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Abstract. We consider one-step cocycles of 2ˆ 2 matrices, and we are inter-

ested in their Lyapunov-optimizing measures, i.e., invariant probability mea-
sures that maximize or minimize a Lyapunov exponent. If the cocycle is dom-

inated, that is, the two Lyapunov exponents are uniformly separated along

all orbits, then Lyapunov-optimizing measures always exist, and are charac-
terized by their support. Under an additional hypothesis of nonoverlapping

between the cones that characterize domination, we prove that the Lyapunov-

optimizing measures have zero entropy. This conclusion certainly fails without
the domination assumption, even for typical one-step SLp2,Rq-cocycles; indeed

we show that in the latter case there are measures of positive entropy with zero

Lyapunov exponent.

L’entropie des mesures Lyapunov-optimisantes pour quelques
cocycles de matrices

Résumé. Nous considérons des cocycles à un pas de matrices 2 ˆ 2 et nous

nous intéressons à leurs mesures Lyapunov-optimisantes, i.e. aux mesures de

probabilité invariantes qui soit maximisent soit minimisent un exposant de Lya-
punov. Si le cocycle est dominé, i.e. si les deux exposants de Lyapunov sont

uniformément séparés le long toutes les orbites, alors des mesures Lyapunov-

optimisantes existent toujours et elles sont characterisées par leurs supports.
Sous l’hypothèse supplementaire de non-chévauchement des cônes qui charac-

terisent la domination, nous démontrons que les mesures Lyapunov-optimisantes

sont d’entropie nulle. Sans l’hypotèse de domination ce résultat n’est plus vrai,
même pour des cocycles à un pas à valeurs dans SLp2,Rq; en effet, dans ce cas-là

nous démontrons qu’il y a des mesures d’entropie positive dont les exposants
de Lyapunov sont nuls.

1. Introduction

Ergodic Optimization is concerned with the maximization or minimization of
Birkhoff averages of a given function (called the potential) over a given dynamical
system: see [Je’06]. A paradigm of this subject is that for sufficiently hyperbolic
base dynamics and for typical potentials, optimizing orbits should have low dy-
namical complexity. This is confirmed in by a recent result by Contreras [C], who
showed that the optimizing orbits with respect to generic Lipschitz potentials over
an expanding base are periodic. An important component of Contreras’ proof is the
fact previously shown by Morris [Mo’08] that in this generic situation, optimizing
orbits have subexponential complexity (i.e., zero entropy).

In this paper we are interested in Ergodic Optimization in a noncommutative
setting. We will replace Birkhoff sums by matrix products, and the quantities we
want to maximize or minimize are the associated Lyapunov exponents. We would
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like to know whether the low complexity phenomena mentioned above is also typical
in this noncommutative setting.

A natural starting point is to consider one-step matrix cocycles. In this case,
the optimization problems above can be restated in more elementary terms: we are
given finitely many square matrices, and we want to find sequences of products of
them attaining the maximum or minimum growth rate. Actually these maximiza-
tion and minimization problems were first considered by Rota and Strang [RS’60]
and by Gurvits [G’95], respectively. The associated growth rates are called joint
spectral radius and joint spectral subradius, respectively; they play an important
role in Control Theory and there is a large body of literature about them (espe-
cially about the former): see the monograph [Ju’09] and references therein. An
important contribution to this field was made by Bousch and Mairesse [BMa’02]
who showed that the maximizing products are not always periodic, thus disproving
the so called Finiteness Conjecture. (Of course, for one-step cocycles the parameter
space is finite-dimensional and thus perturbative arguments are more difficult.)

In this paper we deal with 2ˆ 2 one-step cocycles. We give explicit open condi-
tions that ensure that the Lyapunov-optimizing orbits form a set of low complexity,
more precisely of zero topological entropy. These conditions are related to hyper-
bolicity on the projective space, and are satisfied in some of the counterexamples
to the Finiteness Conjecture exhibited in the literature.

In order to appreciate the importance of the hyperbolicity hypotheses, we show
that for typical non-hyperbolic one-step SLp2,Rq-cocycles, the set of minimizing
orbits has positive topological entropy.

Let us proceed with the precise definitions and results.

1.1. Extremal Lyapunov exponents for 2 ˆ 2 matrix cocycles. Let Ω be
a compact metric space and let T : Ω Ñ Ω be a continuous transformation. Let
A : Ω Ñ GLp2,Rq be a continuous map. The pair pT,Aq is a called a 2ˆ 2 matrix
cocycle. We are interested in the following products, which play the role of Birkhoff
sums in our noncommmutative setting:

Apnqpωq :“ ApTn´1ωq ¨ ¨ ¨Apωq, ω P Ω, n ě 0. (1.1)

The Lyapunov exponents of the cocycle at a point ω P Ω, when they exist, are the
limits:

λ1pA,ωq :“ lim
nÑ`8

1

n
log }Apnqpωq} , λ2pA,ωq :“ lim

nÑ`8

1

n
logmpApnqpωqq .

where, for definiteness, }L} is the Euclidian operator norm of a matrix L, and
mpLq :“ }L´1}´1 is its mininorm.

Let i P t1, 2u. If µ is a T -invariant probability measure, then λipA,ωq exists for
µ-almost every ω, and we denote λipA,µq “

ş

λipA,ωq dµpωq. If µ is ergodic then
λipA,ωq “ λipA,µq for µ-almost every ω.

The maximal (or top) and minimal (or bottom) Lyapunov exponents are defined
respectively as:

λ⊤i pAq :“ sup
µPMT

λipA,µq , λ⊥i pAq :“ inf
µPMT

λipA,µq , (1.2)

where MT denotes the set of all T -invariant Borel probability measures. These
four numbers are called the extremal Lyapunov exponents of the cocycle.
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A basic question is whether the sup’s and inf’s that appear in (1.2) are attained.
The answer is “yes” in the cases of λ⊤1 and λ⊥2, and “not necessarily” in the cases
of λ⊤2 and λ⊥1; see subsection A.3. However, under the assumption of domination
(that we will explain next), all sup’s and inf’s in (1.2) are attained.

1.2. Domination. Consider a 2ˆ2 matrix cocycle pT,Aq where T is a homeomor-
phism. Suppose that for each ω P Ω it is given a splitting of R2 as the sum of two
one-dimensional subspaces e1pωq, e2pωq. We say that this is a dominated splitting
with respect to the cocycle pT,Aq if the following conditions hold:

‚ equivariance: Apωqpeipωqq “ eipTωq for each ω P Ω, i P t1, 2u;
‚ dominance: there are constants c ą 0 and δ ą 0 such that

}Apnqpωq|e1pωq}

}Apnqpωq|e2pωq}
ě ceδn for all ω P Ω and n ě 1. (1.3)

An important property of dominated splittings is that they are always contin-
uous, that is, e1 and e2, viewed as maps from Ω to the projective space P1, are
automatically continuous (see e.g. [BDV’05, § B.1]).

We say that a cocycle is dominated if admits a dominated splitting. Some
authors say that the cocycle is exponentially separated, which is perhaps a better
terminology. Domination is also sometimes called projective hyperbolicity, because
it can be expressed in terms of uniform contraction and expansion on the projective
space.

As shown in [Y’04, BG’09], a 2 ˆ 2 cocycle pT,Aq is dominated if and only if
there are constants c ą 0 and δ ą 0 such that

}Apnqpωq}

mpApnqpωqq
ě ceδn for all ω P Ω and n ě 1. (1.4)

Notice that the LHS is a measure of “non-conformality” of the matrix Apnqpωq.
If a cocycle is dominated then the Lyapunov exponents are always distinct; actu-

ally δ ą 0 as in (1.4) is a uniform lower bound for the gap between them. Moreover
(see subsection 2.1 for details) the associated Oseledets directions coincide wherever
they exist (thus µ-almost everywhere) with the directions e1 and e2 forming the
dominated splitting. In particular, the Lyapunov exponents are given by integrals:

λipA,µq “

ż

ϕi dµ , where ϕipωq :“ log }Apωq|eipωq} , pi “ 1, 2q. (1.5)

As a consequence of these formulas, the problem of maximizing or minimizing
Lyapunov exponents for dominated cocycles is equivalent to the optimization of
Birkhoff averages of the continuous functions ϕi, and so many standard results
apply (see [Je’06]).1 In particular, one can easily show that:

λ⊤i pAq “ lim
nÑ8

1

n
sup
ωPΩ

log }Apnqpωq|eipωq} ,

λ⊥i pAq “ lim
nÑ8

1

n
inf
ωPΩ

log }Apnqpωq|eipωq} .

1In order to avoid complications, our definition (1.2) of the extremal Lyapunov exponents

only considers regular points, as the alert reader will have noticed. On the other hand, non-

regular points have no effect in the optimization of Birkhoff averages (see [Je’06]). Therefore, for
dominated cocycles at least, non-regular points have no effect in the optimization of Lyapunov

exponents.
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Another consequence is that all sup’s and inf’s that appear in (1.2) are attained in
this case.

1.3. One-step cocycles. Fix an integer k ě 2. Let Ω “ t1, . . . , kuZ be the space
of bi-infinite words on k symbols. With some abuse of notation, we denote this set
by kZ. Let T : kZ Ñ kZ be the shift transformation.

Given a k-tuple of matrices A “ pA1, . . . , Akq P GLp2,Rqk, we associate the
locally constant map A : kZ Ñ GLpd,Rq given by Apωq “ Aω0 . In this case, pT,Aq
is called a one-step cocycle, and the products (1.1) are simply

Apnqpωq “ Aωn´1
¨ ¨ ¨Aω0

.

The k-tuple of matrices A is called the generator of the cocycle. We denote λ⊤i pAq “
λ⊤i pAq, λ

⊥
i pAq “ λ⊥i pAq.

We remark that for one-step cocycles, the values λ⊤1pAq and λ⊥1pAq can be alter-
natively defined in a more elementary way (without speaking of measures) as:

λ⊤1pAq “ lim
nÑ8

1

n
log sup

i1,...,in

}Ain . . . Ai1} , (1.6)

λ⊥1pAq “ lim
nÑ8

1

n
log inf

i1,...,in
}Ain . . . Ai1} . (1.7)

(see subsection A.2).

The numbers %⊤pAq :“ eλ
⊤
1pAq and %⊥pAq :“ eλ

⊥
1pAq are called joint spectral radius

and joint spectral subradius and constitute an active topic of research: see [Ju’09].

1.4. Domination for one-step GLp2,Rq cocycles. An one-step cocycle pT,Aq
is dominated if and only if the number

pλ1 ´ λ2q
⊥pAq :“ inf

µPMT

pλ1pA,µq ´ λ2pA,µqq (1.8)

is positive; see subsection A.2 for the (easy) proof. Let us see still another charac-
terization of domination for one-step cocycles.

The standard positive cone in R2
˚ :“ R2 r t0u is

C` :“ tpx, yq P R2
˚; xy ě 0u

A cone in R2
˚ is the image of C` by a linear isomorphism. A multicone in R2

˚ is a
disjoint union of finitely many cones.

We say that a multicone M Ă R2
˚ is forward-invariant with respect to A “

pA1, . . . , Akq if the image multicone
Ť

iAipMq is contained in the interior of M .
For example, if Ai’s has positive entries then the standard positive cone C` is

a forward-invariant multicone for pA1, . . . , Akq. For more complicate examples, see
[ABY’10].

It was proved in [ABY’10, BG’09] that the one-step cocycle generated by A is
dominated if and only if A has a forward-invariant multicone.

If M is a multicone, its complementary multicone Mco is defined as the closure
(relative to R2

˚) of R2
˚ r M . Notice that if M is forward-invariant with respect

to pA1, . . . , Akq then Mco is backwards-invariant, that is, forward-invariant with
respect to pA´1

1 , . . . , A´1
k q.
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1.5. Mather sets. Under the assumptions above, the extremal Lyapunov expo-
nents “live” in certain invariant sets:

Theorem 1.1. Suppose that the one-step cocycle generated by A P GLp2,Rqk is
dominated. For each ‹ P t⊤,⊥u, let K‹ be the union of all supports of measures
µ PMT such that λpµq “ λ‹1. Then:

‚ K‹ is a compact, nonempty, T -invariant set;
‚ any measure µ PMT supported in K‹ satisfies λpµq “ λ‹.

An obvious consequence of the theorem is the existence of λ1-optimizing mea-
sures.

We call K⊤ and K⊥ upper and lower Mather sets, respectively. (Our upper
Mather set corresponds to what Morris [Mo’13] calls a Mather set.) The terminol-
ogy is coherent with Lagrangian Dynamics, where Mather sets were first studied in
[Ma’91].

Actually the existence of the upper Mather set is guaranteed for 1-step cocycles
(in any dimension) without assumptions of domination: see [Mo’13].

The existence of both Mather sets in Theorem 1.1 can be deduced from Hölder
continuity of the Oseledets directions using the usual (commutative) ergodic opti-
mization theory. However, the proof of Theorem 1.1 that we will present is self-
contained and gives extra information which will be useful in the proof of our major
result, Theorem 1.3 below.

1.6. Zero entropy. We say that A “ pA1, . . . , Akq satisfies the forward NOC (non-
overlapping condition) if it has a forward-invariant multicone M Ă R2

˚ such that

AipMq XAjpMq “ ∅ whenever i ‰ j .

We say that A “ pA1, . . . , Akq satisfies the backwards NOC if pA´1
1 , . . . , A´1

k q sat-
isfies the forward NOC. We say that pA1, . . . , Akq satisfies the NOC if it satisfies
both the forward and the backwards NOC.

Remark 1.2. The forward and the backwards NOC are not equivalent: for example,
if

A1 :“

ˆ

α´1 0
0 α

˙

, A2 :“

ˆ

β´1 0
1 β

˙

, with α ą 0, β ą 0, α2 ` β2 ă 1

then pA1, A2q satisfies the forward NOC, but not the backwards NOC, as one can
easily check. Ÿ

The main result of this paper is the following:

Theorem 1.3. For every k, for every A P GLp2,Rqk, if the one-step cocycle gener-
ated by A is dominated and satisfies the NOC then the restriction of the shift map
to either Mather set K⊤ or K⊥ has zero topological entropy.

The conclusion of the theorem means that for each ‹ P t⊤,⊥u, the number w‹p`q
of words of length ` in the alphabet t1, . . . , ku that can be extended to an bi-infinite
word in the Mather set K‹ is a subexponential function of `, that is,

lim
`Ñ8

1

`
logw‹p`q “ 0. (1.9)

(see [P’89, p. 265–266]).
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There are examples where Theorem 1.3 applies and K⊤ is non-discrete: In the
family of examples given in [BMa’02] where a maximizing measure is Sturmian
non-periodic, the NOC condition holds for some choices of the parameters.

There are also examples where Theorem 1.3 applies and either K⊤ or K⊥ is not
uniquely ergodic: see subsection A.4.

1.7. Positive entropy. As a counterpoint to Theorem 1.3, we will see next non-
trivial situations where λ1-minimizing measures with positive entropy exist.

A cocycle pT,Aq is called uniformly hyperbolic if it has an equivariant splitting
into two bundles, one being uniformly expanding and the other being uniformly
contracting. Any uniformly hyperbolic cocycle is dominated, and the converse
holds for SLp2,Rq-cocycles.

Theorem 1.4. Fix k ě 2 and let T be the full shift in k symbols. There exists an
open and dense subset U of SLp2,Rqk such that for every A P U ,

i) either the one-step cocycle over T generated by A is uniformly hyperbolic;
ii) or there exists a compact T -invariant set K Ă kZ of positive topological

entropy and such that the norms }Apnqpωq} are uniformly bounded over
pω, nq P K ˆ Z.

Notice that in the first case we have λ⊥1pAq ą 0, while in the second case by the
entropy variational principle (see [P’89, p. 269]), there exists a measure µ P MT

such that hpT, µq ą 0 and λ1pA, µq “ 0.
For a nonlinear version of Theorem 1.4, see [BBD, Theorem 2].

1.8. Organization of the paper and overview of the proofs. In section 2 we
collect basic fact about dominated cocycles.

A standard procedure to solve ergodic optimization problems is to look for a
change of variables under which the optimizing orbits become evident, or “re-
vealed”. Following this idea, in section 3 we construct what we call “Barabanov
functions” (in analogy to the Barabanov norms from joint spectral radius theory),
and immediately use them to prove the existence of the Mather sets (Theorem 1.1).

In section 4 we use the Barabanov functions to prove that the directions of the
dominated splitting for points on the Mather sets must obey severe geometrical
obstructions, which in turn imply that one direction uniquely determines the other,
with an at most countable number of exceptions. Using this property, we prove
Theorem 1.3 in section 5.

The simpler proof of Theorem 1.4 is given in section 6, and is independent of
the previous sections.

In Appendix A we present complementary information, including counterexam-
ples showing the limits of our results and alternative definitions for some of the
concepts we have discussed. We also pose a few problems and suggest some direc-
tions for future research.

2. Preliminaries: Basic facts about 2ˆ 2 dominated cocycles

In this section we collect some simple facts about dominated cocycles that will
be needed in the sequel.
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2.1. General cocycles.

Proposition 2.1. Let T : Ω Ñ Ω be a homeomorphism, and let A : Ω Ñ GLp2,Rq
be continuous. Assume that the cocycle pT,Aq has a dominated splitting into direc-
tions e1, e2. Then there exists C ą 1 such that

C´1}Apnqpωq|e2pωq} ď mpApnqpωqq ď }Apnqpωq} ď C}Apnqpωq|e1pωq} (2.1)

for any ω P Ω and n ě 1.

Proof. Denote a
pnq
i pωq :“ }Apnqpωq|eipωq}. By dominance, there exists n0 such that

a
pnq
1 pωq ą a

pnq
2 pωq for every n ě n0. Let pu1, u2q be the canonical basis of R2.

For each ω P Ω, let Mpωq be a 2 ˆ 2 matrix such that such that Mpωqui is a
unit vector in the direction eipωq. (The map M may be discontinuous.) Consider
Dpωq :“ MpT pωqq´1ApωqMpωq. Then Dpnqpωq is a diagonal matrix with entries

˘a
pnq
1 pωq and ˘a

pnq
2 pωq. On the other hand, since the angle between e1 and e2 is

uniformly bounded from below, there exists c ą 1 such that }Mpxq˘1} ď c. In
particular, we obtain

c´2mpDpnqpωqq ď mpApnqpωqq ď }Apnqpωq} ď c2}Dpnqpωq} .

So inequalities (2.1) hold with C “ c2 for n ě n0. Increasing C if necessary, we
ensure that these inequalities hold for every n ě 1. �

Corollary 2.2. If the cocycle pT,Aq is dominated then, for any i P t1, 2u,

λipωq “ lim
nÑ8

1

n
log }Apnqpωq|eipωq} (2.2)

for every ω P Ω such that at least one of these quantities is well-defined.

Proof. Use Proposition 2.1 together with the obvious estimates:

}Apnqpωq|e2pωq} ě mpApnqpωqq and }Apnqpωq|e1pωq} ď }A
pnqpωq} . �

Notice that the RHS of (2.2) is a limit of Birkhoff averages, so the integral
formulas (1.5) follow.

Remark 2.3. Actually Proposition 2.1 implies that the dominated splitting coincides
with the Oseledets splitting whenever the latter is defined. The properties alluded
in Corollary 2.2 hold in general for Oseledets splittings. Ÿ

2.2. One-step cocycles. Let us fix some notation. The projective space of R2 is
denoted by P1. Given x P R2

˚, let x1 denote the unique line in P1 containing x. Given
a linear isomorphism L of R2, let L1 the self-map of P1 defined by L1pu1q “ pLpuqq1.
If M Ă R2

˚ is a multicone then let M 1 :“
 

x1 P P1; x PM
(

.
Let Z´ (resp. Z`) be the set of negative (resp. nonnegative) integers. Define

projections

π´ : kZ Ñ kZ´ , π´pωq “ p. . . , ω´2, ω´1q , (2.3)

π` : kZ Ñ kZ` , π`pωq “ pω0, ω1, . . . q . (2.4)

Proposition 2.4 ([ABY’10, BG’09]). Assume that pA1, . . . , Akq generate a domi-
nated one-step cocycle. Let e1, e2 : kZ Ñ P1 be the invariant directions forming the
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dominated splitting, and let M Ă R2
˚ be a forward-invariant multicone. Then for

any ω P kZ we have

te1pωqu “
8
č

n“1

A1ω´n
¨ ¨ ¨A1ω´1

pM 1q and te2pωqu “
8
č

n“1

A1ωn´1
¨ ¨ ¨A1ω0

pM 1
coq .

In particular the directions e1pωq and e2pωq depend only on π´pωq and π`pωq, re-
spectively, and so there are continuous maps ẽ1, ẽ2 such that the following diagrams
commute:

kZ P1

kZ´

π´

e1

ẽ1

kZ P1

kZ`

π`

e2

ẽ2

Corollary 2.5. Let ẽ1, ẽ2 be as in Proposition 2.4. Then:

‚ If the forward NOC is satisfied then ẽ1 is one-to-one; in particular e1pk
Zq

is a Cantor set contained in M .
‚ If the backwards NOC is satisfied then ẽ2 is one-to-one; in particular e2pk

Zq
is a Cantor set contained in Mco.

3. Barabanov functions and Mather sets

3.1. Statements. A Barabanov norm for a compact set A of d ˆ d matrices is a
norm |||¨||| on Rd such that

max
APA

|||Ax||| “ %⊤pAq |||x||| for all x P Rd,

where %⊤pAq “ eλ
⊤
1pAq is the joint spectral radius of A. It is known that a Barabanov

norm exists whenever A is irreducible (i.e., has no nontrivial invariant subspace):
see [B’88, W’02].

For definiteness, let us consider finite sets A Ă GLp2,Rq. One may wonder
about the existence of a version of the Barabanov for the joint spectral subradius
%⊥pAq “ eλ

⊥
1pAq, that is, a norm |||¨||| such that

min
APA

|||Ax||| “ %⊥pAq |||x||| for all x P R2. (3.1)

Unfortunately, no such norm can in general exist, even assuming irreducibility of
A. For example, if the cocycle is such that λ⊤2pAq ă λ⊥1pAq then applying relation
(3.1) to the orbit of a nonzero vector in the second Oseledets bundle e2 we reach a
contradiction.

This example shows that if such a “minimizer Barabanov norm” exists, relation
(3.1) cannot hold for all vectors, but only for vectors away from the e2-directions. In
general, the set of e2-directions can be large or even the whole P1, but for dominated
cocycles it is a proper compact subset of P1.

As we show in this section, under the assumption of domination it is indeed pos-
sible to construct an object that retains the most useful properties of (the logarithm
of) a “minimizer Barabanov norm”. For convenience, we simultaneously consider
both the maximizer and minimizer cases:

Theorem 3.1. Let pA1, . . . , Akq be generators of a dominated one-step cocycle,
and let M Ă R2 be a forward-invariant multicone. Then there exist functions

p⊤ : M Ñ R and p⊥ : M Ñ R
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with the following properties:

‚ extremality: for all x PM ,

max
iPt1,...,ku

p⊤pAixq “ p⊤pxq ` λ⊤1 , (3.2)

min
iPt1,...,ku

p⊥pAixq “ p⊥pxq ` λ⊥1 ; (3.3)

‚ log-homogeneity: for all ‹ P t⊤,⊥u, x PM , and t P Rr t0u,
p‹ptxq “ p‹pxq ` log |t| ; (3.4)

‚ regularity: there exists c0 ą 0 such that for all ‹ P t⊤,⊥u and x, y PM ,

|p‹pxq ´ p‹pyq| ď c0>px, yq ` | log }x} ´ log }y}| . (3.5)

Related functions were used by Bousch and Mairesse [BMa’02, § 2.1]. Our con-
struction combines their techniques with properties of multicones and the Hilbert
metric. A higher-dimensional version of our construction was obtained in [BMo].

Let us also mention that similar constructions also play an important role on
ergodic optimization, action minimization in Lagrangian dynamics, and optimal
control: see [BMa’02] and references therein.

3.2. Proofs. In the rest of this section we prove Theorems 3.1 and 1.1.
The first step is the construction of an “adapted metric”. As in section 2, we

use a prime to denote projectivization.

Lemma 3.2. Let pA1, . . . , Akq be generators of a dominated one-step cocycle, and
let M Ă R2 be a forward-invariant multicone. There exist a metric d on the pro-
jectivization M 1 and constants c2 ą 1 and 0 ă τ ă 1 such that for all x, y PM , we
have

d
`

A1ix
1, A1iy

1
˘

ď τd
`

x1, y1
˘

for all i P t1, . . . , ku, (3.6)

c´1
1 > px, yq ď d

`

x1, y1
˘

ď c1> px, yq . (3.7)

Proof. By a compactness argument, there exists an open neighborhood U of M 1 in
P1 such that A1ipUq ĂM 1 for all i P t1, . . . , ku. We can assume that each connected
component of U contains exactly one connected component of M 1.

Endow each connected component of U with its Hilbert metric, and restrict it to
the corresponding connected component of M 1. We use the same letter d to denote
all those metrics. Rescaling if necessary, we can assume that d ď 1{2 whenever
defined. Moreover, there are constants c1 ą 1 and 0 ă τ ă 1 such that properties
(3.6) and (3.7) hold whenever x1 and y1 are in the same connected component of
M 1.

Given x1, y1 PM 1, define `px1, y1q as the least integer n ě 0 with the property that
for all ω P kZ, the directions Apnqpωq1x1 and Apnqpωq1y1 belong to the same connected
component of M 1. The function ` is uniformly bounded, has the following property:

`
`

A1ix
1, A1iy

1
˘

ď max
`

`
`

x1, y1
˘

´ 1, 0
˘

, for all i P t1, . . . , ku,

and satisfies an ultrametric inequality:

`
`

x1, y1
˘

ď max
`

`
`

x1, z1
˘

, `
`

y1, z1
˘˘

.

We now extend d by setting d px1, y1q :“ ` px1, y1q if x1 and y1 are in different con-
nected components of M 1. Then d is a distance function. Moreover, increasing c1
and τ if necessary, properties (3.6) and (3.7) are satisfied. �
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In the following proof of Theorem 3.1, we will also establish some facts that are
necessary for the subsequent proof of Theorem 1.1.

Proof of Theorem 3.1. For each i P t1, . . . , ku, define hi : P1 Ñ R by

hipx
1q :“ log

}Aix}

}x}
,

where }¨} is the Euclidian metric, as usual. Fix a constant c2 ą 0 such that
ˇ

ˇhipx
1q ´ hipy

1q
ˇ

ˇ ď c2>px, yq for all x, y P R2
˚.

Let M be a forward-invariant multicone for pA1, . . . , Akq, and let d me the metric
on the projectivization M 1 given by Lemma 3.2. Let B be the vector space of
continuous functions from M 1 to R, endowed with the uniform (supremum) distance
|¨|8. Let c3 :“ c1c2{p1´ τq and let K Ă B be the set of functions that are c3-
Lipschitz with respect to d.

For each function f P K, define two functions T ‹f : M 1 Ñ R (where ‹ P t⊤,⊥u)
by

pT ⊤fqpx1q :“ max
iPt1,...,ku

“

f
`

A1ix
1
˘

` hipx
1q
‰

,

pT ⊥fqpx1q :“ min
iPt1,...,ku

“

f
`

A1ix
1
˘

` hipx
1q
‰

.

We claim that T ‹f P K. Indeed, for all x1, y1 PM 1, we have

ˇ

ˇpT ‹fqpx1q ´ pT ‹fqpy1q
ˇ

ˇ ď max
i

ˇ

ˇ

ˇ

“

f
`

A1ix
1
˘

` hipx
1q
‰

´
“

f
`

A1iy
1
˘

` hipy
1q
‰

ˇ

ˇ

ˇ

ď max
i

ˇ

ˇf
`

A1ix
1
˘

´ f
`

A1ix
1
˘
ˇ

ˇ`max
i

ˇ

ˇhipx
1q ´ hipy

1q
ˇ

ˇ

ď c3 max
i
d
`

A1ix
1, A1iy

1
˘

` c2>px, yq

ď c3τdpx
1, y1q ` c1c2dpx

1, y1q

“ c3dpx
1, y1q .

Thus we have defined maps T ‹ : K Ñ K. Next, we claim that these maps are
continuous. Indeed, for all f , g P K, we have

|T ‹f ´ T ‹g|8 “ sup
x1PM 1

ˇ

ˇpT ‹fqpx1q ´ pT ‹gqpx1q
ˇ

ˇ

ď sup
x1PM 1

max
i

ˇ

ˇf
`

A1ix
1
˘

´ g
`

A1ix
1
˘
ˇ

ˇ

ď |f ´ g|8 .

Let B̂ be the quotient of the space B by the subspace of constant functions; it

is a Banach space endowed with the quotient norm |f̂ |8 :“ inft|f |8; πpfq “ f̂u,

where π : B Ñ B̂ denotes the quotient projection. By the Arzelà–Ascoli theorem,
the convex set K̂ :“ πpKq is compact. Since T ‹ commutes with the addition of

a constant, there exists a map T̂ ‹ : K̂ Ñ K̂ such that π ˝ T ‹ “ T̂ ‹ ˝ π. The map
T̂ ‹ is continuous, as it is easy to check; in particular, by the Schauder theorem, it

has a fixed point f̂‹0 . This means that there exist f‹0 P K and β‹ P R such that
T ‹f‹0 “ f‹0 ` β

‹. Define

p‹pxq :“ f‹0 px
1q ` log }x} for all x PM.
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Note that for every x PM , the following properties hold: property (3.4),

max
iPt1,...,ku

p⊤pAixq “ p⊤pxq ` β⊤ , (3.8)

min
iPt1,...,ku

p⊥pAixq “ p⊥pxq ` β⊥ , (3.9)

and
ˇ

ˇ

ˇ
p‹pxq ´ log }x}

ˇ

ˇ

ˇ
ď c4 (3.10)

where c4 :“ max
`

|f⊤0 |8 , |f
⊥
0 |8

˘

.
Taking c0 “ c1c3, we see that property (3.5) holds when x1 and y1 are in the

same connected component of M 1. Since the angle between directions in different
components is uniformly bounded from below, we can increase c0 if necessary so
that property (3.5) fully holds.

To complete the proof of Theorem 3.1 we need to show that the numbers β⊤ and
β⊥ that appear in (3.8) and (3.9) are respectively equal to the numbers λ⊤1 and λ⊥1
that appear in (3.2) and (3.3). As we prove these equalities, we will also establish
some facts that will be useful in the forthcoming proof Theorem 1.1.

Take any ω P kZ and x P e1pωq r t0u. Recall from Proposition 2.4 that x P M ,
and so consider

ψ‹pωq :“ p‹pAω0
xq ´ p‹pxq .

By (3.4) this value does not depend on the choice of x in e1pωq r t0u; in this way
we define a continuous function ψ‹ : kZ Ñ R.

By equivariance of the e1 direction, for every ω P kZ, x P e1pωqr t0u, and n ě 1
we have

p‹pApnqpωqxq ´ p‹pxq “
n´1
ÿ

j“0

ψ‹pT jωq.

Letting ϕ1pωq :“ log }Apωq|e1pωq}, it follows from (3.10) that

´2c4 ď
n´1
ÿ

j“0

ψ‹pT jωq ´
n´1
ÿ

j“0

ϕ‹1pT
jωq ď 2c4 .

Integrating with respect to some µ P MT , dividing by n, and making n Ñ 8, we
conclude that

ş

ψ‹ dµ “
ş

ϕ1 dµ. Recalling the integral formula (1.5) (proved in
subsection 2.1), we conclude that

λ1pµq “

ż

ψ‹ dµ for any µ PMT .

On the other hand, by (3.8) and (3.9), we have

ψ⊤ ď β⊤ and ψ⊥ ě β⊥ ,

which in particular implies that

β⊥ ď λ⊥1 ď λ⊤1 ď β⊤ . (3.11)

Moreover, for any µ P MT , we have λ1pµq “ β‹ if and only if ψ‹ “ β‹ µ-almost
everywhere, or equivalently, if the T -invariant set

L‹ :“ tω P kZ; ψ‹pTnωq “ β‹ @n P Zu (3.12)

has total µ-measure.
We will show that L‹ is compact and nonempty. We begin showing the following:
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Claim 3.3. For any ω´ P k
Z´ there exists ω` P k

Z` such that if ω “ ω´ω` is
concatenation of ω´ and ω` then ψ‹pTnωq “ β‹ for all n ě 0.

Proof of the claim. Recall from Proposition 2.4 that given a semi-infinite word
ω´ “ p. . . , ω´2, ω´1q, the direction ẽ1pω´q is determined, and by (3.2) or (3.3)
there exists a letter ω0 such that ψ‹pωq (which is well-defined even if ω1, ω2, . . . are
still undefined) equals β‹. Next we consider the shifted word p. . . , ω´1, ω0q, and
repeat the reasoning above to find ω1 such that ψ‹pTωq “ β‹. Continuing by
induction, we find the desired ω`, thus proving the claim. �

Let L‹` be the set of ω P kZ such that ψ‹pTnωq “ β‹ for all n ě 0, which
by Claim 3.3 is nonempty. Since L‹` is compact and contains T pL‹`q, the set
L‹ “

Ş

ně0 T
npL‹`q is compact and nonempty, as announced. In particular, there

exists at least one T -invariant probability measure µ‹ supported on L‹, and so
with λ1pµ

‹q “ β‹. Together with (3.11) this implies that β‹ “ λ‹1. So (3.2)
and (3.3) respectively follow from (3.8) and (3.9) and the proof of Theorem 3.1 is
complete. �

Proof of Theorem 1.1. For each ‹ P t⊤,⊥u, let M‹
T be the set of measures µ PMT

such that λpµq “ λ‹1. We have seen in the proof of Theorem 3.1 that there exists a
nonempty compact T -invariant set L‹ such that µ PM‹

T if and only if suppµ Ă L‹.
Define the Mather set K‹ as the union of the supports of all measures µ in M‹

T .
To show that this is a compact set, we follow an argument from [Mo’13]. The
set of all Borel probabilities on kZ with the usual weak-star topology is metrizable
and compact, and MT is a compact subset. Since L‹ is compact, using Urysohn’s
lemma we see that the set M‹

T is also compact. In particular, it has a countable
dense sequence pν‹nq. Consider ν‹ :“

ř

2´nν‹n, which is an element of M‹
T . It

is then easy to show that supp ν‹ “ K‹, which in particular shows that K‹ is
compact.

The remaining assertions in Theorem 1.1 are now obvious, and the proof is
complete. �

4. Properties of Lyapunov-optimal orbits

In this section we explore consequences of Theorem 3.1. Let us remark that none
of the results of this section requires the nonoverlapping conditions.

Fix generators pA1, . . . , Akq of a dominated one-step cocycle, a forward-invariant
multicone M , and Barabanov functions p⊤, p⊥ on M .

4.1. Geometrical obstructions. In this subsection, we will show that the invari-
ant directions of points on the Mather sets must obey certain geometrical obstruc-
tions.

We begin considering certain sets of optimal future trajectories. For each ‹ P
t⊤,⊥u, let

J‹ :“
 

pω`, xq P kZ` ˆM ; p‹pApnqpω`qxq “ p‹pxq ` nλ‹1 @n ě 0
(

.

Since the functions p‹ are continuous, these sets are closed. Also notice that, as a
consequence of (3.2) and (3.3),

@x PM Dω` P kZ` such that pω`, xq P J‹ .
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Lemma 4.1. If pω`, xq P J‹ and y PM are such that x´ y P ẽ2pω
`q then

p⊤pxq ď p⊤pyq if ‹ “ ⊤,

p⊥pxq ě p⊥pyq if ‹ “ ⊥.

Proof. Let ω` P kZ
`

and x, y P M be such that x ´ y P ẽ2pω
`q. Let xn :“

Apnqpω`qx and yn :“ Apnqpω`qy, for n ě 0. First, we will show that

lim
nÑ8

“

p‹pynq ´ p
‹pxnq

‰

“ 0 . (4.1)

Indeed, by property (3.5),
ˇ

ˇp‹pynq ´ p
‹pxnq

ˇ

ˇ ď c0>pyn, xnq `
ˇ

ˇ log }yn} ´ log }xn}
ˇ

ˇ .

Since x ´ y P ẽ2pω
`q and x R ẽ2pω

`q, domination implies that >pyn, xnq tends to
zero as nÑ8. On the other hand,

ˇ

ˇ log }yn} ´ log }xn}
ˇ

ˇ ď max

ˆ

}yn}

}xn}
´ 1,

}xn}

}yn}
´ 1

˙

ď
}xn ´ yn}

min p}xn}, }yn}q
,

which, by domination again, tends to zero as nÑ8. This proves (4.1).
Next, assume pω`, xq P J‹. So, for all n ě 0,

p‹pxnq “ p‹pxq ` nλ‹1 .

By properties (3.2) and (3.3) we have

p⊤pynq ď p⊤pyq ` nλ⊤1 if ‹ “ ⊤,

p⊥pynq ě p⊥pyq ` nλ⊥1 if ‹ “ ⊥.

In particular,

p⊤pynq ´ p
⊤pxnq ď p⊤pyq ´ p⊤pxq if ‹ “ ⊤,

p⊥pynq ´ p
⊥pxnq ě p⊥pyq ´ p⊥pxq if ‹ “ ⊥.

Passing to a limit nÑ8 and using (4.1) we obtain the lemma. �

Given vectors x1, y1, x2, y2 P R2
˚, no three of them collinear, we define their

cross-ratio

rx1, y1;x2, y2s :“
x1 ˆ x2

x1 ˆ y2
¨
y1 ˆ y2

y1 ˆ x2
P RY t8u ,

where ˆ denotes cross-product in R2, i.e. determinant. The cross-ratio actually
depends only on the directions defined by the four vectors, which allows us to
apply the same definition 4-tuples in pP1q4 without three coinciding points. Also,
the cross-ration is invariant under linear transformations.

We now use Lemma 4.1 to prove the following important Lemma 4.2, which a
character similar to Proposition 2.6 from [BMa’02]:

Lemma 4.2. For all pξ, x1q, pη, y1q P J
‹ and nonzero vectors x2 P ẽ2pξq, y2 P ẽ2pηq

we have

|rx1, y1;x2, y2s| ě 1 if ‹ “ ⊤,

|rx1, y1;x2, y2s| ď 1 if ‹ “ ⊥.
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Proof. Let us consider the case of J⊤; the other case is analogous.
Recall from Proposition 2.4 that any e1 direction is different from any e2 direc-

tion. So neither x1 nor y1 can be collinear to x2 or y2. Hence the cross-ratio is well
defined. Moreover, we can write:

x1 “ αx2 ` βy1 and y1 “ γy2 ` δx1.

By Lemma 4.1,

p⊤px1q ď p⊤pβy1q ď p⊤pβδx1q “ p⊤px1q ` log |βδ|.

Hence, |βδ| ě 1. Substituting

β “
x1 ˆ x2

y1 ˆ x2
and δ “

y1 ˆ y2

x1 ˆ y2

we get the assertion. �

From Lemma 4.2 we immediately obtain:

Lemma 4.3. If ξ, η P K‹ then
ˇ

ˇre1pξq, e1pηq; e2pξq, e2pηqs
ˇ

ˇ ě 1 if ‹ “ ⊤,
ˇ

ˇre1pξq, e1pηq; e2pξq, e2pηqs
ˇ

ˇ ď 1 if ‹ “ ⊥.

Let px1, y1;x2, y2q be a 4-tuple of distinct points in P1. Then one and only one
of the following possibilities hold:

‚ antiparallel configuration: x1 ă y2 ă y1 ă x2 ă x1 for some cyclic order ă
on P1 (see Fig. 1);

‚ coparallel configuration: x1 ă y1 ă y2 ă x2 ă x1 for some cyclic order ă
on P1 (see Fig. 2);

‚ crossing configuration: x1 ă y1 ă x2 ă y2 ă x1 for some cyclic order ă on
P1 (see Fig. 3).

y2y1

x2 x1

Fig. 1. Antiparallel con-
figuration

y1y2

x2 x1

Fig. 2. Coparallel con-
figuration

y1x2

y2 x1

Fig. 3. Crossing config-
uration

The configuration is expressed in terms of the cross-ratio as follows:

Proposition 4.4. Consider a 4-tuple px1, y1;x2, y2q of distinct points in P1. Then:

‚ the configuration is antiparallel iff rx1, y1;x2, y2s ă 0;
‚ the configuration is coparallel iff 0 ă rx1, y1;x2, y2s ă 1;
‚ the configuration is crossing iff rx1, y1;x2, y2s ą 1.

Proof. With a linear change of coordinates, we can assume that the directions y1,
x2, y2 contain the vectors p1, 1q, p1, 0q, p0, 1q, respectively. Let pa, bq be a nonzero
vector in the x1 direction. Then rx1, y1;x2, y2s “ b{a. The proposition follows by
inspection. �
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Define the following compact subsets of the torus P1 ˆ P1:

G‹ :“
 

pe1pωq, e2pωqq; ω P K
‹
(

. (4.2)

As a consequence of Lemma 4.3 and Proposition 4.4, we have:

Corollary 4.5. Let px1, x2q, py1, y2q P G
‹. Then:

‚ if ‹ “ ⊤ then px1, y1;x2, y2q cannot be in coparallel configuration;
‚ if ‹ “ ⊥ then px1, y1;x2, y2q cannot be in crossing configuration.

4.2. Each invariant direction essentially determines the other. Now we
will use show that for points ω on the Mather sets, each invariant direction e1pωq
or e2pωq uniquely determines the other, except for a countable number of bad
directions. This fact (stated precisely in Lemma 4.6 below) is actually a simple
consequence of Corollary 4.5, and forms the core the proof of Theorem 1.3.

Consider the set G‹ defined (4.2); we decompose it into fibers in two different
ways:

G‹ “
ď

x1Pe1pK‹q

tx1u ˆG
‹
2px1q “

ď

x2Pe2pK‹q

G‹1px2q ˆ tx2u .

Define also

N‹1 :“ tx1 P e1pK
‹q; G‹2px1q has more than one elementu , (4.3)

N‹2 :“ tx2 P e2pK
‹q; G‹1px2q has more than one elementu . (4.4)

So the following implication holds:

ξ, η P K‹

eipξq “ eipηq R N
‹
i

*

ñ

"

e1pξq “ e1pηq
e2pξq “ e2pηq

(4.5)

Lemma 4.6. For each ‹ P t⊤,⊥u and i P t1, 2u, the set N‹i is countable.

For the proof of the lemma it is convenient to consider the unit disk D “ tz P
C; |z| ă 1u endowed with the Poincaré hyperbolic metric. Given two different
points x1, x2 in the unit circle BD, let ÝÝÑx2x1 denote the oriented hyperbolic geodesic
from x2 to x1. We identify BD with the projective space P1 as follows:

e2θi P BD Ø pcos θ, sin θq1 P P1 .

Under this identification, we say that two geodesics ÝÝÑx2x1 and ÝÝÑy2y1 with distinct
endpoints are antiparallel, coparallel, or crossing according to the configuration of
the 4-tuple px1, y1;x2, y2q.

Proof of Lemma 4.6. We will consider the case i “ 1; the case i “ 2 is entirely
analogous.

For each x P N‹1 , let I‹pxq be the least closed subinterval of P1 r txu containing
G‹2pxq.

We begin with the case of N⊤1 .

Claim 4.7. If x, y P N⊤1 are distinct then I⊤pxq and I⊤pyq have disjoint interiors in
the circle P1. (See Fig. 4.)

Proof of the claim. Let v and w be the endpoints of the interval I⊤pxq and take any
point z in its interior. Then the geodesic ÝÑzy is coparallel to one of the two geodesics
ÝÑvx or ÝÑwx. Since px, vq and px,wq belong to G⊤, by Corollary 4.5 we conclude
that py, zq does not. This shows that G⊤2pyq X int I⊤pxq “ ∅, and, in particular,
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y

I⊤pyq

x

I⊤pxq

Fig. 4. x ‰ y P N⊤1 ; the intervals

I⊤pxq and I⊤pyq have disjoint inte-
riors.

x

∆pxq

y

∆pyq

Fig. 5. x ‰ y P N⊥1 ; the triangles

∆pxq and ∆pyq have disjoint inte-

riors.

BI⊤pyq X int I⊤pxq “ ∅. An analogous argument gives BI⊤pxq X int I⊤pyq “ ∅. It
follows that int I⊤pxq X int I⊤pyq “ ∅. �

It follows from separability of the circle that N⊤1 is countable.

Now let us consider the case of N⊥1 . For each x P N⊥1 , let ∆pxq be the ideal
triangle whose vertices are x and the two endpoints of the interval I⊥pxq.

Claim 4.8. If x, y P N⊥1 are distinct then ∆pxq and ∆pyq have disjoint interiors in
the disk D. (See Fig. 5.)

Proof of the claim. Let v and w be the endpoints of the interval I⊤pxq. Since these
points belong to e2pK

⊥q, which is disjoint from e1pK
⊥q, none of them can be equal

to y. Let C be the connected component of D r int ∆pxq whose closure at infinity
contains y. Let z P G⊥2pyq. By Corollary 4.5, the geodesic ÝÑzy does not cross ÝÑvx nor
ÝÑwx. It follows that ÝÑzy is disjoint from int ∆pxq, and so it is contained in C. Since
C is geodesically convex, it follows that ∆pyq Ă C. This proves the claim. �

It follows from separability of the disc that N⊥1 is also countable, thus completing
the proof of Lemma 4.6. �

5. Obtaining zero entropy

In this section we prove Theorem 1.3. The basic idea is as follows: Given a
bi-infinite word ω P kZ, write it as a concatenation ω´ω` of its “past” ω´ and its
“future” ω` (i.e., ω˘ “ π˘pωq in notation (2.3)–(2.4)). Due to the NOC, there
is a bijection between possible pasts (resp. futures) and e1 (resp. e2) directions,
as we have seen in Corollary 2.5. Using Lemma 4.6, we will show that e1pωq
uniquely determines e2pωq and vice versa for almost every point with respect to
any probability measure supported on a Mather set. So, with respect to those
measures, the past and the future almost surely determine each other and therefore
the entropy is zero. A precise proof follows.

5.1. Generalities about entropy. Let C :“ tr1s, . . . , rksu be the partition of kZ

into the time-0 cylinders rjs :“ tω P kZ; ω0 “ ju. If K Ă kZ is a T -invariant
compact set, define the partition CpKq :“ tK X r1s, . . . ,K X rksu.
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Let BpKq be the Borel σ-algebra of K, and consider the following sub-σ-algebra:

C´1
´8pKq :“

ł

nă0

T´npCpKqq ,

Fix a measure µ P MT supported on K. Recall (see [P’89, p. 244–245]) that a
sufficient (and actually also necessary) condition for the vanishing of the entropy
hpT, µq is that the partition CpKq is a one-sided generator modulo zero sets, that
is,

C´1
´8pKq “ BpKq ,

where the bar denotes taking the completion of a σ-algebra with respect to the
measure µ. We will find it useful to give an alternative description of the σ-algebra
on the LHS.

Let π´ be as in (2.3). Define

SpKq :“
 

D P BpKq; K X π´1
´ pπ´pDqq “ D

(

. (5.1)

The elements of SpKq are called saturated sets.

Lemma 5.1. SpKq is a σ-algebra and SpKq “ C´1
´8pKq.

Proof. It is easily checked that saturated sets form a σ-algebra of subsets of K. It
is also clear that

Ž´1
i“´n T

´ipCpKqq Ă SpKq for each n ą 0, and it follows that

C´1
´8pKq Ă SpKq. To conclude the proof of the lemma we need to prove that

SpKq Ă C´1
´8pKq . (5.2)

Let us first consider sets U P SpKq that are relatively open in K. Then there is
a sequence of cylinders Cn on kZ such that

U “
ď

n

K X Cn .

For each n, the set Ĉn :“ π´1
´ pπ´pCnqq is also a cylinder. Then each set KXĈn is a

subset of the saturated set U and an element of C´1
´8pKq; therefore U “

Ť

nKX Ĉn
is also an element of C´1

´8pKq. We have shown that C´1
´8pKq contains all saturated

sets that are relatively open in K, and so it also contains all compact saturated
sets.

This proves that all elements of SpKq that are relatively open belong to C´1
´8pKq.

Consequently, the same holds for compact subsets.
Now consider an arbitrary D P SpKq. By regularity of the measure, there exist

a sequence of compact sets En and a set Z P BpKq with µpZq “ 0 such that

D “ Z Y
ď

n

En.

For each n, let Ên :“ K X π´1
´ pπ´pEnqq. Since each Ên is a subset of D, we have

D “ Z Y
Ť

n Ên. Each set Ên is compact and is an element of SpKq, and it follows

from what was proved previously that Ên P C´1
´8pKq. In particular, D P C´1

´8pKq,
therefore completing the proof of (5.2) and the lemma. �
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5.2. Proof of Theorem 1.3.

Proof. Fix ‹ P t⊤,⊥u. By the entropy variational principle (see [P’89, p. 269]), in
order to prove that T |K‹ has zero topological entropy, it is sufficient to prove that
hpT, µq “ 0 for every ergodic probability measure µ supported on K‹. Fix any such
measure µ. Let us assume that µ is non-atomic, because otherwise there is nothing
to prove. Recall the definitions (4.3)–(4.4) of the sets N‹i .

Claim 5.2. µ
`

e´1
i pN

‹
i q
˘

“ 0 for each i P t1, 2u.

Proof of the claim. By Lemma 4.6, the set N‹1 Ă P1 is countable. Since A has the
forward NOC, by Corollary 2.5 the set e´1

1 pN‹1 q Ă kZ is a countable union of sets
of the form tω´u ˆ kZ` . Assume for a contradiction that µ

`

e´1
1 pN‹1 q

˘

ą 0. Then

there exists ω´ P k
Z´ such that F :“ tω´u ˆ k

Z` has measure µpF q ą 0.
By Poincaré recurrence, there exists p ě 1 such that T´ppF qXF ‰ ∅. It follows

that the infinite word ω´ is periodic with period p, which in turn implies that
T´ppF q Ă F . By invariance, µ pF r T´ppF qq “ 0 and

µ

˜

č

ně0

T´nppF q

¸

“ µpF q ´ µ
`

F r T´ppF q
˘

´ µ
`

T´ppF qr T´2ppF q
˘

´ ¨ ¨ ¨

“ µpF q ą 0.

But the set
Ş

ně0 T
´nppF q is a singleton, thus contradicting the assumption that

µ is non-atomic.
We have proved the claim when i “ 1. The case i “ 2 is analogous, using instead

the backwards NOC. �

Recalling notation (5.1), our next step is to show the following:

Claim 5.3. SpK‹q “ BpK‹q .

Proof. We need to show that BpK‹q Ă SpK‹q. For that, it is sufficient to prove that

the σ-algebra SpK‹q contains all the compact subsets of K‹. So fix an arbitrary
compact set C Ă K‹, and define

D :“ K‹ X e´1
2 pe2pCqqr e´1

1 pN‹1 q ,

The set e2pCq is compact and, in particular, Borel; so D is a Borel subset of K‹.
Let us show that

D P SpK‹q. (5.3)

Take η P K‹Xπ´1
´ pπ´pDqq. Then there exists ξ P D such that π´pξq “ π´pηq, that

is, ξ and η have the same past. So e1pηq equals e1pξq, which, by definition of D,
does not belong to N‹1 . Using (4.5) we obtain e2pηq “ e2pξq P e2pCq, thus proving
that η P D. We have shown that K‹ X π´1

´ pπ´pDqq Ă D, which implies (5.3).
Next, let us show that

µ pD M Cq “ 0. (5.4)

Take ξ P D r C; then there exists η P C such that e2pηq “ e2pξq. Since η ‰ ξ, by
Corollary 2.5 we deduce that e1pηq ‰ e1pξq, and so e2pξq P N

‹
2 . This shows that

D r C Ă e´1
2 pN‹2 q. On the other hand, it is immediate that C r D Ă e´1

1 pN‹1 q.
Using Claim 5.2 we obtain (5.4).

Facts (5.3) and (5.4) put together imply that C P SpK‹q, as we wanted to
prove. �
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Using Lemma 5.1 and Claim 5.3 we conclude that the partition CpK‹q is a one-
sided generator up to sets of zero µ-measure. It follows that hpT, µq “ 0, completing
the proof of the theorem. �

6. Obtaining positive entropy

In this section we prove Theorem 1.4.

6.1. Sufficient conditions for the existence of many bounded products.

Lemma 6.1. Given a sequence B0, B1, . . . of matrices in SLp2,Rq, let Pi :“
Bi´1 ¨ ¨ ¨B0 and let ui, vi be unit vectors in R2 such that Piui “ }Pi}vi. Suppose
that there are constants 0 ă κ ă 1 ă C such that

}Bi} ď C and }Bivi} ď κ for every i.

Then

}Pi} ď

?
2C

?
1´ κ2

for every i.

Proof. Recall that the Hilbert–Schmidt norm of a matrix A is defined as }A}HS :“?
trA˚A. If A P SLp2,Rq then }A}2HS “ }A}

2 ` }A}´2.
Let Bi, Pi, ui, vi, C and κ be as in the statement of the lemma. Let vKi be a

unit vector orthogonal to vi. With respect to the basis tvi, v
K
i u we can write

PiP
˚
i “

ˆ

ρ2
i 0

0 ρ´2
i

˙

and B˚i Bi “

ˆ

αi βi
βi γi

˙

,

where ρi “ }Pi} and αi “ xB
˚
i Bivi, viy “ }Bivi}

2. So

}Pi`1}
2
HS “ trB˚i BiPiP

˚
i

“ αiρ
2
i ` γiρ

´2
i

“ }Bivi}
2}Pi}

2 `
`

}Bi}
2
HS ´ }Bivi}

2
˘

}Pi}
´2

ď }Bivi}
2}Pi}

2
HS ` }Bi}

2
HS

ď κ2}Pi}
2
HS ` 2C2 .

It follows by induction that }Pi}
2
HS ď 2C2{p1 ´ κ2q for every i, which implies the

lemma. �

Given A “ pA1, . . . , Akq P SLp2,Rqk, let xAy be the semigroup generated by A,
that is, the set of all products of the form Ain . . . Ai1 (where n ě 1).

Let C be the set of A P SLp2,Rqk such that for every v P R2 and ε ą 0 there
exists P P xAy such that }Pv} ă ε. It is easily seen that A P C if and only if for
every unit vector v P S1 there exists P “ Ainpvq ¨ ¨ ¨Ai1 P xAy such that }Pv} ă 1.

It follows from compactness of the unit circle that the lengths npvq can be chosen
uniformly bounded, and that C is open.

Lemma 6.2. Every A P C satisfies the second alternative in Theorem 1.4.

Proof. Fix A P C. Let C :“ max }Ai}. It is an easy exercise to show that there
exist κ P p0, 1q and an integer ` ě 2 such that for every unit vector v P R2 there
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exists a product P P xAy of length `´ 1 such that }Pv} ă C´1κ, and in particular
}AiPv} ă κ for every i “ 1, . . . , k. Let

L :“
 

ω P kZ; }A`npωq} ď C1 @n P Z
(

, where C1 :“

?
2C`

?
1´ κ2

It follows from Lemma 6.1 that L ‰ ∅; actually given any bi-infinite sequence
of symbols . . . , ω´`, ω0, ω`, ω2`, . . . in the alphabet t1, . . . , ku, we can choose the
remaining symbols to form a word ω in L.

Let
K :“

 

ω P kZ; }AnpTmωq} ď C2`C2
1 @n,m P Z

(

.

By definition, this set is compact and T -invariant, and it is easy to see that it
contains L. It follows from the previous observations about L that the topological
entropy of K is at least `´1 log k, and thus positive as required. �

6.2. Checking denseness. Let H be the set of A P SLp2,Rqk such that the one-
step cocycle generated by A is uniformly hyperbolic). Consider the open set U :“
H Y C. By Lemma 6.2, every element of U satisfies one of the alternatives of
Theorem 1.4. Therefore, to prove the theorem, it is sufficient to show that U is
dense.

Let E be the set of A P SLp2,Rqk for which the semigroup xAy contains an elliptic
element R (that is, such that |trR| ă 2). The sets H and E are open and pairwise
disjoint. We recall the following result:

Theorem 6.3 ([Y’04, Prop. 6]). HY E is dense in SLp2,Rqk.

Therefore, to show that U :“ HY C is dense in SLp2,Rqk, we need to show:

Lemma 6.4. C X E is dense in E.

Let I be the set of A P E such that xAy contains a matrix conjugate to an
irrational rotation.

Lemma 6.5. I is dense in E.

Proof. Let pA1, . . . , Akq P E , and fix an elliptic product Ain . . . Ai1 . Let Pθ :“
RθAin . . . RθAi1 , whereRθ denotes the rotation by angle θ. By [ABY’10, Lemma A.4],
the function θ ÞÑ trPθ has a nonzero derivative at θ “ 0. Therefore we can find θ0

arbitrarily close to 0 such that Pθ0 is conjugate to an irrational rotation. Therefore
pRθ0A1, . . . , Rθ0Akq P I, proving the lemma. �

Proof of Lemma 6.4. Let N be the set of A “ pA1, . . . , Akq P SLp2,Rqk such that
not all Ai commute; then N is open and dense. We will show that

N X I Ă C , (6.1)

and so the desired result will follow from Lemma 6.5.
Take A “ pA1, . . . , Akq P N X I. Let R P xAy be conjugate to an irrational

rotation. Since the sets N , I and C are invariant by conjugation, we can assume
that R is an irrational rotation. Since A P N , there exists a generator Ai that does
not commute with R. Using the singular value decomposition of Ai, we see that
there exist n, m ě 0 such that H :“ RnAiR

m is a hyperbolic matrix. Let s be the
contracting eigendirection of H. Now, given any unit vector v and any ε ą 0, we
can find j ě 0 such that the unit vector Rjv is sufficiently close to s, and so there
exists ` ě 0 such that }H`Rjv} ă ε. This shows that A P C, thus proving (6.1) and
the lemma. �
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As explained before, Theorem 1.4 follows.

Comparing to the present paper, the proof of Theorem 2 in [BBD] uses similar
but slightly simpler arguments to get zero exponents. It does not obtain bounded
norms, however. The present construction, especially Lemma 6.1, is more related
to strategy suggested on [BBD, Remark 11.3].

Appendix A. Complementary facts

A.1. Optimization of other dynamical quantities. The results we have proved
up to this point concern the optimization (maximization or minimization) of the
upper Lyapunov exponent λ1. Let us discuss briefly how to obtain results for the
lower Lyapunov exponent λ2 and for the difference λ1 ´ λ2 (which is a measure of
non-conformality).

Suppose T : Ω Ñ Ω is a continuous transformation of a compact metric space
and A : X Ñ GLp2,Rq is a continuous map.

Define B : X Ñ GLpd,Rq by

Bpωq :“ ApT´1ωq´1, (A.1)

and consider it as a cocycle over T´1. Then a point ω P Ω is Oseledets regular with
respect to pT,Aq iff if it is regular with respect to pT´1, Bq, and

λ1pT
´1, B, ωq “ ´λ2pT,A, ωq and λ2pT

´1, B, ωq “ ´λ1pT,A, ωq.

In particular,

λ⊤2pT,Aq “ ´λ
⊥
1pT

´1, Bq and λ⊥2pT,Aq “ ´λ
⊤
1pT

´1, Bq.

If pT,Aq is an one-step cocycle then so is pT´1, Bq (after taking an appropriate con-
jugation between T and T´1), and a multicone for one of them is a complementary
multicone for the other.

It is then obvious how to adapt Theorems 1.1, 1.3 and 1.4 to λ2-optimization.

Now define another matrix-valued map

Cpωq :“ |detApωq|
´1{2

Apωq. (A.2)

Then for all ω in a full probability set,

λ1pA,ωq ´ λ2pA,ωq “ 2λ1pC,ωq “ ´2λ2pC,ωq .

Also note that the cocycle pT,Aq is dominated if and only if pT,Cq is uniformly
hyperbolic. If pT,Aq is an one-step cocycle then so is pT,Cq, and a multicone for
one of them is a multicone for the other.

It is then obvious how to adapt Theorems 1.1 and 1.3 to pλ1´λ2q-optimization.
In the converse direction, let us see SLp2,Rq-cocycles, can be adapted to cocycles
taking values in GL`p2,Rq (the group of matrices with positive determinant) as
follows:

Corollary A.1. Fix k ě 2 and let T be the full shift in k symbols. There exists an
open and dense subset V of GL`p2,Rqk such that for every A P V,

i) either the one-step cocycle over T generated by A is dominated;
ii) or there exists a compact T -invariant set K Ă kZ of positive topological

entropy and such that the “non-conformalities” }Apnqpωq}{mpApnqpωqq. are
uniformly bounded over pω, nq P K ˆ Z.
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Notice that in the first case we have pλ1 ´ λ2q
⊥pAq ą 0, while in the second

case there exists a measure µ P MT such that pλ1 ´ λ2qpA, µq “ 0 and moreover
hpT, µq ą 0.

Proof of Corollary A.1. Let p : GL`p2,Rq Ñ SLp2,Rq be the continuous open map-

ping A ÞÑ |detA|
´1{2

A. Let U be given by Theorem 1.4, and define V as the pre-
image of U by pk (the cartesian product of k copies of p). Then V has the stated
properties. �

A.2. Alternative characterizations of extremal exponents and of domina-
tion. Some lesser assertions made at the Introduction were left unjustified, so let
us deal with them now.

First, relation (1.6) actually holds in much greater generality: see Theorems 2.1
and A.3 in [Mo’13].

Next, let us prove relation (1.7). By subadditivity, its RHS equals

R :“ inf
n

1

n
log inf

i1,...,in
}Ain . . . Ai1} .

So λ⊥1pAq ě R by definition. To check the converse inequality, fix ε ą 0 and
take symbols i1, . . . , in such that 1

n log }Ain . . . Ai1} ă R ` ε. Consider the shift-

invariant probability measure on kZ supported on the periodic orbit pi1 . . . inq
8.

Then λ⊥1pAq ď λ1pA,µq ă R` ε. Since ε is arbitrary, we conclude that λ⊥1pAq “ R,
so proving (1.7).

Finally, let us show that an one-step 2ˆ2 cocycle is dominated if and only if the
number pλ1 ´ λ2q

⊥ defined by (1.8) is positive. The “only if” part is evident, and
actually does not require the one-step condition. To prove the “if” part, notice the
equality

pλ1 ´ λ2q
⊥pAq “ lim

nÑ8

1

n
log inf

i1,...,in

}Ain . . . Ai1}

mpAin . . . Ai1q
,

which follows from (1.7) applied to the “normalized” one-step cocycle defined by
(A.2). So if this number is positive then we can find positive constants c, δ such
that (1.4) holds, and therefore the cocycle is dominated.

Let us remark that for general cocycles, pλ1 ´ λ2q
⊥pAq ą 0 does not imply that

the cocycle is dominated: for example T can be uniquely ergodic and the cocycle
can have different Lyapunov exponents without being dominated: see e.g. [H’83,
§ 4].

A.3. More on the existence of optimizing measures. Given a cocycle pT,Aq,
the numbers λ1pA,µq and λ2pA,µq respectively depend upper- and lower-semicontinuously
on µ PMT , and therefore by compactness of MT , λ1-maximizing and λ2-minimizing
measures always exist. For a similar reason, pλ1´λ2q-maximizing measures always
exist.

There are one-step cocycles where no λ1-minimizing measure exists: see [BMo,
Remark 1.7]; a simple example is A “ pH, cRθq where H P SLp2,Rq is hyperbolic,
θ{π is irrational, and c ą 1. Similarly, there are one-step cocycles where no λ2-
maximizing measure exists: the same example but with c ă 1.

Let us give an example where no pλ1 ´ λ2q-minimizing measure exists. We will
actually exhibit an example of an one-step SLp2,Rq-cocycle where no λ1-minimizing
measure exists.
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Given a hyperbolic matrix L in SLp2,Rq, let uL, sL P P1 denote its eigendi-
rections, with uL corresponding to an eigenvalue of modulus bigger than 1. For
convenience, the action of L on P1 will also be denote by L.

Take A1, A2 hyperbolic matrices in SLp2,Rq such that trA1, trA2 ą 2 and
trA1A2 ă ´2; then by [ABY’10, Prop. 3.4] there exists a cyclical order ă on P1

such that

uA2 ă uA2A1 ă sA2A1 ă sA1 ă uA1 ă uA1A2 ă sA1A2 ă sA2 ă uA2 .

Now take a hyperbolic matrix C P SLp2,Rq such that (see Fig. 6):

uA3 P psA1 , uA1q, sA3 P psA2 , uA2q, and A3uA2 “ sA1 .

sA1
“ A3uA2

p

uA2

q

A1A2

A3

A2A1

A1A2

Fig. 6. The example of Proposition A.2. The thick part represents the “non-strict multicone”

M . For each L, the arrow labelled L represents the hyperbolic geodesic from sL to uL.

Proposition A.2. The one-step cocycle generated by A :“ pA1, A2, A3q has no
λ1-minimizing measure.

We note that the example is in the boundary of the hyperbolic component H Ă

SLp2,Rq3 described in [ABY’10, Prop. 4.16].
Before proving the proposition, let us describe a general geometrical construc-

tion. Consider a cocycle given by T : Ω Ñ Ω and A : Ω Ñ GLp2,Rq. Let S be the
skew-product map on Ωˆ P1 induced by the cocycle. The derivative along the P1

fiber of the map S at a point pω, xq P Ωˆ P1 is a linear map

Lpω, xq : TxP1 Ñ TApωqxP1 . (A.3)

Fix a rotation-invariant Riemannian metric on P1, and let fpω, xq denote the op-
erator norm of Lpω, xq.

Now suppose that µ is an ergodic T -invariant measure and µ̂ is a S-invariant
probability measure that projects to µ. Then we have the following fact (whose
easy proof is left to the reader):

Lemma A.3. If λ1pA,µq “ 0 then
ş

ΩˆP1 log f dµ̂ “ 0.
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Proof of Proposition A.2. Let A1, A2, A3 be as above, and consider the one-step
cocycle pT,Aq, where T is the shift on Ω :“ t1, 2, 3uZ` , and A : Ω Ñ SLp2,Rq is
given by Apωq “ Aω0 . Also let S be the induced skew-product map on Ωˆ P1.

Due to the “heteroclinic connection” A3uA2
“ sA1

, the cocycle is not uniformly
hyperbolic, and therefore λ⊥1pAq “ 0. To prove the proposition we will show that
λ1pA, µq ą 0 for every ergodic µ PMT .

Fix a point q in the interval puA2A1 , sA2A1q, and then a point p in the interval
pA1q, A

´1
2 qq. Let M :“ psA1

, pqY puA2
, qq, as in Fig. 6. Then the set M is forward-

invariant under the projection action of each matrix Ai.
Endow each connected component of M with its Riemannian Hilbert metric.

Given a point pω, xq P Ω ˆM , let gpω, xq denote the operator norm of the linear
map (A.3), where we take Hilbert metrics on both tangent spaces. Since the set
ApωqpMq is contained in M and none of its connected components coincided with
a connected component of M , we have gpω, xq ă 1.

Take any ergodic T -invariant measure µ, and lift it to a S-invariant measure µ̂
supported on the forward S-invariant compact set ΩˆM . We can assume that µ
is neither δ18 nor δ28 , because otherwise λ1pA, µq ą 0 trivially. It is then easy to
see that µ̂ gives zero weight to the subset Ω ˆ BM , and in particular the integral
I :“

ş

log g dµ̂ is well-defined. It is immediate from the definitions that log g´ log f
is coboundary with respect to S, and therefore

ş

log f dµ̂ “ I. Since g ă 0, we have
I ă 0 and so Lemma A.3 gives λ1pA, µq ‰ 0, as we wanted to show. �

A.4. Examples of non-uniqueness of optimizing measures. Let us show that
in the context of Theorem 1.3, the Mather sets K⊤ and K⊥ are not necessarily
uniquely ergodic. In other words, the λ1-maximizing and λ1-minimizing measures
can fail to be unique.

Take a pair of matrices A1 and A2 in GLp2,Rq2 with respective eigenvalues
χ1pA1q ą χ2pA1q and χ1pA2q ą χ2pA2q, all of them positive. Let vjpAiq P P1 be
the eigendirection of Ai corresponding to the eigenvalue χjpAiq. We can choose the
pair A “ pA1, A2q so that:

‚ the geodesics
ÝÝÝÝÝÝÝÝÝÑ
v2pA1qv1pA1q and

ÝÝÝÝÝÝÝÝÝÑ
v2pA2qv1pA2q cross;

‚ A has a forward invariant cone M Ă P1 with the forward nonoverlapping
property;

‚ A has a backwards invariant cone N Ă P1 with the backards nonoverlapping
property.

See Fig. 7.

Claim A.4. If ξ, η P K⊤ are such that

ξ´1 “ 1, ξ0 “ 2, η´1 “ 2, η0 “ 1. (A.4)

then ξ R K⊤ or η R K⊤.

Proof of the claim. The four relations in (A.4) respectively imply:

e1pξq P A1pMq, e2pξq P A
´1
2 pNq, e1pηq P A2pMq, e2pηq P A

´1
1 pNq.

It follows that the geodesics
ÝÝÝÝÝÝÝÑ
e2pξqe1pξq and

ÝÝÝÝÝÝÝÑ
e2pηqe1pηq are coparallel (see Fig. 7).

The claim now follows from Corollary 4.5. �
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A1pMq

A2pMq

A´1
2 pNq

A´1
1 pNq

v2pA1q

v1pA1qv2pA2q

v1pA2q

e2pξq e1pξq

e2pηq e1pηq

Fig. 7. An example with K⊤ “

t18, 28u.

A1pMq

A2pMq

A´1
1 pNq

A´1
2 pNq

v2pA1q v1pA1q

v2pA2q v1pA2q

e2pηq

e1pηqe2pξq

e1pξq

Fig. 8. An example with K⊥ “

t18, 28u.

Let 18 and 28 P t1, 2uZ be the two fixed points of the shift, and let ζ12 and
ζ21 P kZ be the following “homoclinic points”:

ζ12
n “

#

1 if n ă 0,

2 if n ě 0,
ζ21
n “

#

2 if n ă 0,

1 if n ě 0.

It follows from Claim A.4 that K⊤ is contained in the closure of the orbit of either
ζ12 or ζ21. Since K⊤ equals the union of supports of the invariant probability
measures that give full weight to K⊤ itself, it follows that K⊤ Ă t18, 28u.

Of course we can choose A1, A2 such that additionally χ1pA1q “ χ1pA2q; in this
case K⊤ equals t18, 28u and so it is not uniquely ergodic.

In a very similar way we produce an example where K⊥ “ t18, 28u. The only

difference is that A “ pA1, A2q are chosen so that the geodesics
ÝÝÝÝÝÝÝÝÝÑ
v2pA1qv1pA1q and

ÝÝÝÝÝÝÝÝÝÑ
v2pA2qv1pA2q are coparallel, and so if the points ξ, η satisfy (A.4) then the geodesics
ÝÝÝÝÝÝÝÑ
e2pξqe1pξq and

ÝÝÝÝÝÝÝÑ
e2pηqe1pηq cross. (See Fig. 8.)

A.5. Open questions and directions for future research. There are several
different directions along which one could try to extend the results of this paper.

Notice that the NOC is indeed necessary for the validity of Theorem 1.3; an
example is given in Remark 1.2 for α “ β. However all the examples we know
are very non-generic. So we ask whether the NOC can be replaced by a weaker
condition, preferably one that is “typical” (open and dense) among k-tuples of
matrices that generate dominated cocycles.

Regarding more general cocycles, we remark that there is also a notion of multi-
cones for one-step cocycles over subshifts of finite type: see [ABY’10]. It seems to
be straightforward to adapt the arguments given here to that more general situation
(and thus also for n-step cocycles) with appropriate nonoverlapping conditions, but
we have not checked the details.

Even more generally, we would like to have results about Lyapunov-optimizing
measures for cocycles that are not locally constant. We believe that some of the
construction of this paper should extend to cocycles admitting unstable and stable
holonomies (over a hyperbolic base dynamics).

Let us return to one-step cocycles over the full shift. A possible strengthening
of the conclusions of Theorem 1.3 would be to replace subexponential complexity
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(zero entropy) by linear complexity (as in [BMa’02]), or polynomial complexity
(as in [HMS’13]). Perhaps under generic conditions we can even obtain bounded
complexity (periodic orbits), in the style of [C].

Another line of study is to consider a relative Lyapunov-optimization problem
for one-step cocycles where the frequencies of each matrix are fixed. The paper
[JS’90] deals with a problem which can be reformulated in this terms. See [GL’07]
for general results on relative optimization in the classical commutative setting.
Let us also remark that this relative optimization setting is natural in the context
of Lagrangian dynamics, where it corresponds to fixing the homology; see [Ma’91].

It should also be worthwhile to investigate the relations between Lyapunov-
optimizing results as ours and the geometry of Riemann surfaces.

Regarding non-dominated one-step SLp2,Rq-cocycles, Theorem 1.4 says that we
should not expect λ1-minimizing measures to have zero entropy. However, it seems
likely that λ1-maximizing measures should have zero entropy. Notice that the
corresponding Mather set (whose existence is given by [Mo’13]) is automatically
uniformly hyperbolic.

Let us also remark that the only examples of k-tuples of matrices that do not
satisfy the dichotomy of Theorem 1.4 (or Corollary A.1) are very particular ones
(e.g., appropriate k-tuples with a common invariant direction). So we ask whether
these counterexamples can be described explicitly, or at least whether they are
contained in a finite union of submanifolds of positive codimension.

Of course most of the concepts and questions discussed in this paper make sense
in higher dimension. In particular, we ask whether a higher-dimensional version
of our zero entropy Theorem 1.3 (stated in terms of domination of index 1) holds
true. As mentioned above, the construction of Barabanov functions can be adapted
to this situation: see [BMo, § 2.2]. Lemma 4.2 should also be possible to extend:
compare with [BMa’02, Prop. 2.6]. However, the rest of our proof relies on low-
dimensional arguments.

Finally, we remark that the results obtained here can be considered as part of
the multifractal analysis of Lyapunov exponents of linear cocycles, a broad field of
study launched essentially by Feng [F’03].
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