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Abstract. We study the spectrum of Lyapunov exponents of a family
of partially hyperbolic and topologically transitive local diffeomorphisms
that are step skew-products over a horseshoe map, continuing previous
investigations. These maps are genuinely non-hyperbolic and the central
Lyapunov spectrum contains negative and positive values. We show
that, besides one gap, this spectrum is complete. We also investigate
how Lyapunov regular points with corresponding (central) exponents are
distributed in phase space. The principal ingredients of our proofs are
minimality of the underlying iterated function system and shadowing-
like arguments.
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1. Introduction

Our work is motivated by recent studies [5, 6, 7] of a class of local dif-
feomorphisms having a topologically transitive set that possesses hyperbolic
periodic points that have unstable manifolds with different dimensions. Such
dynamical systems genuinely lack uniform hyperbolicity and present a num-
ber of interesting new phenomena such as, for example, a gap in the spec-
trum of Lyapunov exponents of ergodic measures even though that the sys-
tem shows a strong form of topological transitivity (it is a homoclinic class,
see below). This strongly contrasts with properties of uniformly hyperbolic
systems for which the spectrum of Lyapunov exponents form a closed inter-
val and Lyapunov regular points with a given fixed value are dense in the
hyperbolic set. Such properties are immediate consequences of the existence
of corresponding coexisting invariant Gibbs measures (each with correspond-
ing exponents) that are supported on the entire uniformly hyperbolic set.

Motivated by such results, in the present paper we give a full analysis
of orbital Lyapunov exponents. We show that the spectrum of exponents,
besides one gap, is complete and, given any exponent in the spectrum, the
corresponding Lyapunov regular points are densly distributed in space. This
is a first step in understanding finer properties of the spectrum and perhaps
its multifractal properties. Our results are based on an analysis of strong
forms of minimality of the underlying iterated function system (IFS), an
equidistribution of contracting and expanding periodic orbits, and shad-
owing arguments to explicitly construct orbits with given exponents. In
particular, we invoke some general distortion arguments that allow to con-
sider maps that are C1 smooth only. We restrict our considerations to a
specific class of maps, however the tools apply certainly in a much general
setting. Observe that the principal ingredient is the existence of expanding
(contracting) itineraries (see Sections 2.2, 2.3) that implies a strong form
of minimality. The existence of such itineraries are related to blender-like
structure that naturally appears in several partially hyperbolic dynamical
systems [3].
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Figure 1. The maps f0, f1 and f−1
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The step skew-product structure enables us to restrict our attention to the
underlying IFS generated by two maps. This IFS is not genuinely contract-
ing, mixing contraction and expansion. Investigating random iterations of
general non-contracting IFS, fractal properties and, in particular, relations
between Lyapunov exponents, dimension, and entropy have been studied
recently (see, for example, [8, 9, 11]). Such approaches focus on properties
of measures that are stationary with respect to the IFS and are “essen-
tially” contracting. Here we focus on the orbital behavior of the IFS, see
Theorem 1.3.

1.1. Step skew-product family. We study the following class of maps.

Given Ĉ = [0, 1]2 and a diffeomorphism Φ of R2 having a horseshoe Γ in

Ĉ that is conjugate to the full shift σ : Σ2 → Σ2 on the symbolic space

Σ2
def
= {0, 1}Z, let Ĉi, i = 0, 1, be naturally associated sub-cubes of Ĉ

given by the “first level” rectangle in Γ, these rectangles are the connected

components of Φ−1([0, 1]2)∩ [0, 1]2. Let C = [0, 1]3 and Ci = Ĉi× [0, 1] and
consider the map F : C→ R3 defined by

F (X)
def
= (Φ(x̂), fi(x)) if X = (x̂, x) ∈ Ci. (1.1)

Here f0, f1 : [0, 1] → [0, 1] be C1 injective maps satisfying properties (F0),
(F1), (F01), and (FB) specified below, compare Figure 1. To complete the
definition of F in C we will consider some appropriate C1-continuation of
F such that F (int(C \

⋃
i Ci)) ∩C = ∅.

Let us briefly recall some dynamical properties of the local diffeomorphism
F obtained in [5], compare Figure 2. We focus on the dynamics of F on the
locally maximal invariant set Λ in C

Λ
def
= Λ− ∩ Λ+, where Λ±

def
=
⋂
i∈N

F±i(C).

By an appropriate choice of the horseshoe, F |Λ is partially hyperbolic with
central direction Ec = {(0s, 0u)} ×R and in fact a special type of transitive
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F−→

Figure 2. The dynamics in the cube C

set (called homoclinic class, see [3] for a discussion of the role of homo-
clinic classes in dynamics). Associated to the two fixed points θ0, θ1 of the
horseshoe map Φ there are two fixed points P0 = (θ0, 1), P1 = (θ1, p1) (with
contracting central direction) and one fixed point Q0 = (θ0, 0) (with ex-
panding central direction) of the map F . The definition of F implies that
the saddles P0 and Q0 are involved in a heterodimensional cycle, that is,
the stable manifold of P0 meets the unstable one of Q0 and the unstable
manifold of P0 meets the stable one of Q0 (see [5, Section 2] for all details).
In Λ coexist intermingled hyperbolic sets with different dimension of their
unstable manifolds that give rise to a plenitude of heterodimensional cycles
associated to periodic points in Λ. This is the underlying mechanism to pro-
duce a rich dynamics mixing hyperbolicity of different types. This system
also exhibits a very rich fibre structure. The topological properties of the
non-hyperbolic homoclinic class Λ are studied in detail in [5].

Let us now specify our conditions.

(F0) The map f0 is increasing and has exactly two hyperbolic fixed points,
the point q0 = 0 (repelling) and the point p0 = 1 (attracting). Let
β = f ′0(0) > 1 and λ = f ′0(1) ∈ (0, 1). The derivative f ′0 is decreasing
in [0, 1] and satisfies

λ2

β2

1− λ
1− β−1

> 1. (1.2)

(F1) The map f1 is an affine orientation reversing contraction

f1(x)
def
= γ (1− x),

where 1 > γ ≥ λ. We denote by p1 the attracting fixed point of f1.
Note that f1(1) = 0.

(F01) There is k0 ≥ 1 such that

γ > β−k0 > β−k0−2 > λ2. (1.3)

(FB) We have f ′0(x) ∈ (0, 1) for all x ∈ [γ, 1] = [f1(0), 1].
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Conditions (F0) and (F1) imply that the system of the fibre maps {f0, f1}
is of cycle type and mixes expanding and contracting behavior. Condi-
tion (F01) will guarantee the existence of appropriate contracting back-
ward itineraries, and (FB) the existence of appropriate expanding backward
itineraries that use blender-like arguments (see Sections 2.3 and 2.2, respec-
tively).

Remark 1.1. There are several ways to achieve the above four conditions
simultaneously. Note that for given λ ∈ (0, 1) conditions (F0) and (F01) are
clearly satisfied if β > 1 is sufficiently close to 1 and if γ is chosen accordingly
to satisfy (1.3). To guarantee (FB) it suffices to assume that the contraction
constant γ in (F1) also satisfies γ ∈ (f0(y), 1) where y ∈ (0, 1) is the largest
point with f ′0(y) = 1. Note that then (f−1

0 )′(x) > 1 for all x ∈ (f0(y), 1].

1.2. The underlying IFS. The step skew-product structure of F allows
us to reduce the study of its dynamics to the study of the IFS generated
by the maps f0, f1. We use the following notation. Every sequence ξ =

(. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 is given by ξ = ξ−.ξ+, where ξ+ ∈ Σ+
2

def
= {0, 1}N0 and

ξ− ∈ Σ−2
def
= {0, 1}−N. We denote by (ξ0 . . . ξm−1)Z the periodic sequence ξ

of period m such that ξi = ξi+m for all i and always refer to the smallest
period of a sequence.

Given finite sequences (ξ0 . . . ξn) and (ξ−m . . . ξ−1), we let

f[ξ0... ξn]
def
= fξn ◦ · · · ◦ fξ1 ◦ fξ0 : [0, 1]→ [0, 1]

and
f[ξ−m... ξ−1.]

def
= (fξ−1 ◦ . . . ◦ fξ−m)−1 = (f[ξ−m... ξ−1])

−1.

We also let
f[ξ−m... ξ−1.ξ0... ξn]

def
= f[ξ0... ξn] ◦ f[ξ−m... ξ−1.].

Note that the maps f[ξ−m... ξ−1.] are in general only defined on a closed subin-
terval of [0, 1]. A finite sequence (ξ−m . . . ξ−1) is said to be admissible for
a point x if the map f[ξ−m... ξ−1.] is well-defined at x. A one-sided infinite

sequence (. . . ξ−2ξ−1.) ∈ Σ−2 is said to be admissible for x if (ξ−m . . . ξ−1)
is admissible for x for all m ≥ 1. Note that the admissibility of a sequence
ξ does not depend on the symbols (ξ0ξ1 . . .). A two-sided infinite sequence
ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 is said to be admissible for x if (. . . ξ−2ξ−1.) is
admissible for x. By writing (x, ξ) we always suppose that ξ is admissible
for x.

We study the spectrum of Lyapunov exponents of the IFS generated by
the maps f0, f1. Given a point p ∈ [0, 1] and a one-sided sequence ξ+ =
(ξ0ξ1 . . .) ∈ Σ+

2 , the forward Lyapunov exponent of p with respect to ξ+ is
defined by

χ+(p, ξ+)
def
= lim

n→∞

1

n
log

∣∣(f[ξ0 ... ξn−1])
′(p)
∣∣

whenever this limit exists. Given a one-sided sequence ξ− = (. . . ξ−1.) ∈ Σ−2
that is admissible for p, then the backward Lyapunov exponent of p with
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respect to ξ is defined by

χ−(p, ξ−)
def
= lim

n→∞

1

−n
log

∣∣(f[ξ−n ... ξ−1.])
′(p)
∣∣

whenever this limit exists. Otherwise we denote by χ± and χ± the lower and

the upper Lyapunov exponents defined by taking the lower and the upper
limit, respectively. Clearly, χ+ (χ−) does not depend on the backward (the
forward) completion of the sequence. The same observation applies to χ±
and χ±. Given a two-sided sequence ξ ∈ Σ2 we denote by χ±(p, ξ) the
corresponding values, whenever it makes sense (whenever ξ is admissible
and the limit exists). Given a periodic sequence (ξ0 . . . ξm−1)Z and a fixed
point p = p(ξ0... ξm−1)Z = f[ξ0... ξm−1](p(ξ0... ξm−1)Z), we have

χ±(p, (ξ0 . . . ξm−1)Z) =
1

m
log

∣∣(f[ξ0 ... ξm−1])
′(p)
∣∣. (1.4)

The following result about the Lyapunov spectrum was shown in [5].

Proposition 1.2 (Spectral gap). Under assumptions (F0), (F1), (F01),
and (FB) the IFS satisfies

log β̃
def
= supχ+(p, ξ+) < log β = log f ′0(0),

where the supremum is taken over all points p ∈ [0, 1] and sequences ξ+ ∈
Σ+

2 , ξ
+ 6= (ξ0 . . . ξk0

N), k ≥ 0.

By Proposition 1.2 the (forward) spectrum of Lyapunov exponents of the
IFS contains a gap and has an isolated point at log β. Note that, given any
pair (0, ξ) such that ξ+ does not eventually consist of only 0′s, its forward
orbit contains a point in the interval (0, 1) and by Proposition 1.2 the upper
exponent of (0, ξ) is less than log β. Otherwise, if ξ+ does eventually consist
of only 0′s then the Lyapunov exponent of (0, ξ) is either log β and or log λ.
Similarly, given (1, ξ) such that ξ+ does not consist only of 0′s then the
first forward iterate is of the form (0, ξ′) and we are in the previous case
obtaining the exponent log β. Otherwise, the exponent of (1, ξ) is log λ.

Here we continue with these studies and provide full details about the
(forward and backward) Lyapunov spectrum. In particular, we show that
there are no further gaps. The following are our main results.

Theorem 1.3 (Lyapunov spectrum of the IFS). Under assumptions (F0),
(F1), (F01), and (FB) the IFS satisfies the following.

Forward spectrum:

(i) For every χ ∈ [0, log β̃ ] the set of points y for which there exists
ξ+ ∈ Σ+

2 with χ+(y, ξ+) = χ is dense in [0, 1].
(ii) For every χ ∈ [log λ, 0] there exists ξ+ ∈ Σ+

2 with χ+(y, ξ+) = χ for
every y ∈ [0, 1].

Backward spectrum:

(iii) For every χ ∈ [0, log β̃ ] and for every y ∈ (0, 1) there exists ξ− ∈ Σ−2
with χ−(y, ξ−) = χ.
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(iv) For every χ ∈ [log λ, 0] the set of points y for which there exists
ξ− ∈ Σ−2 with χ−(y, ξ−) = χ is dense in [0, 1].

The proof of Theorem 1.3 will be split into several steps and will be given
in Section 5. The IFS that we study is genuinely non-contracting as it
contains orbits with negative and orbits with positive Lyapunov exponent.
Thus, a priori we do not have at hand shadowing properties classically
used in hyperbolic theory. Nevertheless, because of the presence of certain
expanding itineraries, we are able to establish a shadowing-like property to
find (periodic) orbits with desired positive Lyapunov exponents. Likewise,
we will proceed to find (periodic) orbits with desired negative exponents for
which we will make use of certain contracting itineraries.

Remark 1.4. It might not be obvious why we need to consider backward
Lyapunov exponents separately. After all, for any ergodic measure and
any integrable potential, the forward and backward Birkhoff averages are
the same, both equal to the integral of the potential with respect to the
measure. So, one might assume that the forward and backward Lyapunov
spectra must be equal. This intuition would be, however, wrong, as the
example we give in the appendix shows.

1.3. Back to the step skew-product map. Due to the skew product
structure and our hypotheses, the DF -invariant splitting Ess ⊕ Ec ⊕ Euu
given by

Ess
def
= R× {(0u, 0)}, Ec

def
= {(0s, 0u)} × R, Euu

def
= {0s} × R× {0}

is dominated (if expansion/contraction of Φ are strong enough) and for every
Lyapunov regular point R ∈ Λ coincides with the Oseledec splitting provided
by the multiplicative ergodic theorem. In particular, the Lyapunov exponent
associated to the central direction Ec at such a point R is well-defined and,
in fact, is the Birkhoff average of the continuous function R 7→ log ‖dF |EcR‖

χc(R)
def
= lim

n→∞

1

n
log ‖dFn|EcR‖ = lim

n→∞

1

n

n−1∑
k=0

log ‖dF |Ec
Fk(R)

‖.

Given a Lyapunov regular point R = (rs, ru, r) ∈ Λ and the sequence ξ =
(. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 associated to the point (rs, ru) in the two-dimensional
horseshoe Γ, we have

χc(R) = χ(r, ξ) = lim
n→∞

1

n
log |(f[ξ0... ξn−1])

′(r)|

(analogous for forward/backward upper/lower Lyapunov exponent). Finally
note that the remaining exponents are associated to the stable and the
unstable directions Ess and Euu, respectively, and are uniformly bounded
away from zero. The following is an immediate consequence of Theorem 1.3.

Corollary 1.5 (Complete spectrum). We have

{χc(R) : R ∈ Λ} = [log λ, log β̃ ] ∪ {log β}.
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Let us observe that as a consequence of our results and the methods for
constructing non-hyperbolic ergodic measures with large support introduced
in [10] and further developed in [1] we can prove the following result that
strengthens Corollary 1.5.

Proposition 1.6. For every χ ∈ (log λ, log β̃ ) there is an ergodic measure
µ with full support in Λ such that χc(µ) = χ.

As the proof closely follows the ideas in [10, 1] we only provide a sketch
of it, see Section 5.5.

1.4. Ingredients and organization. To prove the above results, we study
minimality of the IFS. Recall that, given a metric space X, a map f : X → X
is minimal if each closed subset Y ⊂ X such that f(Y ) ⊂ Y is either empty
or coincides with X. Similarly, an iterated function system {fi}i of maps
fi : X → X is said to be forward minimal if each closed set Y ⊂ X such
that fi(Y ) ⊂ Y for all i is empty or coincides with X. Given a point x ∈ X,
let

O+(x)
def
= {f[η0... ηn](x) : η ∈ Σ+

2 , n ≥ 0}
be the set of all images of x. Note that an IFS {fi}i of maps fi : X → X is
forward minimal if and only if for every x ∈ X the set O+(x) is dense in X.

In principle, we can also study backward minimality of an IFS studying
the inverse maps f−1

i . In our setting, when considering a characterization
using dense backward orbits, we have to observe that not all backward con-
catenations are admissible. Let

O−(x)
def
= {f[η−n... η−1.](x) : η ∈ Σ−2 admissible for x and n ≥ 1}

be the set of all preimages of x under the IFS. Note that in our case we have
O−(1) = {1} and O−(0) = {0, 1} and thus the IFS is not backward minimal
as defined above. However, these two points are the only exceptional points
as stated in the following proposition.

Proposition 1.7 (Forward and almost backward minimality). For every
x ∈ [0, 1] the set O+(x) is dense in [0, 1]. For every x ∈ (0, 1) the set O−(x)
is dense in [0, 1].

The investigation of minimal sets for an IFS is closely related to the
investigation of minimal sets of Markov systems or pseudo Markov systems
which occur in codimension one foliations. We further point out iterated
function systems of maps over the circle and Duminy’s theorem (see [14]).

The paper is organized as follows. In Section 2 we study dynamic prop-
erties of the underlying IFS such as expanding and contracting itineraries.
In Section 3 we establish minimality of the IFS. In Section 4 we explicitly
construct periodic orbits of the IFS with given approximate Lyapunov ex-
ponents. In Section 5 we provide the proof of Theorem 1.3 and explicitly
construct forward/backward orbits of the IFS that have a given Lyapunov
exponent. To do this we will make use of a number of shadowing arguments.
We will also provide a sketch of Proposition 1.6.
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Figure 3. Choice of fundamental domains

2. Dynamics of the IFS

In this section we start to study dynamical properties of the IFS generated
by the maps f0 and f1.

2.1. Choice of fundamental domains. For small t > 0, consider the
fundamental domains of f0

I0(t)
def
= [f−1

0 (t), t] and I1(t)
def
= [1− t, f0(1− t)]

and define N(t) ≥ 1 and M(t) ≥ 0 the smallest integers such that

f
N(t)
0 (I0(t)) ⊂ [1− t, 1] and

(
f
M(t)
0 ◦ f1 ◦ fN(t)

0

)
(f−1

0 (t)) ∈ I0(t).

Note that f1 ◦ fN(t)
0 (I0(t)) ⊂ [0, γ t] ⊂ [0, t] and thus M(t) ≥ 0.

Lemma 2.1. There are arbitrarily small t > 0 with f
N(t)
0 (I0(t)) = I1(t).

Proof. As t 7→ fN−1
0 (t) is continuous, fN−1

0 (0) = 0, and fN−1
0 (1) = 1,

by the mean value theorem for any N there exists t = t(N) such that

t + fN−1
0 (t) = 1. It is not difficult to see that t(N) accumulates at 0 as N

increases. �

In the following we will assume that t is chosen as in Lemma 2.1 and is
sufficiently close to 0 (see Proof of Lemma 2.3). Fixing such t > 0, in what
follows we write

N = N(t), M = M(t),

I0 = [f−1
0 (t), t] = I0(t), I1 = [1− t, f0(1− t)] = fN0 (I0) = I1(t).

2.2. Forward expanding itineraries. One of the key ingredients in our
construction is the existence of so-called expanding itineraries (see Lemma 2.5
and [5, Section 3.2] for details). Roughly speaking, our IFS shows sufficient
expansion such that any non-trivial interval under some appropriate iterate
eventually covers an appropriate fundamental domain of f0. Let us now
show how this follows from our hypotheses.

Definition 2.2 (Expanded successor). Given a closed subinterval J of
f−1

0 (I0) ∪ I0 let

N+(J)
def
=

{
N if J ⊂ I0,

N + 1 otherwise.

The expanded successor of J is defined by f
[0N+(J)1 0M(J)]

(J), where M(J) is

the smallest integer M with f
[0N+(J)1 0M ]

(J) ∩ I0 6= ∅.
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The next lemma justifies the terminology “expanded successor”. Note
that for its proof we require that t was chosen sufficiently small.

Lemma 2.3 (Uniform expansion for expanded successors). Let J be a closed
subinterval of f−1

0 (I0) ∪ I0. Then

|(f
[0N+(J)1 0M(J)]

)′(x)| ≥ κ def
=
λ2

β2

1− λ
1− β−1

> 1 for all x ∈ J. (2.1)

Recall that κ > 1 follows from condition (1.2) in (F0).

Proof. For simplicity, to avoid lengthy discussion involving approximations,
let us assume that f0 is linear in [0, f0(t)] and in [1− t, f0(1− t)] (indeed, as
t is small this hypothesis is “almost true”). Recall that λ = f ′0(1) ∈ (0, 1)
and β = f ′0(0) > 1. We claim that(

fN0
)′

(x) ≥ λ

β

1− λ
1− β−1

for all x ∈ I0. (2.2)

Observe now that by the mean value theorem there is y ∈ f0(I0) such that(
fN0
)′

(y) =

∣∣fN0 (f0(I0)
)∣∣∣∣f0(I0)
∣∣ =

λ t (1− λ)

β t (1− β−1)
=

λ (1− λ)

β (1− β−1)
. (2.3)

The monotonicity of f ′0 and y ∈ f0(I0) imply that
(
fN0
)′

(x) ≥
(
fN0
)′

(y) for

all x ∈ I0 ∪ f−1
0 (I0) and hence (2.2).

Now observe that the definition of N+(J) implies that f
N+(J)
0 (J) ⊂ [1 −

t, 1− λ2 t]. Hence we have(
f
M(J)
0 ◦ f1 ◦ fN+(J)

0

)
(J) ⊂ fM(J)

0 ◦ f1

(
[1− t, 1− λ2 t]

)
⊂ fM(J)

0

(
[γ λ2 t, γ t]

)
.

Define M− and M+ as the smallest positive integers satisfying

βM
−
γ t ≥ β−1 t and βM

+
γ λ2 t ≥ t. (2.4)

Note that M− ≤M(J) ≤M+ and thus

βM(J) ≥ (β γ)−1.

Using (2.2) and recalling that N+(J) ≤ N + 1 and βM(J) ≥ (β γ)−1, we get∣∣(fM(J)
0 ◦ f1 ◦ fN+(J)

0

)′
(x)
∣∣ ≥ 1

β γ
· γ · λ λ

β

1− λ
1− β−1

=
λ2

β2

1− λ
1− β−1

= κ,

for all x ∈ J ⊂ f−1
0 (I0) ∪ I0. This ends the proof of the lemma. �

Using Lemma 2.3 and arguing as in [5, Lemma 3.5], we have the following.

Remark 2.4 (Forward expanding itineraries). Given a closed interval J ⊂
f−1

0 (I0) ∪ I0, we choose numbers ι(J), n(J) ∈ N, an itinerary (ξ0 . . . ξn(J))
consisting of ι(J) concatenated loops of type (0ni10mi), ni ∈ {N,N + 1}
and mi ∈ {M−, . . . ,M+}, and intervals J〈i〉, i = 0, . . . , ι(J), according to
the following rules:

• Let J〈0〉 = J , n0 = N+(J〈0〉), and m0 = M(J〈0〉).
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• The interval J〈1〉 = f[0m01 0n0 ](J〈0〉) is the expanded successor of J〈0〉.
Note that J〈1〉 ∩ I0 6= ∅ and J〈1〉 ⊂ (0, t].
• Arguing inductively, assume that for all j ∈ {1, . . . , i} we have al-

ready defined the interval J〈j〉 ⊂ f−1
0 (I0) ∪ I0 with J〈j〉 ∩ I0 6= ∅

and numbers nj = N+(J〈j〉) and mj = M(J〈j〉) such that J〈j+1〉 =
f[0nj 1 0mj ](J〈j〉) is the expanded successor of J〈j〉. By Lemma 2.3

these intervals satisfy |J〈j+1〉| > κ |J〈j〉| > κj+1 |J |.
• There is a smallest number ι = ι(J) with J〈i〉 ⊂ f−1

0 (I0) ∪ I0 for
all i = 0, . . . , ι(J) such that J〈ι+1〉 = f[0nι 1 0mι ](J〈ι〉) = f[ξ0... ξn](J)

contains the fundamental domain f−1
0 (I0).

• By construction, the numbers ι(J) and n(J) are bounded from above
by constants depending only on the length of J .

The above construction result in the following slightly stronger version.

Lemma 2.5 (Forward expanding covering itineraries). There is ε > 0 such
that for any τ > 0 there is n+(τ) ≥ 1 with the following property: given any
interval J ⊂ f−1

0 (I0) ∪ I0 of length |J | ≥ τ , there is an itinerary (ρ0 . . . ρn),
n ≤ n+(τ), of concatenated loops of type (0ni10mi) such that

• f[ρ0... ρn](J) either contains [f−2
0 (t)−ε, f−1

0 (t)] or [f−2
0 (t), f−1

0 (t)+ε],

• |(f[ρ0... ρn])
′(x)| ≥ κ for all x ∈ J .

Moreover, if the sequence (ρ0 . . . ρn) is a concatenation of ι loops (0ni10mi)
then in the last estimate the expansion is bounded by κι.

Proof. It suffices to observe that we can apply the steps in Remark 2.4 to the

interval J̃ = f−1
0 (I0) obtaining an integer ι̃ and a sequence (η0 . . . ηñ) such

that the interval J̃〈ι̃〉 = f[η0... ηñ](J̃) covers f−1
0 (I0) and has length at least

κ |f−1
0 (I0)|. Hence, in particular, there exists some universal number ε > 0

such that J̃〈ι̃〉, and thus f[ξ0... ξnη0... ηñ](J) with n = n(J̃), either contains the

interval [f−2
0 (t)− ε, f−1

0 (t)] or the interval [f−2
0 (t), f−1

0 (t) + ε]. �

2.3. Admissible backward expanding itineraries. In this section we
prove that to suitable intervals in [0, 1] we can associate an admissible com-
position of the maps f−1

0 and f−1
1 that is uniformly expanding. Using con-

dition (FB) we fix α > 1 and γ∗ < γ = f1(0) such that (compare Figure 1)

1 < α < min
{
γ−1, f ′0(f−1

0 (γ∗))
}
,

(f−1
0 )′(x) > α for all x ∈ [γ∗, 1].

(2.5)

The existence of expanding backward itineraries follows using an argu-
ment from [2] that is in the heart of the concept of a blender (see, for
example, [3, Chapter 6.2]).

Lemma 2.6 (Backward expanding iterates). For every τ > 0 there is an
integer n−(τ) > 0 with the following property: given any closed interval
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J ⊂ [0, 1] of length |J | ≥ τ , there is an itinerary of the form

(ξ−n . . . ξ−1.) = (0k 12 ξ−n+k+2 . . . ξ−1.), n ≤ n−(τ),

such that

• f[0k 12.]

(
f[ξ−n+k+2... ξ−1.](J) ∩ [γ∗, γ]

)
⊃ [γ∗, 1],

• |(f[ξ−j ... ξ−1.])
′(x)| ≥ αj for all x ∈ J ∩ f[ξ−n... ξ−1]([γ∗, γ]) and all

j = 1, . . . , n.

Proof. Given τ > 0, let J ⊂ [0, 1] be an interval of length |J | ≥ τ . Let
us construct the itinerary (ξ−n . . . ξ−1.). First, assume that [γ∗, γ] is not
contained in J . Then there are two cases: if J ⊂ [γ∗, 1] we let ξ−1 = 0 and
if J ⊂ [0, γ] we let ξ−1 = 1. Now define recursively the first block in the
itinerary, let ` = 1 and apply either
i) if f[ξ−`... ξ−1.](J) ⊂ [γ∗, 1] then let ξ−(`+1) = 0 and increase ` by 1, or
ii) if f[ξ−`... ξ−1.](J) ⊂ [0, γ] then let ξ−(`+1) = 1 and increase ` by 1, or
iii) f[ξ−`... ξ−1.](J) ⊃ [γ∗, γ] then stop the recursion.

Recalling the definition of α in (2.5), in i) and ii) we have |(f[ξ−k... ξ−1.])
′(x)| ≥

αk for every x ∈ J and k = 1, . . . , ` and hence |f[ξ−`... ξ−1.](J)| ≥ α`|J |. Thus

the recursion stops after finitely many times ` ≤ (τ logα)−1. Also observe

f[ξ−`... ξ−1.](J) ∩ [γ∗, γ] = [γ∗, γ].

In the remaining case J ⊃ [γ∗, γ] there is no first block (ξ−` . . . ξ−1.).
Note that 1 ∈ f−2

1 ([γ∗, γ]) and that the interval [γ∗, γ] is α2-expanded

by f−2
1 . Let k be the first positive with f−k0 (f−2

1 (γ∗)) ≤ γ∗. Then by
construction,

f−k0

(
f−2

1 (f[ξ−`... ξ−1.](J) ∩ [γ∗, γ])
)
⊃ [γ∗, 1].

Consider now the sequence (ξ−n . . . ξ−1.) = (0k 12 ξ−` . . . ξ−1.). Since by the
choice of γ∗ the map f−1

0 is α-expanding on [γ∗, 1], one has that for all x ∈ J
with f[ξ−n... ξ−1.](x) ∈ [γ∗, γ] and for all j = 1, . . . , n it holds

|(f[ξ−j ... ξ−1.])
′(x)| ≥ αj .

This completes the proof of the lemma. �

2.4. Admissible backward contracting itineraries. We now see that
the IFS also shows sufficient backward contraction.

Definition 2.7 (Contracted predecessor). Given a closed subinterval J of
I1 ∪ f0(I1), let

N−(J)
def
=

{
N if J ⊂ I1,

N + 1 otherwise,
(2.6)

where N is given in Section 2.1. The contracted predecessor of J is

f−1
1 ◦ f−N−(J)−k0

0 (J) = f
[1 0N−(J)+k0 .]

(J),

where k0 is defined in (1.3).
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The next lemma justifies the terminology “contracted predecessor”. Re-
call the constant κ defined in (2.1).

Lemma 2.8 (Uniform contraction for contracted predecessors). Let J be
a closed subinterval of I1 ∪ f0(I1). Then the contracted predecessor of J is
contained in I1 ∪ f0(I1) and we have

|(f
[1 0N−(J)+k0 .]

)′(x)| ≤ κ−1 < 1 for all x ∈ J.

Proof. As in the proof of Lemma 2.3 let us assume linearity of f0 close to 0
and 1. The definition of N−(J) implies that

f
−N−(J)−k0
0 (J) ⊂ [β−k0−2 t, β−k0 t]

and thus

(f−1
1 ◦ f−N−(J)−k0

0 )(J) ⊂ [1− γ−1 β−k0 t, 1− γ−1 β−k0−2 t]

⊂ [1− t, 1− λ2 t] = I1 ∪ f0(I1),

where the last inclusion follows from (1.3). The estimate on the derivative
is obtained exactly as in Lemma 2.3. �

3. Minimality

3.1. Some preliminary results. The following lemma will be used to es-
tablish backward minimality (Proposition 1.7) and to construct approxi-
mating repelling periodic orbits (Lemma 4.4) and shadowing orbits (Propo-
sition 5.1 and Theorem 1.3 (i)).

Lemma 3.1. Given ∆ > 0 and τ > 0 sufficiently small, there are numbers
M = M+(∆, τ) ≥ 1 and δ = δ+(∆) > 0 such that for every p ∈ (∆, 1 −∆)
and every interval J ⊂ (∆, 1−∆) of length |J | ≥ τ there is a finite sequence
(η0 . . . ηm), m ≤M , such that

f[η0 ... ηm](J) ⊃ [p− δ/2, p+ δ/2].

Proof. The proof of the lemma is an almost immediate consequence of
Lemma 2.5 if p is to the right of the fundamental domain I0. However,
it does require more care if p is to the left. To deal with the general case,
we consider the coverings S± of [∆, 1 − ∆] defined below. First recall the
choice of t in Section 2.1, let ε > 0 be given by Lemma 2.5, and define

I−ε
def
= (f−2

0 (t)− ε, f−1
0 (t)), I+

ε
def
= (f−2

0 (t), f−1
0 (t) + ε).

We will use the following result whose proof we postpone.

Claim. There are positive integers m1,m2, ` and two finite sets of finite
sequences

S± def
=
{

(0m1 1 0i), (0m1+1 1 0i), . . . , (0m2 1 0i), i = 0, . . . `
}

such that

C± def
=
{
f[γ0... γk](I

±
ε ) : (γ0 . . . γk) ∈ S±}
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form two coverings of [∆, 1−∆] by open intervals, respectively.

Let δ
def
= δ+(∆) > 0 be a common Lebesgue number of the coverings C±.

Note that there are numbers j0, n0,m0 ≥ 0 such that f[1j0 0n0 1 0m0 ]([0, 1])

is contained in f−1
0 (I0)∪I0. Thus the same inclusion holds for any subinterval

of [0, 1]. We fix such numbers and some small τ > 0 and consider a closed
interval J ⊂ (∆, 1 − ∆) with |J | ≥ τ and a point p ∈ (∆, 1 − ∆). By our
choice of numbers H = f[1j0 0n0 1 0m0 ](J) is contained in f−1

0 (I0)∪ I0 and has

length at least some number τ ′ > 0 that depends only on τ .
By Lemma 2.5, there exists an itinerary (ρ0 . . . ρn), whose length is uni-

formly bounded from above by some number depending only on τ ′, such
that f[ρ0 ... ρn](H) covers either I−ε or I+

ε . By the choice of δ, the interval

[p− δ/2, p+ δ/2] is contained in some member f[γ0...γk](I
±
ε ) of the coverings

C±. Hence concatenating with this itinerary (γ0 . . . γk) we have that

[p− δ/2, p+ δ/2] ⊂ f[1j0 0n0 1 0m0 ρ0 ... ρn γ0 ... γk](J).

By construction, the length of (1j0 0n0 1 0m0 ρ0 . . . ρn γ0 . . . γk) is bounded
from above by some number M+(∆, τ).

We now prove the claim. Choose m1 ≥ 1 large enough such that

f[0m1 ](I
−
ε ) ⊂ (1−∆, 1) and f[0m1 1](I

−
ε ) ⊂ (0,∆).

Note that the set f[0m1 1](I
−
ε ) may not cover a fundamental domain of f0.

However, since f1(1) = 0 and I−ε contains a fundamental domain of f0, we
can choose a number m2 ≥ m1 such that f1

(
f[0m1 ](I

−
ε ) ∪ . . . ∪ f[0m2 ](I

−
ε )
)

does cover a fundamental domain of f0 in (0,∆) (note that two consecutive
iterates of I−ε by f0 overlap). Indeed, the number of fundamental domains of
f0 covered tends to infinity as m2 tends to infinity. Hence, we can consider
` ≥ 1 and the finite set of finite sequences

S− =
{

(0m1 1 0i), (0m1+1 1 0i), . . . , (0m2 1 0i), i = 0, . . . `
}

such that

C− def
=
{
f[γ0... γk](I

−
ε ) : (γ0 . . . γk) ∈ S−}

forms a covering of [∆, 1 − ∆] by open intervals. The construction of C+

is similar, possibly after increasing m1,m2, `. This proves the claim and
finishes the proof of the lemma. �

The next result is a version of Lemma 3.1 for backwards iterates. It will
be used to establish forward minimality (Proposition 1.7) and to construct
shadowing orbits (Theorem 1.3 (iv)).

Lemma 3.2. Given ∆ > 0 and τ > 0 sufficiently small, there is a number
M = M−(∆, τ) ≥ 1 such that for every closed interval J ⊂ (∆, 1 − ∆) of
length |J | ≥ τ there is a finite sequence (η−m . . . η−1), m ≤M , such that for
some k we have

f[η−m...η−m+k+1.]

(
f[η−m+k+2...η−1.](J) ∩ [γ∗, 1]

)
⊃ [∆/2, 1],
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where γ∗ is defined in (2.5).

Proof. Let j = j(∆) be the smallest positive integer with f−j0 (γ∗) ∈ (0,∆/2).
Given any interval J ⊂ (∆, 1 − ∆) of length |J | ≥ τ , consider the number
n−(τ) and the finite sequence (ξ−n . . . ξ−n+k+2 . . . ξ−1) with k ≤ n ≤ n−(τ)
provided by Lemma 2.6 asserting that

f[ξ−n...ξ−n+k+1.](f[ξ−n+k+2...ξ−1.](J) ∩ [γ∗, 1]) ⊃ [γ∗, 1].

Hence, by definition of j we have(
f[0j .] ◦ f[ξ−n...ξ−n+k+1.]

)
(f[ξ−n+k+2...ξ−1.](J) ∩ [γ∗, 1]) ⊃ [∆/2, 1].

By construction, the length of the sequence (0jξ−n . . . ξ−1) is bounded from

above by M−(∆, τ)
def
= j(∆) + n−(τ). To conclude the lemma it is enough

to take (η−m . . . η−1) = (0jξ−n . . . ξ−1). �

The next lemma will help establishing a strong form of backward mini-
mality. Recall the definition of γ in (F1) and of the fundamental domains
I0, I1 in Section 2.1.

Lemma 3.3. Given sufficiently small ∆ > 0, there are constants ν =
ν(∆) ∈ (0, 1) and K = K(∆) ≥ 1 satisfying the following property. Ev-
ery closed interval H ⊂ [∆, 1 − ∆] with |H| ≤ ν is either contained in a
fundamental domain of f0 in [1− t, 1−∆] or there is n = n(H) ≤ K such
that f[10n.](H) is contained in a fundamental domain of f0 in [1− t, 1−∆].

Proof. Let ∆ > 0 be sufficiently small such that ∆ < f−2
0 (γ t). Fix ν =

ν(∆) > 0 so that every interval in [∆, 1 − ∆] with length less than ν is
contained in some fundamental domain of f0. Let k ≥ 1 be the smallest
integer with f−k0 (I1) ⊂ (0, γ t]. Choose ν ∈ (0, λk+1 ν).

Let H ⊂ [∆, 1 − ∆] be an interval with |H| ≤ ν. If H ⊂ [1 − t, 1 − ∆]
then it is contained in a fundamental domain of f0 and we are done. Let us
assume that H intersects [∆, 1 − t) and let n = n(H) ≥ 1 be the smallest
number such that f−n0 (H) ⊂ [0, γ t]. By our choice of ∆ we have f−n0 (H) ⊂
[f−2

0 (γ t), γ t] ⊂ [∆, γ t] and thus

f−1
1 ◦ f−n0 (H) ⊂ [1− t, 1− γ−1 ∆] ⊂ [1− t, 1−∆].

Note that n ≤ k. Since λ−1 is the maximum expansion of the inverse maps
of the IFS, we have

|f−1
1 ◦ f−n0 (H)| ≤ λ−k−1 ν < ν.

The choice of ν guarantees that f−1
1 ◦f

−n
0 (H) is contained in a fundamental

domain of f0 in [1− t, 1−∆], ending the proof of the lemma. �
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3.2. Minimality. We now prove some results on minimality of the IFS.
First we provide the proof of Proposition 1.7.

Proof of Proposition 1.7. To prove backward minimality (density of O−(x))
we argue by contradiction. Suppose that there is x ∈ (0, 1) such that O−(x)
is not dense in [0, 1]. Then [0, 1]\O−(x) contains a closed nontrivial interval
J ⊂ (0, 1). Choose small ∆ > 0 such that J ∪{x} ⊂ (∆, 1−∆) and fix small
τ ∈ (0, |J |). By Lemma 3.1, there are δ > 0 and a finite sequence (η0 . . . ηm)
so that f[η0 ... ηm](J) contains (x − δ/2, x + δ/2). Thus J intersects O−(x),
contradicting the choice of J .

The forward minimality (density of O+(x)) follows from Lemma 3.2. We
argue again by contradiction. Assume that there is x ∈ (0, 1) such that [0, 1]\
O+(x) contains a closed nontrivial interval J ⊂ (0, 1). We have that x ∈
[∆/2, 1] for some ∆ > 0. Applying Lemma 3.2 to ∆ and J we get a sequence
(η−m . . . η−1) such that x ∈ [∆/2, 1] ⊂ f[η−m ... η−1.](J

′) for some subinterval
J ′ of J on which the sequence is admissible. Thus f[η−m ... η−1](x) ∈ J ′ ⊂ J ,
contradicting the choice of J . �

We now establish some further results on uniform minimality for the IFS.

Lemma 3.4 (Uniform forward minimality). Given τ > 0, there is M =
M(τ) such that for every closed interval J ⊂ [0, 1] with |J | ≥ τ there exists
a finite sequence (η0 . . . ηm), m ≤M , such that f[η0 ... ηm]([0, 1]) ⊂ J .

Proof. Recall that p1 is the (attracting) fixed point of f1. Consider a cov-
ering I1, . . . , I` of [0, 1] consisting of intervals of length τ/4. By the forward

minimality in Proposition 1.7, there are finite sequences η(1), . . . , η(`) such
that for every i = 1, . . . , ` we have f[η(i)](p1) ∈ Ii and the distance from

f[η(i)](p1) to the boundary of Ii is less than τ/10. As f1 is a uniform con-

traction, there is some sufficiently large number k (independent of i) such

that f[1k η(i)]([0, 1]) ⊂ Ii. Note that the length of the finite sequences (1k η(i)),

i = 1, . . . , `, is bounded by some M(τ). To finish the proof it suffices to note
that any interval J of length τ contains some interval Ii. �

Analogously, the following lemma that is an easy consequence of backward
minimality in Proposition 1.7 and compactness. Its proof we omit.

Lemma 3.5 (Uniform backward minimality). Given τ > 0 and ∆ > 0,
there are numbers M = M(τ,∆) and ε = ε(τ,∆) such that for every pair
of intervals J,H ⊂ [∆, 1 − ∆] with |J | ≥ τ and |H| < ε there is a finite
sequence (η−m . . . η−1), m ≤M , that is admissible for all x ∈ H and satisfies
f[η−m... η−1.](H) ⊂ J .

We will also need the following slightly strengthened version of Lemma 3.5,
controlling also the derivative.

Lemma 3.6 (Strong uniform backward minimality). Given τ > 0 and ∆ >
0, there are numbers M = M(∆, τ) > 0, K = K(τ,∆) ∈ (0, 1), and ν =
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ν(∆) ∈ (0, 1) such that for every pair of closed intervals

J,H ⊂ [∆, 1−∆] with |J | ≥ τ, |H| ≤ ν

there is a finite sequence (η−m . . . η−1), m ≤ M , that is admissible for all
x ∈ H and satisfies

f[η−m...η−1.](H) ⊂ J and |(f[η−m...η−1.])
′(x)| ≤ K for all x ∈ H.

Proof. The idea to obtain uniform contraction is to follow for a long time a
backward contracting itinerary (provided by Lemma 2.8) applied to H and
to use uniform backward minimality from Lemma 3.5 to put H inside J .
The first one involves an arbitrarily small derivative, while the second one
gives some uniformly bounded correction term. We now provide the details.

Given τ,∆, let M = M(τ,∆) and ε = ε(τ,∆) be the numbers provided
by Lemma 3.5. Furthermore, let ν = ν(∆) and K = K(∆) be the numbers
provided by Lemma 3.3.

Let J,H ⊂ [∆, 1 − ∆] with |J | ≥ τ and |H| ≤ ν. As in the proof of
Lemma 3.3 define

H ′ =

{
H if H ⊂ [1− t, 1−∆],

f−1
1 ◦ f−n(H)

0 (H) otherwise,

where n(H) is the smallest number with f
−n(H)
0 (H) ⊂ [0, γ t]. We let n =

n(H) and η(1) be the empty sequence in the first case and η(1) = (1 0n) in
the second case. Hence, by this choice, as in Lemma 3.3 the interval H ′ is
contained in a fundamental domain of f0 in [1− t, 1−∆] and n ≤ K.

Let k = k(H) ≥ 0 be the smallest number such that H ′′ = f−k0 (H ′) ⊂
I1 ∪ f0(I1). Note that k is uniformly bounded from above by some number
L = L(∆). Recall the definition of κ in (2.1). Let ` ≥ 1 be the smallest
number with

κ−` λ−(k+n+1+M) ≤ ε. (3.1)

In particular, we have

` < 1 +
(L+K + 1 +M)|log λ|+ |log ε|

logκ
.

Applying consecutively ` times Lemma 2.8 to the interval H ′′ and recall-
ing (2.6), we obtain a finite sequence η(2) of maximal length

` (N−(H ′′) + k0 + 1) ≤ ` (N + k0 + 2)

such that

H ′′′ = f[η(2) 0k η(1).](H) ⊂ I1 ∪ f0(I1),

and ∣∣(f[η(2) 0k η(1).])
′(x)

∣∣ < κ−` λ−(k+n+1) for all x ∈ H.
This together with (3.1) and ν < 1 imply

|H ′′′| < κ−` λ−(k+n+1) ν < ε.
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We now apply Lemma 3.5 to the intervals J and H ′′′ and get a finite
sequence η(3) of maximal length M that is admissible for every x ∈ H ′′′ and
such that

f[η(3).](H
′′′) ⊂ J.

Hence, by (3.1) we obtain that for all x ∈ H we have

|(f[η(3) η(2) 0k η(1).])
′(x)| ≤ κ−` λ−(k+n+1+M) ≤ ε.

Now it is enough to take

(η−m . . . η−1)
def
= (η(3) η(2) 0k η(1))

and note that by the above choices m is uniformly bounded from above by
some number that depends on τ and ∆ only. This proves the lemma. �

4. Approximating exponents with periodic orbits

We will show that for every point with an upper positive/negative Lya-
punov exponent there exists a periodic point close-by with roughly the same
exponent.

4.1. Distortion estimates. We first provide some simple distortion re-
sults. Since we will apply them to both forward and backward iterates of
the IFS, let us consider a general setting.

Given a set Z and a differentiable map g on Z, we denote by

Dist g|Z
def
= sup

x,y∈Z

|g′(x)|
|g′(y)|

the maximal distortion of g on Z. Consider the IFS generated by two C1

maps g0, g1 : J → [0, 1] for some closed sub-interval J ⊂ [0, 1]. For ϑ > 0
define

D(ϑ)
def
= max

x∈[0,1]
max
i

(
Dist gi|[x−ϑ/2,x+ϑ/2]∩J

)
. (4.1)

Clearly, D(ϑ)→ 1 as ϑ→ 0.

Lemma 4.1 (Distortion at hyperbolic times). Let (p, ξ+) ∈ [0, 1] × Σ+
2 ,

χ > 0, ε > 0, K ≥ 1, and n ≥ 1 satisfy χ− 2 ε > 0,∣∣∣(g[ξ0... ξn])
′(p)
∣∣∣ ≥ 1

K
e(n+1)(χ−ε), and∣∣∣(g[ξn−m+1... ξn])

′(g[ξ0... ξn−m](p))
∣∣∣ ≥ 1

K
em(χ−ε) for all m = 1, . . . , n.

(4.2)

Let ϑ > 0 be small enough such that D(ϑ) < eε and Jn+1 ⊂ [0, 1] be an inter-
val of length less than ϑK−1 containing g[ξ0... ξn](p) such that (g[ξk... ξn])

−1|Jn+1

is well-defined for every k = 0, . . ., n. Then for every k = 0, . . ., n we have

|Jk| ≤ ϑ e−(n+1−k)(χ−2ε), where Jk
def
= (g[ξk... ξn])

−1(Jn+1) (4.3)

and
Dist gξk |Jk ≤ D(ϑ) < eε. (4.4)
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Note that (4.3) is related to a hyperbolic time defined in (4.8).

Proof. Let Jn+1 be an interval satisfying the hypothesis of the lemma and
consider the sequence of intervals Jk. Arguing inductively, assume that there
is some k ∈ {1, . . ., n+ 1} such that for every ` = k, . . ., n+ 1 we have

|J` | ≤ ϑ e−(n+1−`)(χ−2ε) ≤ ϑ
and hence distortion is bounded in between. Using (4.2) and (4.3) we have

|Jk−1| ≤ D(ϑ)n−k+2 |(g[ξk−1... ξn])
′(g[ξ0... ξk−2](p))|−1|Jn+1|

≤ D(ϑ)n−k+2Ke−(n−k+2)(χ−ε)|Jn+1| ≤ ϑ e−(n+1−(k−1))(χ−2ε) .

Note that the assumption holds for k = n + 1. Hence, by induction, we
get (4.3) for every k = 1, . . ., n + 1 and thus (4.4) also holds. This proves
the lemma. �

Lemma 4.2 (Distortion along contracting orbit). Let (p, ξ+) ∈ [0, 1]×Σ+
2 ,

χ < 0, ε > 0, and K ≥ 1 satisfy χ+ 2 ε < 0 and

|(g[ξ0... ξn−1])
′(p)| ≤ K e−n(|χ|−ε) for all n ≥ 1. (4.5)

Let ϑ > 0 be small enough such that D(ϑ) < eε. Let J ⊂ [0, 1] be an interval
of length less than ϑK−1 containing p and n ≥ 1 be such that g[ξ0...ξn−1] is
well-defined. Then

|Jn| ≤ |J |K e−n(|χ|−2ε) < ϑ, where Jn
def
= g[ξ0... ξn−1](J) (4.6)

and

Dist g[ξ0... ξn−1]|J ≤ D(ϑ)n < enε. (4.7)

Proof. By hypothesis |J | ≤ ϑK−1 ≤ ϑ. Given n ≥ 1, assume that we have

|Jk| ≤ ϑ e−k(|χ|−2ε) ≤ ϑ and thus Dist gξk |Jk ≤ D(ϑ) < eε

for every k = 0, . . . , n− 1. As Jn = gξn−1(Jn−1) we have

|Jn| ≤ |J |Ke−n(|χ|−ε)D(ϑ)n ≤ |J |K e−n(|χ|−2ε) < ϑ.

Hence, by induction, we yield (4.6) and thus (4.7) for every n ≥ 1. �

4.2. Positive spectrum. We will use the previous distortion lemmas to
establish results about shadowing by periodic orbits with positive exponent.

Given numbers χ > ε > 0, a point p ∈ [0, 1], and an one-sided sequence
ξ+ = (ξ0ξ1 . . .) ∈ Σ+

2 , we call a number n ≥ 1 a Pliss hyperbolic time for
(p, ξ) with exponent χ− ε > 0 if

|(f[ξ0... ξn])
′(p)| ≥ e(n+1)(χ−ε) and∣∣(f[ξn−m+1... ξn])

′(f[ξ0... ξn−m](p))
∣∣ ≥ em(χ−ε) for all m = 1, . . . , n.

(4.8)

Remark 4.3 (Abundance of hyperbolic times). It is easy to check that if
χ+(p, ξ+) > χ−ε > 0 then (p, ξ+) has infinitely many hyperbolic times with
exponent χ− ε.
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Lemma 4.4. Given χ > 0 and ε ∈ (0, χ), there is ∆ > 0 such that for every
p ∈ (0, 1) and every sequence ξ+ ∈ Σ+

2 so that χ+(p, ξ+) ∈ (χ− ε, χ+ ε) we
have the following:

(i) there are infinitely many Pliss hyperbolic times n for (p, ξ+) with
exponent χ− ε so that f[ξ0... ξn](p) ∈ (∆, 1−∆),

(ii) there exist a point q ∈ (0, 1) arbitrarily close to p and a periodic
sequence η = (η0 . . . ηk−1)Z ∈ Σ2 such that f[η0... ηk−1](q) = q and
χ(q, η) ∈ (χ− ε, χ+ ε).

Proof. Choose small ∆,∆0 ∈ (0, 1) such that ∆ < ∆0 and

• f ′0(x) > 1 if x ∈ [0,∆0] and f ′0(x) < 1 if x ∈ [1−∆0, 1],
• f0(1−∆0) < 1−∆, and
• f2

1 ([0, 1]) ⊂ (∆0, 1−∆0).

Let χ > 0, ε > 0, p ∈ (0, 1), and ξ+ ∈ Σ+
2 such that χ+(p, ξ+) > χ− ε > 0.

To prove (i), note that χ+(p, ξ+) > 0 and p ∈ (0, 1) together imply that ξ+

contains infinitely many 1′s. Indeed, otherwise we would have χ+(p, ξ+) =
log λ < 0. Thus, in what follows we can consider hyperbolic times n such
that the sequence (ξ0 . . . ξn) contains at least two symbols 1′s.

Considering one such time n, by the definition of hyperbolic time we
have |f ′ξn(f[ξ0... ξn−1](p))| > 1 and thus ξn = 0. The choice of ∆0 implies

f[ξ0... ξn−1](p) /∈ [1 − ∆0, 1]. Thus f[ξ0... ξn](p) = f[ξ0... ξn−1 0](p) /∈ [1 − ∆, 1].
Thus, it remains to check that either f[ξ0... ξn](p) is not close to 0 or that the
hyperbolic time n can be replaced by some possibly larger hyperbolic time
n′ with f[ξ0... ξn′ ]

(p) 6∈ [0,∆]. By our choice of n there is ` < n such that

ξ` = 1 and ξi = 0 for all i ∈ {`+ 1, . . . , n}. We have to consider two cases:

(a) If ξ`−1 = 1 then f[ξ0... ξ`−1ξ`](p) = f[ξ0... ξ`−2 12](p) ∈ f2
1 ([0, 1]) and hence

f[ξ0... ξ`... ξn](p) ≥ fn−`0 (f2
1 (0)) ≥ f2

1 (0) > ∆0 > ∆

and we are done.

(b) If ξ`−1 = 0 then, since (ξ0 . . . ξn) contains at least two 1′s, there is m ≥ 1
such that ξi = 0 for all i ∈ {m, . . . , `− 1} and ξm−1 = 1. Let

pi+1
def
= f[ξ0... ξi](p) and qi+1

def
= 1− pi+1.

If pn+1 6∈ (0,∆] then pn+1 = f[ξ0... ξn](p) ∈ [∆, 1 − ∆] and we are done.
Otherwise, if pn+1 ∈ (0,∆] we will get a contradiction. Indeed, assume that
pn+1 ∈ (0,∆]. Note that ξm−1 = 1 implies pm ∈ f1([0, 1]) = [0, γ]. Since f0

is “almost linear” close to 0 and close to 1, there are positive constants K1

and K2 independent of small ∆ such that

(f[ξ`+1... ξn])
′(p`+1) = (fn−`0 )′(p`+1) ≤ K1

pn+1

p`+1

,

(f[ξm... ξ`−1])
′(pm) = (f `−m0 )′(pm) ≤ K2

1− p`
1− pm

= K2
q`
qm

.
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Note also that q` = p`+1/γ (by definition of f1), pm ≤ γ and thus qm ≥
(1− γ) (by choice of m), and pn+1 ≤ ∆. Putting together these inequalities
we get

|(f[ξm... ξn])
′(pm)| = |(fn−`0 ◦ f1 ◦ f `−m0 )′(pm)|

≤
(
K1

∆

p`+1

)
γ

(
K2

p`+1

γ (1− γ)

)
≤ K1K2

∆

1− γ
.

Noting that n−m→∞ as ∆→ 0, the previous inequality implies that the
sequence (ξ` . . . ξn) is not (χ − ε)-expanding for pm = f[ξ0...ξm−1](p) contra-
dicting that n is a hyperbolic time with exponent χ− ε. This contradiction
concludes the proof of (i).

Let us now show (ii). By Remark 4.3, for sufficiently small ε > 0 there
exist infinitely many hyperbolic times n with exponent χ − ε and by (i)
we can assume that pn+1 = f[ξ0... ξn](p) ∈ (∆, 1 − ∆). If n is a hyperbolic

time, then (p, ξ+), χ, ε, K = 1, and n satisfy the hypothesis of Lemma 4.1.
Moreover, as χ+(p, ξ+) ∈ (χ−ε, χ+ε) if the hyperbolic time n is sufficiently
large then

e(n+1)(χ+ε) ≥
∣∣(f[ξ0... ξn])

′(p)
∣∣ ≥ e(n+1)(χ−ε). (4.9)

Let ϑ ∈ (0,∆/2) be as in Lemma 4.1. Considering the interval of length ϑ,

Jn+1 =
[
pn+1 − ϑ/2, pn+1 + ϑ/2

]
⊂ (∆/2, 1−∆/2),

by this lemma we have that

|J0| ≤ e−(n+1)(χ−2ε) ϑ, where J0 = (f[ξ0... ξn])
−1(Jn+1). (4.10)

We can assume that n is large enough so that J0 ⊂ [p − δ/2, p + δ/2],
where δ = δ(∆/2) is as in Lemma 3.1. Hence, applying this lemma to the
interval Jn+1 ⊂ (∆/2, 1−∆/2) of length |Jn+1| = ϑ we get a finite sequence
η = (η0 . . . ηm) so that

f[η0... ηm](Jn+1) ⊃ [p− δ/2, p+ δ/2] ⊃ J0

with m bounded by some number M = M+(∆/2, ϑ) independent of n.
Hence, by (4.10)

f[ξ0... ξnη0... ηm](J0) ⊃ J0

and thus there exists a point q ∈ J0 that is fixed under the map f[ξ0... ξnη0... ηm].
Using (4.9), the distortion bound (4.4), and |f ′i | ≥ λ in (F0), (F1), we obtain

log
∣∣(f[ξ0...ξnη0...ηm]

)′
(q)
∣∣

n+m+ 2
≥

(n+ 1)
(
χ− ε− logD(ϑ)

)
n+m+ 2

+
(m+ 1) log λ

n+m+ 2
.

We get an analogous upper bound provided by (4.9) and |f ′i | ≤ β in (F0).
Since we can chose n sufficiently large and since m is independent of n, we
verify that this exponent is sufficiently close to χ and that |J0| is small.
Hence the periodic point q is close to p, ending the proof of Lemma 4.4. �

We close this subsection by recalling the following result.
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Proposition 4.5 ([5, Proposition 3.10]). For every ε > 0 there exists a
finite sequence (ξ0 . . . ξn−1) such that the map f[ξ0...ξn−1] has an expanding
fixed point whose Lyapunov exponent is in (0, ε).

4.3. Negative spectrum. Analogously to Lemma 4.4 we establish the fol-
lowing result about shadowing by periodic orbits with negative exponents.
Note that here we require additionally that the forward exponent, that is to
be approximated, is well-defined since we base our constructions on uniform
forward contractions as in the estimates in (4.5).

Lemma 4.6. Given χ < 0 and ε > 0 small enough, for every p ∈ (0, 1) and
every sequence ξ+ ∈ Σ+

2 so that χ+(p, ξ+) < χ + ε < 0, there exist a point
q ∈ (0, 1) arbitrarily close to p and a periodic sequence η = (η0 . . . ηk−1)Z ∈
Σ2 such that f[η0...ηk−1](q) = q and χ(q, η) ∈ (χ− ε, χ+ ε).

Proof. As χ+(p, ξ+) is well-defined, for given ε ∈ (0, |χ|/2) there exists some
constant K > 1 so that for every n ≥ 1 we have

1

K
e−n(|χ|+ε) ≤ |(f[ξ0... ξn−1])

′(p)| ≤ K e−n(|χ|−ε). (4.11)

Choose ϑ > 0 so small that D(ϑ) < eε, where D(ϑ) in defined in (4.1). Let
J ⊂ (0, 1) be an open interval containing p with |J | ≤ ϑK−1. Recall that
we denote by p1 the attracting fixed point of f1. By Proposition 1.7 there
is a finite sequence (η0 . . . ηm) such that f[η0...ηm](p1) is in the interior of J .
Hence for every ` big enough we have

f[1` η0...ηm]([0, 1]) ⊂ J. (4.12)

In particular, for every n ≥ 1 we have

f[ξ0... ξn−1 1` η0...ηm](J) ⊂ J

and thus there exists a point q = q(n) ∈ J fixed by the map f[ξ0... ξn−1 1` η0...ηm].

In view of (4.11), we can apply Lemma 4.2 to the interval J containing p
and q and yield ∣∣(f[ξ0... ξn−1])

′(q)
∣∣ ≤ K e−n (|χ|−2ε).

Using |f ′i | ≤ β, a crude estimate for the derivative of the remaining orbit is

1

n+ `+m+ 1
log
∣∣(f[ξ0... ξn−1 1` η0...ηm])

′(q)
∣∣

≤ logK − n (|χ| − 2 ε)

n+ `+m+ 1
+

(`+m+ 1) log β

n+ `+m+ 1
.

We also get an analogous lower bound using (4.11) and |f ′i | ≥ λ. Note that
m and ` are fixed. Thus, by choosing n sufficiently large, this exponent is
sufficiently close to χ. Finally, taking ϑ small, the point q can be taken
arbitrarily close to p. This proves the lemma. �

We close this subsection by recalling the following result.
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Lemma 4.7 ([5, Proposition 3.9]). For every ε > 0 there exists a finite
sequence (ξ0 . . . ξn−1) such that f[ξ0... ξn−1] is uniformly contracting in [0, 1]
and has a fixed point in (0, 1) whose Lyapunov exponent is in (−ε, 0).

4.4. Summary. Observe that our methods derived in the previous sections
immediately provide the following result.

Proposition 4.8. Given χ ∈ (log λ, log β̃ ) and ε, δ > 0, there is a point q ∈
(0, 1) and a periodic sequence η = (η0 . . . ηk−1)Z ∈ Σ2 such that f[η0... ηk−1](q) =
q, {f[η0... η`](q) : ` = 0, . . . , k−1} is δ-dense in [0, 1], and χ(q, η) ∈ (χ−ε, χ+
ε).

The rough idea of the proof of this proposition is the following. Note that
our method to construct periodic orbits with some approximate exponent
is to jump from a periodic orbit to another one using minimality. Observe
also that given χ we can construct a δ-dense set of periodic orbits with
exponent close to χ. Now, using minimality, we can jump from a periodic
orbit to the next one to get a new periodic orbit with exponent close to χ.
By construction, this periodic orbit is δ-dense.

5. Approximating Lyapunov exponents

In this section we will prove Theorem 1.3 showing that the spectrum of
Lyapunov exponents is almost complete: it contains 0 and has no further

gap besides the one in Proposition 1.2 (recall the definition of β̃ given there).

5.1. Positive forward spectrum. Property (i) in Theorem 1.3 is a con-
sequence of the minimality of the IFS and the next two propositions.

Proposition 5.1. Consider sequences of points (xi)i, xi ∈ (0, 1), and of se-

quences (ξ(i))i, ξ
(i) ∈ Σ+

2 , with positive upper exponents {χi
def
= χ+(xi, ξ

(i)) >

0}. Then for any accumulation point χ of (χi)i there is (y, ξ+) ∈ (0, 1)×Σ+
2

with χ+(y, ξ+) = χ.

Proposition 5.2. For any χ ∈ (0, log β̃ ] the set of points z for which there
exists a sequence ξ+ ∈ Σ+

2 such that χ+(z, ξ+) = χ is dense in [0, 1].

We will first prove the above two propositions and then Theorem 1.3 (i).

Proof of Proposition 5.1. We can freely assume, possibly after passing to a
subsequence, that limi→∞ χi = χ. By Lemma 4.4 (ii), we can also assume

that all the pairs (xi, ξ
(i)) are periodic, that is, ξ(i) = (ξ

(i)
0 . . . ξ

(i)
`(i)−1)Z and

f
[ξ

(i)
0 ... ξ

(i)
`(i)−1

]
(xi) = xi for some `(i) ≥ 1. Indeed, otherwise we can replace

each (xi, ξ
(i)) by some periodic pair with Lyapunov exponent χ′i sufficiently

close to χi so that limi→∞ χ
′
i = χ. Recall that Lyapunov exponents are

constant along orbits. Hence, possibly after replacing xi by some iterate, by
Lemma 4.4 (i) we can assume that there exists ∆ > 0 so that xi ∈ (∆, 1−∆)
for every i.
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Step 0: Choice of auxiliary sequences. Since the Lyapunov exponents
χi converge to χ, there exists a sequence εi monotonically decreasing to 0
such that |χi−χ| ≤ εi for every i. Recall also that each (xi, ξ

(i)) is periodic
and hence uniformly hyperbolic (backward and forward in time). Thus,
given χi and εi, there exists Ki ≥ 1 such that for every k ≥ 1 we have

1

Ki
ek (χi−εi) ≤

∣∣∣(f
[ξ

(i)
0 ... ξ

(i)
k−1]

)′(xi)
∣∣∣ ≤ Ki e

k (χi+εi).

In particular, for every multiple m = L `i of the period of (xi, ξ
(i)) and every

k = 1, . . . ,m we have

1

Ki
ek (χi−εi) ≤

∣∣∣(f
[ξ

(i)
m−k+1... ξ

(i)
m ]

)′(f
[ξ

(i)
0 ... ξ

(i)
m−k]

(xi))
∣∣∣ ≤ Ki e

k (χi+εi). (5.1)

Further choose a sequence ϑi → 0 such that D(ϑi) < eεi for every i. Finally,
given ∆ and ϑiK

−1
i , let Mi = M+(∆, ϑiK

−1
i ) and δi = δ+(∆) be the

numbers provided by Lemma 3.1.
We will now choose sequences (Ni)i≥1 of integers and (Ii)i≥1 of intervals

recursively. Each point in Ii will circle close to the periodic orbit (xi, ξ
(i))

and then jump to the next interval Ii+1. The circling will be large compared
to the jump. The final orbit will pass these intervals consecutively. See
Figure 4.

Let I1 be some small interval whose interior contains x1. We now define
Ii, i ≥ 2, recursively. For Ni = Li `i some sufficiently large multiple of the
period of (xi, ξ

(i)) we choose an interval J(xi, Ni) ⊂ Ii of length ϑiK
−1
i

whose interior contains xi such that

J
(i)
k

def
= (f

[ξ
(i)
k ... ξ

(i)
Ni−1]

)−1(J(xi, Ni)) ⊂ (0, 1). (5.2)

By (5.1) we can apply Lemma 4.1. In particular, (4.4) and the choice of ϑi
above imply

Dist f
ξ
(i)
k

|
J
(i)
k

≤ D(ϑi) ≤ eεi , for all k = 0, . . . , Ni − 1. (5.3)

Moreover, by (4.3) we have

|J (i)
0 | ≤ ϑi e

−Ni(χi−2εi). (5.4)

We can demand that Ni was chosen large enough so that

J
(i)
0 = (f

[ξ
(i)
0 ... ξ

(i)
Ni−1]

)−1(J(xi, Ni)) ⊂ Ii. (5.5)

Note that this remains true if we increase Ni. Applying Lemma 3.1 to
the interval J(xi, Ni) of length ϑiK

−1
i and the point xi+1, we get a point

yi ∈ J(xi, Ni) and a sequence (η
(i)
0 . . . η

(i)
mi−1) of length mi ≤Mi such that

f
[η

(i)
0 ... η

(i)
mi−1]

(yi) = xi+1.

Let
Ii+1

def
= f

[η
(i)
0 ... η

(i)
mi−1]

(J(xi, Ni)).
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x1

x2

x1

y1

I2

J(x1, N1)

Z0 = I1

circle periodic orbit

jump f
[η

(1)
0 ... η

(1)
m1−1]

f
[ξ

(1)
0 ξ

(1)
2 ... ξ

(1)
N1−1]

(x1) = x1

f
[ξ

(2)
0 ξ

(2)
2 ... ξ

(2)
N2−1]

(x2) = x2

Figure 4. First step in the construction of (y, ξ+) in the
proof of Proposition 5.1.

Observe that if we choose Li and hence Ni large (by circulating the corre-

sponding periodic orbit several times) by (5.4) the interval J
(i)
0 can be taken

arbitrarily small. By construction we have

(f
[ξ

(i)
0 ... ξ

(i)
Ni−1 η

(i)
0 ... η

(i)
mi−1]

)−1(Ii+1) ⊂ Ii.

This recursively defines a sequence of 9-tuples (xi, ξ
(i), χi, εi,Ki, ϑi, Ii,mi, η

(i)).
Notice again that all the above stated properties remain true if we replace
Ni by some larger multiple of the period of (xi, ξ

(i)). We will adjust our
choice of Ni in Step 2.

Step 1: Construction of the pair (y, ξ+). Let

Z0
def
= I1,

Z1 =
(
f

[ξ
(1)
0 ... ξ

(1)
N1−1 η

(1)
0 ... η

(1)
m1−1]

)−1
(I2),

Z2
def
=
(
f

[ξ
(1)
0 ... ξ

(1)
N1−1 η

(1)
0 ... η

(1)
m1−1]

)−1
◦
(
f

[ξ
(2)
0 ... ξ

(2)
N2−1 η

(2)
0 ... η

(2)
m2−1]

)−1
(I3)

and so on. By construction, the sequence (Zi)i≥0 is a family of nested
decreasing compact non-empty intervals. Thus, the intersection

⋂
i≥1 Zi

contains some point y ∈ (0, 1). Finally, we define the one-sided sequence ξ+

by concatenating the segments ξ
(i)
0 . . . ξ

(i)
Ni−1η

(i)
0 . . . η

(i)
mi−1 as follows

ξ+ def
= ξ

(1)
0 . . . ξ

(1)
N1−1 η

(1)
0 . . . η

(1)
m1−1 ξ

(2)
0 . . . ξ

(2)
N2−1 η

(2)
0 . . . η

(2)
m2−1 . . . .

To complete Step 1, define the auxiliary sequence (ni)i≥0 by

n0
def
= 0, ni

def
= ni−1 +Ni +mi.

Step 2: Lyapunov exponent of (y, ξ+). By construction, the orbit of

(y, ξ+) “shadows” the orbit of (xi+1, ξ
(i+1)) for the time ni, . . . , ni+Ni+1−1
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(with small distortion) and thereafter passes some “finite transition” for the
time ni+Ni+1, . . . , ni+Ni+1 +mi+1−1 to arrive at a neighborhood of xi+2.
To estimate the “finite-time Lyapunov exponent”, we distinguish two cases:

Case 1: Estimating log |(f[ξ0... ξni+n])
′(y)| with n = 0, . . . , Ni+1 − 1.

By uniform expansion in (5.1), the distortion control in (5.3), and λ ≤
|f ′0|, |f ′1| ≤ β for the derivative at the transitions we have

i∏
k=1

(
e−Nkεk K−1

k eNk(χk−εk)λmk
)
e−nεi+1 K−1

i+1 e
n(χi+1−εi+1) ≤

≤
∣∣(f[ξ0... ξni+n])

′(y)
∣∣

≤
i∏

k=1

(
eNkεk Kk e

Nk(χk+εk)βmk
)
enεi+1 Ki+1 e

n(χi+1+εi+1).

Hence

log
∣∣(f[ξ0... ξni+n])

′(y)
∣∣

ni + n
≤
∑i

k=1

(
logKk +mk log β

)
+ logKi+1∑i

k=1(Nk +mk)

+

∑i
k=1Nk(χk + 2εk)

ni + n
+
n(χi+1 + 2εi+1)

ni + n
.

The first term can be made arbitrarily small, less than εi+1/2, if Ni was
chosen sufficiently big. For the second term observe that∑i

k=1Nk(χk + 2εk)

ni + n
≤
∑i−1

k=1Nk(χk + 2εk)∑i−1
k=1Nk +Ni

+
Ni(χi + 2εi)

ni + n
≤ εi+1

2
+
Ni(χi + 2εi)

ni + n

if Ni was chosen big enough. Thus, putting together the previous estimates,
we obtain

1

ni + n
log
∣∣(f[ξ0... ξni+n])

′(y)
∣∣ ≤

≤ εi+1 +
(Ni + n)

(
max{χi, χi+1}+ 2 max{εi, εi+1}

)
ni + n

< max{χi, χi+1}+ 3εi.

The corresponding lower bound can be derived analogously.

Case 2: Estimating log |(f[ξ0... ξni+Ni+1+n
])
′(y)| with n = 0, . . . ,mi+1 − 1.

Similarily to Case 1, we can estimate

i+1∏
k=1

(
e−Nkεk K−1

k eNk(χk−εk)
)
·

i∏
k=1

λmk · λn ≤

≤ |(f[ξ0... ξni+Ni+1+n
])
′(y)| ≤

i+1∏
k=1

(
eNkεk Kk e

Nk(χk+εk)
)
·

i∏
k=1

βmk · βn.
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Hence,

log |(f[ξ0... ξni+Ni+1+n
])
′(y)|

ni +Ni+1 + n
≤
∑i+1

k=1

(
logKk +mk log β

)
Ni+1

+

∑i
k=1Nk(χk + 2εk)

Ni+1
+ χi+1 + 2εi+1.

As in the Case 1 the first two terms can be made arbitrarily small, less than
εi+1/2, if Ni+1 is chosen sufficiently big. Thus, we obtain

log |(f[ξ0... ξni+Ni+1+n
])
′(y)|

ni +Ni+1 + n
≤ χi+1 + 3 εi+1.

The corresponding lower bound can be derived analogously. This completes
the estimates in Case 2.

Putting together Cases 1 and 2, we obtain that for every i ≥ 1 and every
n = 0, . . . , Ni+1 +mi+1 − 1 we have

min{χi, χi+1} − 3 εi ≤
log |(f[ξ0... ξni+n])

′(y)|
ni + n

≤ max{χi, χi+1}+ 3 εi.

Since εi → 0 and χi → χ, this proves χ+(y, ξ+) = χ. This completes the
proof of Proposition 5.1. �

Proof of Proposition 5.2. Recall the definition of β̃ in Proposition 1.2. By
Proposition 5.1 there exists a pair (y, ζ+) ∈ (0, 1) × Σ+

2 with forward Lya-

punov exponent χ+(y, ζ+) = log β̃.

Let χ ∈ (0, log β̃ ] and fix some decreasing sequence εi → 0. Choose any
open interval I0 ⊂ (0, 1). We claim that this interval contains a point z
such that χ+(z, ξ+) = χ for some sequence ξ+ ∈ Σ+

2 . Let J1 = f1(I0). By
Proposition 1.7 the set O−(y) is dense in [0, 1] and hence there are a point

y1 ∈ J1 and a finite sequence η(1) such that

f[η(1)](y1) = y.

Consider the point x1 and the one-sided sequence ω(1) ∈ Σ+
2 defined by

x1
def
= f−1

1 (y1) ∈ I0 and ω(1) def
= 1 η(1)ζ+.

Observe that χ+(x1, ω
(1)) = β̃ ≥ χ > 0. Since the first iterate of (x1, ω

(1))
is contracting, there exists a number n1 ≥ 2 satisfying

1

n1
log
∣∣(f

[ω
(1)
0 ... ω

(1)
n1−1]

)′(x1)
∣∣ > χ− ε1

2
.

If n1 is the smallest number with this property then

1

k
log
∣∣(f

[ω
(1)
0 ... ω

(1)
k−1]

)′(x1)
∣∣ ≤ χ− ε1

2
for every k = 1, . . . , n1 − 1.

Recall that |f ′0|, |f ′1| ≤ β, thus

1

n1
log
∣∣(f

[ω
(1)
0 ... ω

(1)
n1−1]

)′(x1)
∣∣ ≤ χ− ε1

2
+

log β

n1
.
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Hence, by continuity of the derivative, we can choose an interval I1 ⊂ I0

containing x1 such that for all x ∈ I1 we have

χ− ε1 <
1

n1
log
∣∣(f

[ω
(1)
0 ... ω

(1)
n1−1]

)′(x)
∣∣ < χ+

log β

n1
+ ε1,

1

k
log
∣∣∣(f

[ω
(1)
0 ... ω

(1)
k−1]

)′(x)
∣∣∣ < χ+ ε1 for every k = 1, . . . , n1 − 1.

Let us now start a recursion. Given i ≥ 1 assume that we have already
constructed a one-sided finite sequence ω(i) of length ni ≥ 1 and an interval
Ii ⊂ Ii−1 such that for all x ∈ Ii we have

χ− εi ≤
1

ni
log
∣∣(f

[ω
(i)
0 ... ω

(i)
ni−1]

)′(x)
∣∣ < χ+

log β

ni
+ εi (5.6)

and
1

k
log
∣∣∣(f

[ω
(i)
0 ... ω

(i)
k−1]

)′(x)
∣∣∣ < χ+εi for every k = ni−1 +1, . . . , ni−1. (5.7)

To construct the segment of the one-sided sequence ω(i+1) we proceed as
above. For that recall again that f1 is contracting and hence there exists a
smallest number mi ≥ 1 for which

log
∣∣(fmi1 ◦ f

[ω
(i)
0 ... ω

(i)
ni−1]

)′(x)
∣∣ < 0, for all x ∈ Ii.

Consider the closed interval

Ji+1
def
= fmi1 ◦ f

[ω
(i)
0 ... ω

(i)
ni−1]

(Ii).

By Proposition 1.7 the set O−(y) is dense in [0, 1]. Hence there exist a point

yi+1 ∈ Ji+1 and a finite sequence η(i+1) such that f[η(i+1)](yi+1) = y. Let

xi+1
def
=
(
fmi1 ◦ f

[ω
(i)
0 ... ω

(i)
ni−1]

)−1
(yi+1) ∈ Ii

and define the one-sided infinite sequence

ω(i+1) def
= ω

(i)
0 . . . ω

(i)
ni−11mi η(i+1) ζ+.

Since f1 is contracting, for all k = 1, . . . ,mi we have

log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni−1+k]

)′
(xi+1)

∣∣ < log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni−1 ]

)′
(xi+1)

∣∣
= log

∣∣(f
[ω

(i)
0 ... ω

(i)
ni−1]

)′
(xi+1)

∣∣,
where in the equality we use that ω

(i+1)
k = ω

(i)
k for every k = 1, . . . , ni − 1.

Hence, since xi+1 ∈ Ii, for all k = 1, . . . ,mi we hence have

1

ni + k
log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni+k−1]

)′
(xi+1)

∣∣
≤ 1

ni + k
log
∣∣(f

[ω
(i)
0 ... ω

(i)
ni−1]

)′
(xi+1)

∣∣ < 1

ni
log
∣∣(f

[ω
(i)
0 ... ω

(i)
ni−1]

)′
(xi+1)

∣∣
< χ+ εi,

(5.8)
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where the last inequality follows from (5.7). Observe that the forward orbits

of (xi+1, ω
(i+1)) and (y, ζ+) eventually coincide, hence they have the same

exponent χ+(xi+1, ω
(i+1)) = log β̃ > χ. Thus, fixed small εi+1, there exists

a first number ni+1 > ni +mi for which

1

ni+1
log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni+1−1]

)′
(xi+1)

∣∣ > χ− εi+1

2
.

Since ni+1 is the smallest number with this property we have

1

k
log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
k−1 ]

)′
(xi+1)

∣∣ ≤ χ− εi+1

2
for all k = ni +mi + 1, . . . , ni+1 − 1.

(5.9)

Thus, as |f ′0|, |f ′1| ≤ β,

1

ni+1
log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni+1−1]

)′(xi+1)
∣∣ < χ− εi+1

2
+

log β

ni+1
. (5.10)

By continuity, by (5.10) and (5.9) we can choose a closed interval Ii+1 ⊂ Ii
containing xi+1 such that for all x ∈ Ii+1

χ− εi+1 <
1

ni+1
log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni+1−1]

)′(x)
∣∣ < χ+

log β

ni+1
+ εi+1 (5.11)

and for all x ∈ Ii+1 and all k = ni +mi + 1, . . . , ni+1 − 1

1

k
log
∣∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
k−1 ]

)′
(x)
∣∣∣ < χ+ εi+1. (5.12)

Moreover, by (5.8) we can assume that for all x ∈ Ii+1 and all k = 1, . . . ,mi

1

ni + k
log
∣∣(f

[ω
(i+1)
0 ... ω

(i+1)
ni+k−1]

)′
(x)
∣∣ < χ+ 2εi. (5.13)

In this way we construct a sequence (Ii)i≥1 of nested decreasing compact
intervals such that

⋂
i≥1 Ii contains a point z. We also consider the one-sided

“limit” sequence

ξ+ def
= lim

i→∞
ω(i) ∈ Σ+

2 .

By construction, (5.11), (5.12), and (5.13) guarantee that χ+(z, ξ+) = χ.
Finally, as the choice of the first interval I0 was arbitrary, this proves that
the set of points z with the claimed property is dense in [0, 1]. �

We are now ready to prove Theorem 1.3 property (i).

Proof of Theorem 1.3 (i). Consider any χ ∈ (0, log β̃ ] and any z ∈ (0, 1).
By Proposition 5.2 there is a pair (w, %+) such that χ+(w, %+) = χ. By

Proposition 5.1 there is a pair (y, ξ+) ∈ (0, 1)×Σ+
2 such that χ+(y, ξ+) = χ.

Take any δ > 0. By Proposition 1.7 the backward orbit O−(y) of y is dense
in [0, 1] and thus there are a point y ∈ (z − δ, z + δ) and a finite sequence η
such that f[η](y) = y. Consider the one-sided sequence η ξ+ and note that

the Lyapunov exponents of (y, η ξ+) and (y, ξ+) coincide. The fact that δ

can be taken arbitrarily small proves the claim in the case χ ∈ (0, log β̃ ].
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Likewise, for χ = 0, by Proposition 4.5 and Proposition 5.1 there exists
a pair (y, ξ+) ∈ (0, 1) × Σ+

2 such that χ+(y, ξ+) = 0. Arguing as above,
we conclude that the set of points z for which there exists ξ+ ∈ Σ+

2 with
χ+(z, ξ+) = 0 is dense in [0, 1]. �

5.2. Negative forward spectrum. Property (ii) in Theorem 1.3 is a con-
sequence of the minimality of the IFS and the following proposition.

Proposition 5.3. For every χ ∈ [log λ, 0) and every ε ∈ (0, |χ|) the set of
points y for which there is a periodic sequence ξ = (ξ0 . . . ξk−1)Z ∈ Σ2 with

• f[ξ0... ξk−1](y) = y,

• [0, 1] ⊂W s
loc(y, f[ξ0... ξk−1]), and

• χ(y, ξ) ∈ (χ− ε, χ+ ε)

is dense in [0, 1].

Proof. Consider χ ∈ [log λ, 0). Fix ε > 0 and a closed interval J1 ⊂ (0, 1) of
length ϑ1 > 0. We will construct a periodic pair (y, (ξ0 . . . ξk−1)Z) ∈ J1×Σ2

with exponent in (χ− ε, χ+ ε) and W s
loc(y, f[ξ0... ξk−1]) ⊃ [0, 1].

Consider the fixed attracting pair (1, 0Z) with exponent χ(1, 0Z) = log λ.
By Lemma 4.7 there is p ∈ (0, 1) and a finite sequence (ζ0 . . . ζn) such that
(p, (ζ0 . . . ζn)Z) is periodic attracting with negative exponent χ(p, (ζ0 . . . ζn)Z)
close to 0.

Fix ϑ2 > 0 such that

J2 = [p− ϑ2/2, p+ ϑ2/2] ⊂W s
loc(p, f[ζ0... ζn]) ⊂ (0, 1).

Let M
def
= max{M(ϑ1),M(ϑ2)}, where M(ϑ1),M(ϑ2) ≥ 1 are the numbers

provided by Lemma 3.4. Applying Lemma 3.4 to the interval J2 we get a
finite sequence η(2) of length |η(2)| ≤M(ϑ2) ≤M such that

f[η(2)]([0, 1]) ⊂ J2 ⊂W s
loc(p, f[ζ0... ζn])

and thus for any ` ≥ 1 we have

f[η(2) (ζ0... ζn)`]([0, 1]) =
(
f[ζ0... ζn])

`(f[η(2)]([0, 1])
)
⊂ (f[ζ0... ζn])

`(J2) ⊂ J2.

Applying Lemma 3.4 to the interval J1 we get a finite sequence η(1) of length
|η(1)| ≤M(ϑ1) ≤M such that for all r ≥ 1

f[η(2)(ζ0... ζn)` 0r η(1)]([0, 1]) = f[η(1)]

(
f[η(2)(ζ0... ζn)` 0r]([0, 1])

)
⊂ J1

and thus

f[η(2)(ζ0... ζn)` 0r η(1)](J1) ⊂ J1.

Considering the periodic sequence ξ = ξ(r) defined by

ξ = (ξ0 . . . ξk−1)Z
def
= (η(2)(ζ0 . . . ζn)` 0r η(1))Z

we get a periodic point y = y(r) ∈ J1 such y = f[η(2)(ζ0...ζn)` 0r η(1)](y).

We now show that r and ` can be chosen such that (y, ξ) is an attracting
pair with exponent χ(y, ξ) close to χ and [0, 1] ⊂ W s(y, f[ξ0... ξk−1]). Let us
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0 1

y1
I1

circle periodic orbit

f
[ξ

(1)
0 ξ

(1)
2 ... ξ

(1)
N1−1]

(y1) = y1

y2
I2

circle periodic orbit

f
[η

(2)
0 ... η

(2)
m2−1]

f
[η

(1)
0 ... η

(1)
m1−1]

f
[ξ

(2)
0 ξ

(2)
2 ... ξ

(2)
N2−1]

(y2) = y2

Figure 5. First steps in the construction of ξ+ in the proof
of Theorem 1.3 (ii).

refrain from all details and only point out the essential steps. Recall that
J2 ⊂ (0, 1). Hence, if r ≥ 1 is large then f[η(2) (ζ0...ζn)` 0r]([0, 1]) is close to 1.

The number r marks some fixed finite transition from J2 to a small neigh-
borhood of the fixed point 1. The finite sequences η(2) and η(1) mark the
transitions from J1 to J2 (where the exponent is close to 0) and from a
neighborhood close to 1 (where the exponent is log λ) to the interval J1,
respectively. Recall that the lengths of these sequences are bounded by M .
Finally, the numbers r and ` mark the repetition of loops at 1 (exponent
close to log λ) and at the periodic point p (exponent 0). Note that χ/ log λ
can be approximated arbitrarily closely by rational numbers. Thus we can
choose the numbers r, ` ≥ 1 large and such that

r · log λ+ ` · 0
r + `

∼ χ. (5.14)

Hence, when the numbers r and ` are chosen large enough, though respecting
the approximation in (5.14), by simple distortion estimates we can guarantee
that this composed map f[ξ0... ξk−1] is a contraction in J1 and hence has a
unique fixed point y with χ(y, ξ) ∼ χ. This also guarantees that [0, 1] ⊂
W s(y, f[ξ0... ξk−1]).

Finally, as the choice of the initial interval J1 ⊂ (0, 1) was arbitrary,
the set of points y for which there is ξ ∈ Σ2 such that (y, ξ) is periodic,
χ(y, ξ) ∈ (χ − ε, χ + ε), and [0, 1] ⊂ W s

loc(y, f[ξ0... ξk−1]) is dense in [0, 1],
proving the proposition. �

Proof of Theorem 1.3 (ii). Fix χ ∈ [log λ, 0]. We will construct a sequence
ξ+ ∈ Σ+

2 with χ+(y, ξ+) = χ for every y ∈ [0, 1]. See Figure 5 for an
illustration.

Step 0: Choice of auxiliary sequences. Let J0 = [0, 1]. Fixing some
monotonically decreasing sequence εi → 0, we choose sequences of points yi,
numbers Ki, ϑi, Mi, and intervals Ji as follows.

By Proposition 5.3, for every i ≥ 1 there is a periodic pair (yi, ξ
(i)) ∈

(0, 1) × Σ2 of period `i with negative exponent χi ∈ (χ − εi, χ + εi). By
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shrinking εi, we can assume that χi + 3εi < 0. Further, by uniform hyper-
bolicity (backward and forward in time) of the closed orbit of (yi, ξ

(i)), there
exists Ki > 1 such that for every n ≥ 1 we have

1

Ki
e−n(|χi|+εi) ≤ |(f

[ξ
(i)
0 ... ξ

(i)
n−1]

)′(yi)| ≤ Ki e
−n(|χi|−εi). (5.15)

Choose a sequence ϑi → 0 such that D(ϑi) < eεi for every i. Let Ji be the
interval centered at yi of length ϑiK

−1
i . Without loss of generality, we can

assume that ϑi is so small that Ji ⊂ (0, 1). Let Ni be some multiple of the

period of (yi, ξ
(i)) that will be specified below. By Lemma 3.4, for each Ji,

there are a number Mi
def
= M(ϑiK

−1
i ) ≥ 1 and a finite sequence η(i) of length

mi
def
= |η(i)| ≤Mi such that f[η(i)]([0, 1]) ⊂ Ji.

For every i ≥ 1 we apply Lemma 4.2 to (yi, ξ
(i)) and the interval Ji and, by

our choice of ϑi and (5.15), we obtain that for every x ∈ Ji and n = 1, . . . , Ni

Dist f
[ξ

(i)
0 ... ξ

(i)
n−1]
|Ji ≤ D(ϑi)

n < en εi . (5.16)

By (5.15) and (5.16) for every x ∈ Ji and n = 1, . . . , Ni we have

1

Ki
e−n(|χi|+2εi) ≤

∣∣(f
[ξ

(i)
0 ... ξ

(i)
n−1]

)′(x)
∣∣ ≤ Ki e

−n(|χi|−2εi). (5.17)

In particular, as yi is periodic and Ni is a multiple of its period, if

Ni ≥
2 logKi − log ϑi
|χi| − 2εi

(we will further specify Ni below) then

f
[ξ

(i)
0 ... ξ

(i)
Ni−1]

(Ji) ⊂ Ji.

Moreover, by our choice of η(i), in particular f
[η(i)ξ

(i)
0 ... ξ

(i)
Ni−1]

(Ji−1) ⊂ Ji.

Recursively, this fixes a sequence of 8-tuples (yi, ξ
(i), χi, εi,Ki, ϑi,mi, η

(i)).
Notice that all the above stated properties remain true if we replace Ni be
some larger multiple of the period of (yi, ξ

(i)). We will adjust our choice of
Ni in Step 2.

Step 1: Construction of ξ+. The one-side sequence ξ+ ∈ Σ+
2 is ob-

tained by concatenating finite repetitions of periodic parts of ξ(i) and some
transition sequences η(i). More precisely, let

ξ+ def
= η

(1)
0 . . . η

(1)
m1−1 ξ

(1)
0 . . . ξ

(1)
N1−1 η

(2)
0 . . . η

(2)
m2−1 ξ

(2)
0 . . . ξ

(2)
N2−1 . . . . (5.18)

To complete Step 1 define the auxiliary sequence (ni)i≥0 by

n0
def
= 0, ni

def
= ni−1 +mi +Ni.

Step 2: Lyapunov exponent of (y, ξ+) for arbitrary y ∈ [0, 1]. Ob-
serve that, after some finite transition of length m1 ≤ M1, the trajectory
of (y, ξ+) jumps to the neighborhood J1 of y1. Further the orbit of (y, ξ+)

“shadows” the orbit of (yi+1, ξ
(i+1)) for the time ni, . . . , ni +Ni+1− 1 (with
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small distortion) and thereafter passes some “finite transition” for the time
ni+Ni+1, . . . , ni+Ni+1 +mi+1−1 to arrive at a neighborhood of yi+2. Re-
call that we have chosen a sequence of 8-tuples (yi, ξ

(i), χi, εi,Ki, ϑi,mi, η
(i)).

We will now estimate the exponent and, in particular, specify the choice of
Ni (this choice is done after selecting the sequence of 8-tuples). The cal-
culations are essentially the same as in the proof of Proposition 5.1. We
distinguish two cases.

Case 1: Estimating log |(f[ξ0... ξni+n])
′(y)| with n = 0, . . . ,mi+1 − 1. By

uniform contraction (5.17) and λ ≤ |f ′0|, |f ′1| ≤ β we have

|(f[ξ0... ξni+n])
′(y)| ≥

i∏
k=1

(
K−1
k e−Nk(|χk|+2εk)

)
·

i∏
k=1

λmk · λn.

Hence, as n ≤ mk+1,

log
∣∣(f[ξ0... ξni+n])

′(y)
∣∣

ni + n
≥
−
∑i

k=1 logKk +
∑i+1

k=1mk log λ∑i
k=1(mk +Nk)

−
∑i

k=1Nk(|χk|+ 2εk)

ni + n
.

As the first term of the right-hand side depends only on those values of the
initially fixed 8-tuple which have index less or equal than i + 1, it can be
made arbitrarily small in absolute value, less than εi+1/2, if Ni is chosen
sufficiently big. For the second term observe that

−
∑i

k=1Nk(|χk|+ 2εk)

ni + n
= −

∑i−1
k=1Nk(|χk|+ 2εk)∑i
k=1(mk +Nk) + n

− Ni(|χi|+ 2εi)∑i
k=1(mk +Nk) + n

≥ −εi+1

2
− Ni(|χi|+ 2εi)∑i

k=1(mk +Nk) + n

if Ni was chosen big enough. Thus,

log |(f[ξ0... ξni+n])
′(y)|

ni + n
≥ −|χi| − 3 max{εi, εi+1}.

The corresponding upper bound can be derived analogously.

Case 2: Estimating log |(f[ξ0... ξni+mi+1+n])
′(y)| with n = 0, . . . , Ni+1 − 1.

By uniform contraction (5.17) and λ ≤ |f ′0|, |f ′1| ≤ β we have

∣∣(f[ξ0... ξni+mi+1+n])
′(y)
∣∣ ≥ i∏

k=1

(
K−1
k e−Nk(|χk|+2εk)λmk

)
K−1
i+1 e

−n(|χi+1|+2εi+1).
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Hence

log
∣∣(f[ξ0... ξni+mi+1+n])

′(y)
∣∣

ni +mi+1 + n
≥
∑i

k=1

(
− logKk +mk log λ

)
− logKi+1∑i

k=1(Nk +mk)

−
∑i

k=1Nk(|χk|+ 2εk)

ni +mi+1 + n
−
n
(
|χi+1|+ 2εi+1

)
ni +mi+1 + n

.

The first term on the right-hand side can be made small in absolute value,
less than εi+1/2, if Ni was chosen big. As before, for the second term observe

−
∑i

k=1Nk(|χk|+ 2εk)

ni +mi+1 + n
≥ −εi+1

2
− Ni(|χi|+ 2εi)

ni +mi+1 + n

if Ni was chosen big enough. Thus, if Ni is large enough, we obtain

log
∣∣(f[ξ0... ξni+mi+1+n])

′(y)
∣∣

ni +mi+1 + n
≥ −max{|χi|, |χi+1|} − 3 max{εi, εi+1}.

The corresponding upper bound can be derived analogously.
Putting together Cases 1 and 2 we obtain that for every i ≥ 1 and every

n = 0, . . . , Ni+1 +mi+1 − 1 we have

−max{|χi|, |χi+1|}−3εi ≤
log |(f[ξ0... ξni+n])

′(y)|
ni + n

≤ −min{|χi|, |χi+1|}+3εi.

Since εi → 0 and χi → χ, this proves that χ+(y, ξ+) = χ. This concludes
the proof of (ii) of Theorem 1.3. �

5.3. Positive backward spectrum.

Proof of Theorem 1.3 (iii). The proof is very similar to the one of Theo-
rem 1.3 (i). We will only sketch the essential changes. First, given an
exponent, we will find a sequence of periodic orbits with approximately that
exponent by taking into account results above. Then we will follow these pe-
riodic orbits in the reverse direction and construct an admissible backward
trajectory consecutively following these orbits. In this step we will make
use of the Lemma 3.6 (strong uniform backward minimality) that provides
admissible trajectories following the analogous steps of Proposition 5.1 (note
that admissibility was not a problem for forward trajectories).

Fix χ ∈ [0, log β̃ ], y ∈ (0, 1), and ∆ > 0 with y ∈ [∆, 1−∆]. Consider the
IFS generated by the maps gi = f−1

i and consider the associated distortion
constant D(·) as defined in (4.1). Fix sequences εi → 0, ϑi → 0 with
D(ϑi) < eεi . Let ν = ν(∆) > 0 be given as in Lemma 3.6. Let J0 ⊂ [∆, 1−∆]
be centered at y and of length |J0| ≤ ν.

Observe that |log λ| ≤ log β̃ and thus −χ ∈ [log λ, 0]. This can, for
example, be seen from Proposition 5.2 and Lemma 4.4 and the fact that
Lyapunov exponents of a periodic orbit reverse sign when considering the
inverse orbit.

By Proposition 5.3, for every i ≥ 1 there is a periodic pair (yi, ξ
(i)) of

period `i with negative exponent χi ∈ (χ− εi, χ+ εi). Further, by uniform
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hyperbolicity of the orbit of (yi, ξ
(i)), there exists Ki > 1 such that for every

n ≥ 1 we have (5.15). Choose an interval Ji centered at yi and of length
ϑiK

−1
i . By the choice of yi and ϑi we can assume that Ji ⊂ [∆, 1−∆] and

|Ji| ≤ ν for every i ≥ 1. We apply Lemma 3.6 to the intervals J = Ji and

H = Ji−1. By this lemma, for each Ji there are Mi
def
= M(∆, ϑiK

−1
i ) ≥ 1 and

a finite sequence η(i) of length mi
def
= |η(i)| ≤ Mi admissible for all x ∈ Ji−1

so that f[η(i).](Ji−1) ⊂ Ji.
This fixes a sequence of 9-tuples (yi, ξ

(i), χi, εi,Ki, ϑi, Ii,mi, η
(i)) to which

we can apply Steps 1 and 2 as in proof of Proposition 5.1. �

5.4. Negative backward spectrum.

Proof of Theorem 1.3 (iv). Consider any χ ∈ [log λ, 0] and any z ∈ (0, 1).
Let us first assume that

there is a pair (y, ξ−) ∈ (0, 1)× Σ−2 with χ−(y, ξ−) = χ. (5.19)

By Proposition 1.7 the forward orbit O+(y) of y is dense in (0, 1). Thus,
given δ > 0, there are a point y ∈ (z − δ, z + δ) and a finite sequence η such
that f[η.](y) = y. Consider the one-sided sequence ξ−η ∈ Σ−2 and note that

the backward Lyapunov exponents of (y, ξ−η) and (y, ξ−) coincide. As δ
can be arbitrarily small, this will prove the theorem.

What remains to show is (5.19). Fix ∆ > 0 small. By Theorem 1.3

(ii) and Lemma 4.6, there exists a sequence of periodic pairs (xi, ξ
(i)) such

that xi ∈ (2∆, 1 − 2∆) and limi χi = χ. As in the proof of item (iii) of
the Theorem, consider the IFS generated by the maps gk = f−1

k and the
associated distortion constant D(·) defined in (4.1). Fix εi → 0 and ϑi → 0
satisfying D(ϑi) < eεi and |χi − χ| ≤ εi. By uniform hyperbolicity of the

closed orbit of (xi, ξ
(i)), there exists Ki > 1 such that for every n ≥ 1 we

have (5.1).
As in Step 0 in the proof of Proposition 5.1, for every i ≥ 1 let Ii be

some interval containing xi in its interior and choose Ni ≥ 1 and an interval
Ji = J(xi, Ni) ⊂ (∆, 1−∆) of length ϑiK

−1
i containing xi such that

|f
[ξ

(i)
−Ni

... ξ
(i)
−1]

(Ji)| = |(f[ξ
(i)
−Ni

... ξ
(i)
−1.]

)−1(Ji)| ≤ ϑi e−Ni(|χi|−2ε)

as in (5.4) and (5.5). Given ∆ and ϑiK
−1
i , let Mi = M−(∆, ϑiK

−1
i ) be as in

Lemma 3.2. Applying this lemma to Ji and the point xi+1, we find yi ∈ Ji
and a finite sequence η(i) with |η(i)| ≤Mi such that (η(i).) is admissible for
yi and xi+1 = f[η(i).](yi). By shrinking Ji, we can assume that Ji contains yi

and that (η(i).) is admissible everywhere on Ji. Finally, assuming that Ni

was chosen large enough, we have

f[ξ(i)](Ji) ⊂ Ii
and thus, by construction,

f[η(i) ξ(i)](Ii+1) ⊂ Ii, where Ii+1
def
= f[η(i).](Ji).
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This fixes a sequence of 9-tuples (xi, ξ
(i), χi, εi,Ki, ϑi, Ii,mi, η

(i)) to which
we can apply Steps 1 and 2 as in proof of Proposition 5.1 to construct a pair
(y, ξ−) satisfying χ−(y, ξ−) = χ. This finishes the proof of the theorem. �

5.5. Measures with full support. The proof of Proposition 1.6 follows
combining our construction of shadowing periodic orbits, using minimal-
ity, and the approximation methods in [1, 10]. We refrain ourselves from
providing all details and only sketch the key ingredients.

The case of non-hyperbolic measures χ = 0 is a bit more subtle but follows
as in [1].

Let us consider the case χ ∈ (log λ, 0).
Step 1. Given two periodic points P1, P2 with negative central exponents,
given numbers θ1, θ2 ∈ (0, 1) with θ1 + θ2 < 1 and δ > 0, following our
constructions in Section 4, we obtain a new periodic point P3 whose orbit
is δ-dense in Λ and mimics the orbit of P1 during a fraction of time ∼ θ1

and the orbit of P2 during a fraction of time ∼ θ2. As this point can be
chosen with arbitrarily large period, if θ1 +θ2 ∼ 1 then the central Lyapunov
exponent of P3 is approximately θ1χc(P1) + θ2χc(P2).
We now sketch how to construct this point. Let Pi = (pi, (ξ

i
0 . . . ξ

i
ni)

Z),
i = 1, 2. Our construction (see Lemma 4.6) provides a point p3 ∼ p1 that
is periodic for a sequence η = (η0 . . . ηk)

Z of the form η0 . . . ηr = (ξ1
0 . . . ξ

1
n1

)`

and ηi . . . ηj = (ξ2
0 . . . ξ

2
n2

)m for some large numbers `,m and r < i < j < k.
This implies that the orbit of the point P3 = (p3, η) is close to the one of P1

for the initial time and passes close to the one of P2 for some intermediate
time.
Step 2. Consider now a sequence of numbers κn ∈ (0, 1) with

∏
n≥1 κn > 0.

Assume that there is a sequence of periodic points Rn such that χc(R0) ∈
(χ, 0) and that for each n the orbit of Rn is 1/n-dense in Λ, satisfies χc(Rn) ∼
(χ+χc(Rn−1))/2 and that the orbit of Rn shadows the orbit of Rn−1 during
a proportion of time ∼ 1−κn. Now for each n consider the periodic measure
µn uniformly distributed on the orbit of Rn. Then the sequence µn converges
to an ergodic measure µ with full support in Λ and whose central Lyapunov
exponent is χ. For details see [1, Lemmas 2.5 and 2.1].
We now explain how the orbits Rn are constructed. Assume that Rn is
already constructed. Since the spectrum is complete in (log λ, 0), there is a
central contracting point Qn+1 whose central Lyapunov exponent is

χc(Qn+1) ∼ χ− χc(Rn) + 2κn χc(Rn)

2κn
.

Note that this number is negative and smaller than χc(Rn) and therefore
there is a periodic point with approximately such an exponent. Using Step
1, we construct the periodic orbit Rn+1 that mimics the orbit Rn during a
fraction ∼ 1−κn, the orbit of Qn+1 during a fraction ∼ κn, and is 1/n-dense
in Λ. By construction, the exponent of Rn+1 is approximately

(1− κn)χc(Rn) + κnχc(Qn+1) ∼ (χ+ χc(Rn))/2
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as desired.
For the case χ ∈ (0, log β̃) we proceed analogously, considering the inverse

map.
This proves the proposition.

Appendix

Here we give an example of C∞ invertible map on a compact set, for
which the set of possible forward Lyapunov exponent differs from the set
of backward Lyapunov exponents. This will be a map on R4, but we will
present it as a map on Σ2 × [0, 1]2 in the same way as in the main body of
the paper we presented a map acting on R3 as a map on Σ2 × [0, 1].

Define T : Σ2 × [0, 1]2 → Σ2 × R[0, 1] by

T (ξ, x, t)
def
= (σξ, fξ0,t(x), g(t)).

We will assume g(t) to have a (topologically) attracting fixed point at 0, a
repelling fixed point at 1, and no other fixed points. The attracting point at
0 will be a very flat (infinite degree) parabolic point. The homeomorphisms
fi,t are defined by

• f0,t = f0, f1,t = f1 − t for t ≤ ε,
• f0,1 = {x→ x}, f1,1 = f1,
• f0,t([0, 1]) = [0, 1] for all t,

where f0, f1 are like in the main part of the paper (hence T restricted to
{t = 0} is exactly the map we studied).

Let us denote by A the set of points whose trajectories never leave Σ2 ×
[0, 1]2, this set is open and nonempty. We can divide A into A0 = A∩{t = 0},
A1 = A ∩ {t = 1} and Ar = A \ (A0 ∪A1).

We are now ready to calculate the (forward and backward) Lyapunov
exponents that are simply the forward and backward Birkhoff averages of
the potential log | ddxfω0,t|, like in the main part of the paper. For points in A0

the forward and backward spectra are both equal to [log λ, β̃ ]∪{log β}. For
points in A1 the forward and backward spectra are both equal to [log λ, 0].
For points in Ar the backward spectrum is also [log λ, 0] because those points
converge to A1 under backward iterations of T .

The difference is the forward spectrum on Ar. With the right choice of g
it will be equal to [log λ, log β], that is, it will not have a gap.

The reason for the gap in A0 is that we cannot spend a long time around
x = 0 (using the map f0) and then come back in a short time – whenever
we are close to 0, we must have spent a lot of time around x = 1 (using
the map f0 to stay there) before and the Birkhoff sums of log |f ′| gathered
in those two time periods cancel each other almost completely, leading to
the drop of the Lyapunov exponent (we have to be exactly at x = 0 or the

Lyapunov exponent is at most log β̃). This is no longer true for points in Ar.
Indeed, when we have small t > 0, the preimage yt = f−1

1,t (0) is strictly inside

[0, 1], and hence we can get there using only bounded number of iterations of
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f0,t = f0. If gn(t) converge to 0 sufficiently slowly, this lets us to construct a
point the forward Lyapunov spectrum at which takes any prescribed value

in (log β̃, log β).

Remark 5.4. A simpler example was shown to us by Micha l Misiurewicz,
[13].
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