maps and
formally-locally look as

C[[M]][[t1, . . . ,tr ]] ↪→ C[[N]][[t1, . . . ,tn]],M ↪→ N.

Example
(i) Semistable maps with appropriate log structures. For example,
Spec C[x , y ]→ Spec C[π] given by π = xayb is log smooth for the log
structures given by xN × yN and πN. The relative differentials are
spanned by δx = −b

aδy .
(ii) Kummer log-étale covers are obtained when N ⊂ 1

d M and r = n.
Relative log differentials vanish. Finite but usually non-flat, e.g.
Spec C[x , y ]→ Spec C[x2, xy , y2] with the log structures of monomials
in x , y .
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Logarithmic geometry

Some remarks

Remark
Toroidal morphisms are log smooth maps of log smooth varieties. In a
sense, log geometry extends both to the non-smooth case (and
Z-schemes).

Remark
The most interesting feature of the new algorithm is functoriality w.r.t.
Kummer log-étale covers, e.g. obtained by extracting roots of the
monomial coordinates in the classical setting, or obtained by extracting
roots of π is in the semistable reduction case. This is out of reach (and
unnatural) for the classical algorithms.
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Logarithmic algorithms

Main results

Ignoring an orbifold aspect, our main result is:

Theorem (Log principalization)

Given a toroidal variety X with an ideal I ⊂ OX there exists a sequence
of admissible blowings up of toroidal varieties Xn → · · · → X such that
the ideal IOXn is monomial. This sequence is compatible with log
smooth morphisms X ′ → X.

As in the classical situation this implies

Theorem (Log resolution)

For any integral logarithmic variety Z there exists a modification
Zres → Z such that Zres is log smooth. This is functorial w.r.t. log
smooth morphisms Z ′ → Z.
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Logarithmic algorithms

The method

In brief, we want to log-adjust all parts of the classical algorithm. The
main adjustment is to only use log derivations:

(1) logordx (I) is the minimal d such that (Dlog)d (Ix ) = Ox .
(2) Maximal contact is any H = V (t), where t is any regular

coordinate in (Dlog)d−1(Ix ) (in particular, H is toroidal).
(3) The coefficient ideal C(I) is just

∑d−1
i=0 ((Dlog)i(I))d!/(d−i).

(4) In addition, J is (I,d)-admissible if I ⊆ Jd and, for appropriate
coordinates, J = (t1, . . . ,tl ,m1, . . . ,mr ) for any set of monomials.
Then X ′ = BlJ(X ) is toroidal and the d-transform
I′ = (IOX ′)(JOX ′)−d is defined. Note that J is submonomial – a
monomial ideal on the log submanifold V (t1, . . . ,tl)).
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Logarithmic algorithms

Infinite log order

Note that logord(ti) = 1 but logord(m) =∞. This is the main
novelty that allows functoriality w.r.t. extracting roots of monomials
(Kummer covers).
As a price we have to do something special when logord(I) =∞,
but this is simple: just start with blowing up the minimal monomial
ideal Imon containing I. For example, if I = (

∑
i∈Nr mi t i) then

Imon = (mi). The single toroidal blow up makes logord finite! (This
result is due to Kollár.)
Our algorithm is simpler, in particular, it avoids both complications
(max contact is given by a regular coordinate!).
In a sense, we completely separate dealing with regular
coordinates via log order and dealing with monomials via
combinatorics (i.e. toroidal blow ups).
The invariant is just (dn, . . . ,d1) with di ∈ N, d1 ∈ {0,∞}.
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Logarithmic algorithms

Orbifolds

Is all this so elementary? Where is the cheating?
Well. Our algorithm does not distinguish monomials and their
roots. In fact, we view this as a serious advantage (log smooth
functoriality). As another side of the coin, to achieve correct
weights and admissibility, the algorithm often insists to use
Kummer monomials m1/d .
This can be by-passed by working on log-étale Kummer covers,
which is ok due to the strong functoriality we prove. The
Kummer-local description remains the same as we saw. However,
in order to describe the algorithm via modifications of X we have
to use orbifolds and non-representable modifications X ′ → X that
we call Kummer blow ups.
This is ok for applications, because we can remove the stacky
structure afterwards by a separate torification algorithm. Though
the latter is only compatible w.r.t. smooth morphisms.
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Logarithmic algorithms

An example

Example

(i) Take X = Spec C[t ,m] and I = (t2 −m2). Then logordO(I) = 2,
H = V (t), C(I)|H = (m2,2), the order reduction of C(I)|H blows up
(m2)1/2 = (m), and the order reduction of I blows up (t ,m). Just as in
the classical case.
(ii) If I = (t2 −m) then logordO(I) = 2, H = V (t), C(I)|H = (m,2), the
order reduction of C(I)|H blows up (m1/2), and the order reduction of I
blows up (t ,m1/2). This is a non-representable Kummer blow up
whose coarse moduli space Bl(t2,m)(X ) is not toroidal.

Remark
More generally, the weighted blow up of ((t1,d1), . . . ,(tr ,dr )) in An is
the coarse space of a non-representable modification with a smooth
source. They are used in the dream algorithm of [ATW19] and should
be useful for other classical problems in birational geometry.
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