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According to B. Totaro ([7]), there is a hope that the Chow groups of a field
k can be computed using a very small class of affine algebraic varieties (linear
spaces in the right coordinates), whereas the current definition uses essentially
all algebraic cycles in affine space. In this note we consider a simple modification
of CH2(Spec(k), 3) using only linear subvarieties in affine spaces and show that
it maps surjectively to the Bloch group B(k) for any infinite field k. We also
describe the kernel of this map.

The second autor is grateful to Anton Mellit, who taught her the idea of
passing from linear subspaces to configurations (Lemma 1 below) and pointed
out the K-theoretical meaning of Menelaus’ theorem, and to the organizers of
IMPANGA summer school on algebraic geometry for their incredible hospitality
and friendly atmosphere.

1 Lines crossing a tetrahedron

Let k be an arbitrary infinite field. Consider the projective spaces Pn(k) with
fixed sets of homogenous coordinates (t0 : t1 : · · · : tn) ∈ Pn(k). We call a
subspace L ⊂ Pn(k) of codimension r admissible if

codim
(

L ∩ {ti1 = · · · = tis = 0}
)

= r + s

for every s and distinct i1, . . . , is. (Here codim(X) > n means X = ∅.) Let

Crn = Z
[
admissible L ⊂ Pn(k) , codim(L) = r

]
be the free abelian group generated by all admissible subspaces of Pn(k) of
codimension r. Then for every r we have a complex

. . .
d−→ Crr+2

d−→ Crr+1
d−→ Crr −→ 0 −→ . . .

(we assume that Crn = 0 when n < r) with the differential

d[L] =
∑

(−1)i[L ∩ {ti = 0}] (1)

where every {ti = 0} ⊂ Pn(k) is naturally identified with Pn−1(k) by throwing
away the coordinate ti. We are interested in the homology groups of these
complexes Hr

n = Hn(Cr•).
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For example, one can easily see that H1
1
∼= k∗. Indeed, a hyperplane

{
∑
αiti = 0} is admissible whenever all the coefficients αi are nonzero, and

if we identify

C11 ∼= Z[k∗] [{α0t0 + α1t1 = 0}] 7−→
[α1

α0

]
C12 ∼= Z[k∗ × k∗] [{α0t0 + α1t1 + α2t2 = 0}] 7−→

[(α1

α0
,
α2

α1

)] (2)

then the differential d : C12 −→ C11 turns into

[(x, y)] 7−→ [x]− [xy] + [y] .

(one can recognize Menelaus’ theorem from plane geometry behind this simple
computation). Hence we have

H1
1
∼= Z[k∗]

/{
[x]− [xy] + [y] : x, y ∈ k∗

} ∼= k∗ .

Continuing the identifications of (2), C1
• turns into the bar complex for the

group k∗ (with the term of degree 0 thrown away) and therefore

H1
n = Hn(k∗,Z) , n ≥ 1 .

Now we switch to r = 2 and try to compute H2
3 . The four hyperplanes

{ti = 0} form a tetrahedron ∆ in the 3-dimensional projective space P3(k) and
the line ` is admissible if it

1) intersects every face of ∆ transversely, i.e. at one point Pi = `∩ {ti = 0};

2) doesn’t intersect edges {ti1 = ti2 = 0} of ∆, i.e. all four points P0, . . . , P3 ∈
` are different .

Therefore it is natural to associate with ` a number, the cross-ratio of the four
points P0, . . . , P3 on `. Namely, there is a unique way to identify ` with P1(k)
so that P0, P1 and P2 become 0,∞ and 1 respectively, and we denote the image
of P3 by λ(`) ∈ P1(k) r {0,∞, 1} = k∗ r {1}. We extend λ linearly to a map

C23
λ−→ Z[k∗ r {1}]∑

ni[`i] 7−→
∑

ni[λ(`i)]

Theorem 1. Let σ : k∗ ⊗ k∗ −→ k∗ ⊗ k∗ be the involution σ(x⊗ y) = −y ⊗ x.

(i) If d(
∑
ni[`i]) = 0 then

∑
niλ(`i)⊗ (1− λ(`i)) = 0 in (k∗ ⊗ k∗)σ.

(ii) Let L ⊂ P4(k) be an admissible plane and `i = L ∩ {ti = 0}, i = 0, . . . , 4.
If we denote x = λ(`0) and y = λ(`1) then

λ(`2) =
y

x
, λ(`3) =

1− x−1

1− y−1
and λ(`4) =

1− x
1− y

.

(iii) The map induced by λ on homology

λ∗ : H2
3 −→ B(k) (3)
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is surjective, where

B(k) =
Ker

( Z[k∗ r {1}] −→ (k∗ ⊗ k∗)σ
[a] 7−→ a⊗ (1− a)

)
〈

[x]− [y] +
[
y
x

]
−
[

1−x−1

1−y−1

]
+
[

1−x
1−y

]
, x 6= y

〉
is the Bloch group of k ([5]).

(iv) We have H2
3
∼= H3(GL2(k))/H3(k∗) and the kernel of (3)

K = Ker
(
H2

3
λ∗−→ B(k)

)
fits into the exact sequence

0 −→ Tor(k∗, k∗)∼ −→ K/T (k) −→ k∗⊗K2(k) −→ KM
3 (k)/2 −→ 0 , (4)

where Tor(k∗, k∗)∼ is the unique nontrivial extension of Tor(k∗, k∗) by
Z/2, and T (k) is a 2-torsion abelian group (conjectured to be trivial).

We remark that Tor(k∗, k∗) = Tor(µ(k), µ(k)) is a finite abelian group if
k is a finitely-generated field. Furthermore, it is proved in [5] that B(k) has
the following relation to K3(k): let K ind

3 (k) be the cokernel of the map from
Milnor’s K-theory KM

3 (k) −→ K3(k), then there is an exact sequence

0 −→ Tor(k∗, k∗)∼ −→ K ind
3 (k) −→ B(k) −→ 0 (5)

In particular, if k is a number field then as a consequence of (5) and Borel’s
theorem ([1]) we have

dimB(k)⊗Q = r2 ,

where r2 is the number of pairs of complex conjugate embeddings of k into C.

Proof of (i) and (ii). One can check that the diagram

C23

λ

��

d // C22
[t0:t1:t2] 7−→t0⊗(−t1) + (−t1)⊗t2 + t2⊗t0 + t0⊗t0

��
Z[k∗ r {1}]

[a] 7−→a⊗(1−a) // (k∗ ⊗ k∗)σ

is commutative, and therefore (i) follows. It is another tedious computation to
check (ii).

In the next section we will prove the remaining claims (iii) and (iv) and also
show that

H2
n
∼= Hn(GL2(k),Z)/Hn(k∗,Z) n ≥ 3 . (6)
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2 Complexes of configurations

We say that n+ 1 vectors v0, . . . , vn ∈ kr are in general position if every ≤ r of
them are linearly independent. Let C(r, n) be the free abelian group generated
by (n + 1)-tuples of vectors in kr in general position. For fixed r we have a
complex

. . .
d−→ C(r, 2) d−→ C(r, 1) d−→ C(r, 0)

with the differential

d[v0, . . . , vn] =
∑

(−1)i[v0, . . . , v̌i, . . . , vn] (7)

The augmented complex C(r, •) −→ Z −→ 0 is acyclic. Indeed, if

d
(∑

ni[vi0, . . . , v
i
n]
)

= 0

and v ∈ kr is such that all (n + 2)-tuples [v, vi0, . . . , v
i
n] are in general position

(such vectors v exist since k is infinite) then∑
ni[vi0, . . . , v

i
n] = d

(∑
ni[v, vi0, . . . , v

i
n]
)
.

Lemma 1. Crn ∼= C(r, n)GLr(k) for the diagonal action of GLr(k) on tuples
of vectors. Moreover, the complex Cr• is isomorphic to the truncated complex
C(r, •)GLr(k),•≥r.

Proof. For n ≥ r there is a bijective correspondence between subspaces of codi-
mension r in Pn(k) and GLr(k)-orbits on (n + 1)-tuples [v0, . . . , vn] of vectors
in kr satisfying the condition that vi span kr. It is given by

L ⊂ Pn 7−→ [v0, . . . , vn] , vi = image of ei in kn+1/L̃ ∼= kr

[v0, . . . , vn] 7−→ L̃ = Ker[v0, . . . , vn]T ⊂ kn+1

where L̃ is the unique lift of L to a linear subspace in kn+1 and e0, . . . , en is a
standard basis in kn+1.

An admissible point in Pr(k) is a point which doesn’t belong to any of the
r + 1 hyperplanes {ti = 0}, and for the corresponding vectors [v0, . . . , vr] it
means that every r of them are linearly independent. For n > r a subspace L
of codimension r in Pn(k) is admissible whenever all the intersections L∩ {ti =
0} are admissible in Pn−1(k). Hence it follows by induction that admissible
subspaces correspond exactly to GLr(k)-orbits of tuples “in general position”.
Obviously, differential (1) is precisely (7) for tuples.

The tuples of vectors in general position in kr modulo the diagonal action
of GLr(k) are called configurations, so C(r, n)GLr(k) is the free abelian group
generated by configurations of n+ 1 vectors in kr.

Proof of (iii) in Theorem 1. For brevity we denote C(2, n) by Cn and GL2(k)
by G. Since the complex of G-modules C• is quasi-isomorphic to Z we have
the hypercohomology spectral sequence with E1

pq = Hq(G,Cp) ⇒ Hp+q(G,Z).
Since all modules Cp with p > 0 are free we have E1

pq = 0 for p, q > 0 and
E1
p0 = (Cp)G. If G1 ⊂ G is the stabilizer of

(
1
0

)
then E1

0q = Hq(G,Z[G/G1]) =
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Hq(G1,Z) by Shapiro’s lemma. We have k∗ ⊂ G1 and Hq(k∗,Z) = Hq(G1,Z)
(see Section 1 in [6]), so E1

0q = Hq(k∗,Z). Further, E2
p0 = Hp((C•)G) and E2

0q =
Hq(k∗,Z). This spectral sequence degenerates on the second term. Indeed, the
embedding

k∗ ↪→ G

α 7→
(

1 0
0 α

)
is split by determinant, and therefore all maps Hq(k∗,Z) −→ Hq(G,Z) are
injective. Consequently, E∞pq = E2

pq and for every n ≥ 2 we have a short exact
sequence

0 −→ Hn(k∗,Z) −→ Hn(G,Z) −→ Hn

(
(C•)G

)
−→ 0 .

It follows from Lemma 1 that

H2
n = Hn

(
(C•)G

)
= Hn(G,Z)/Hn(k∗,Z) , n ≥ 3 .

Let Dn be the free abelian group generated by (n + 1)-tuples of distinct
points in P1(k). Again we have the differential like (7) on D• and the augmented
complex D• −→ Z −→ 0 is acyclic. We have a surjective map from C• to D•
since a non-zero vector in k2 defines a point in P 1(k) and the group action
agrees. The spectral sequence Ẽ1

pq = Hq(G,Dp) ⇒ Hp+q(G,Z) was considered
in [5]. In particular, Ẽ1

p0 = (Dp)G is the free abelian group generated by (p−2)-
tuples of different points since G-orbit of every (p+ 1)-tuple contains a unique
element of the form (0,∞, 1, x1, . . . , xp−2), and the differential d1 : Ẽ1

04 −→ Ẽ1
03

is given by

[x, y] 7→ [x]− [y] +
[y
x

]
−
[1− x−1

1− y−1

]
+
[1− x

1− y

]
. (8)

According to [5], terms Ẽ2
pq with small indices are

H3(k∗ ⊕ k∗)

H2(k∗)⊕ (k∗ ⊗ k∗)σ (k∗ ⊗ k∗)σ

k∗ 0 0

Z 0 0 p(k)

where p(k) is the quotient of Z[k∗r{1}] by all 5-term relations as in right-hand
side of (8), and the only non-trivial differential starting from p(k) is

d3 : p(k) −→ H2(k∗)⊕ (k∗ ⊗ k∗)σ = Λ2(k∗)⊕ (k∗ ⊗ k∗)σ
[x] 7→ x ∧ (1− x) − x⊗ (1− x)
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Therefore Ẽ4
30 = Ẽ∞30 = B(k) and we have a commutative triangle

H3(G)

&& &&LLLLLLLLLL
// // E∞30 = H2

3

��
Ẽ∞30 = B(k)

where both maps from H3(G) are surjective, hence the vertical arrow is also
surjective. It remains to check that the vertical arrow coincides with λ∗. A line
` in P3(k) is given by two linear equations and for an admissible line it is always
possible to chose them in the form{

t0 + x1t2 + x2t3 = 0 ,
t1 + y1t2 + y2t3 = 0 .

This line corresponds to the tuple of vectors(
1
0

)
,

(
0
1

)
,

(
x1

y1

)
,

(
x2

y2

)
which can be mapped to the points 0,∞, 1, x1y2

y1x2
in P1(k), hence the vertical

arrow maps it to [x1y2
y1x2

] (actually we need to consider a linear combination of lines
which vanishes under d but for every line the result is given by this expression).
On the other hand, four points of its intersection with the hyperplanes are

P0 = (0 : y1x2 − y2x1 : −x2 : x1)
P1 = (y2x1 − y1x2 : 0 : −y2 : y1)
P2 = (−x2 : −y2 : 0 : 1)
P3 = (−x1 : −y1 : 1 : 0)

and if we represent every point on ` as αP0 +βP1 then the corresponding ratios
β
α will be 0,∞,−x2

y2
,−x1

y1
. Hence λ(`) = x1y2

y1x2
again and (iii) follows.

To prove (iv) we first observe that the Hochschild-Serre spectral sequence
associated to

1 −→ SL2(k) −→ GL2(k) det−→ k∗ −→ 1

gives a short exact sequence

1 −→ H0

(
k∗, H3(SL2(k),Z)

)
−→ Ker

(
H3(GL2(k),Z) det−→ H3(k∗,Z)

)
−→ H1

(
k∗, H2(SL2(k),Z)

)
−→ 1.

(9)

The first term here maps surjectively to K ind
3 (k) (see the last section of [2]),

and the map is conjectured by Suslin to be an isomorphism (see Sah [4]). It is
known that its kernel is at worst 2-torsion (see Mirzaii [3]).

Thus we let

T (k) := Ker
(
H0(k∗, H3(SL2(k),Z)) −→ K ind

3 (k)
)
.
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By the preceeding remarks, this is a 2-torsion abelian group. Since the em-
bedding k∗ −→ GL2(k) is split by the determinant, the middle term in (9) is
isomorphic to H2

3 . Then applying the snake lemma to the diagram

0 // T (k) //
� _

��

H0

(
k∗, H3(SL2(k),Z)

)
//

� _

��

K ind
3 (k) //

����

0

0 // K // H3
2

// B(k) // 0

gives the short exact sequence

0 −→ Tor(k∗, k∗)∼ −→ K/T (k) −→ H1

(
k∗, H2(SL2(k),Z)

)
−→ 0.

Finally, it follows from [2] that there is a natural short exact sequence

0 −→ H1

(
k∗, H2(SL2(k),Z)

)
−→ k∗ ⊗KM

2 (k) −→ KM
3 (k)/2 −→ 0 .

This proves (4).
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