THE ENTROPY OF LYAPUNOV-OPTIMIZING MEASURES OF
SOME MATRIX COCYCLES

JAIRO BOCHI AND MICHAL RAMS

ABSTRACT. We consider one-step cocycles of 2 x 2 matrices, and we are inter-
ested in their Lyapunov-optimizing measures, i.e., invariant probability mea-
sures that maximize or minimize a Lyapunov exponent. If the cocycle is dom-
inated, that is, the two Lyapunov exponents are uniformly separated along
all orbits, then Lyapunov-optimizing measures always exist, and are charac-
terized by their support. Under an additional hypothesis of nonoverlapping
between the cones that characterize domination, we prove that the Lyapunov-
optimizing measures have zero entropy. This conclusion certainly fails without
the domination assumption, even for typical one-step SL(2, R)-cocycles; indeed
we show that in the latter case there are measures of positive entropy with zero
Lyapunov exponent.

L’ENTROPIE DES MESURES LYAPUNOV-OPTIMISANTES POUR QUELQUES
COCYCLES DE MATRICES

N

REsSUME. Nous considérons des cocycles & un pas de matrices 2 x 2 et nous
nous intéressons a leurs mesures Lyapunov-optimisantes, i.e. aux mesures de
probabilité invariantes qui soit maximisent soit minimisent un exposant de Lya-
punov. Si le cocycle est dominé, i.e. si les deux exposants de Lyapunov sont
uniformément séparés le long toutes les orbites, alors des mesures Lyapunov-
optimisantes existent toujours et elles sont characterisées par leurs supports.
Sous I’hypothése supplementaire de non-chévauchement des cones qui charac-
terisent la domination, nous démontrons que les mesures Lyapunov-optimisantes
sont d’entropie nulle. Sans I’hypotése de domination ce résultat n’est plus vrai,
méme pour des cocycles & un pas a valeurs dans SL(2, R); en effet, dans ce cas-1a
nous démontrons qu’il y a des mesures d’entropie positive dont les exposants
de Lyapunov sont nuls.

1. INTRODUCTION

Ergodic Optimization is concerned with the maximization or minimization of
Birkhoff averages of a given function (called the potential) over a given dynamical
system: see [Je’06]. A paradigm of this subject is that for sufficiently hyperbolic
base dynamics and for typical potentials, optimizing orbits should have low dy-
namical complexity. This is confirmed in by a recent result by Contreras |C], who
showed that the optimizing orbits with respect to generic Lipschitz potentials over
an expanding base are periodic. An important component of Contreras’ proof is the
fact previously shown by Morris [Mo’08] that in this generic situation, optimizing
orbits have subexponential complexity (i.e., zero entropy).

In this paper we are interested in Ergodic Optimization in a noncommutative
setting. We will replace Birkhoff sums by matrix products, and the quantities we
want to maximize or minimize are the associated Lyapunov exponents. We would
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like to know whether the low complexity phenomena mentioned above is also typical
in this noncommutative setting.

A natural starting point is to consider one-step matrix cocycles. In this case,
the optimization problems above can be restated in more elementary terms: we are
given finitely many square matrices, and we want to find sequences of products of
them attaining the maximum or minimum growth rate. Actually these maximiza-
tion and minimization problems were first considered by Rota and Strang [RS’60]
and by Gurvits [G’95], respectively. The associated growth rates are called joint
spectral radius and joint spectral subradius, respectively; they play an important
role in Control Theory and there is a large body of literature about them (espe-
cially about the former): see the monograph [Ju’09] and references therein. An
important contribution to this field was made by Bousch and Mairesse [BMa’02]
who showed that the maximizing products are not always periodic, thus disproving
the so called Finiteness Conjecture. (Of course, for one-step cocycles the parameter
space is finite-dimensional and thus perturbative arguments are more difficult.)

In this paper we deal with 2 x 2 one-step cocycles. We give explicit open condi-
tions that ensure that the Lyapunov-optimizing orbits form a set of low complexity,
more precisely of zero topological entropy. These conditions are related to hyper-
bolicity on the projective space, and are satisfied in some of the counterexamples
to the Finiteness Conjecture exhibited in the literature.

In order to appreciate the importance of the hyperbolicity hypotheses, we show
that for typical non-hyperbolic one-step SL(2,R)-cocycles, the set of minimizing
orbits has positive topological entropy.

Let us proceed with the precise definitions and results.

1.1. Extremal Lyapunov exponents for 2 x 2 matrix cocycles. Let 2 be
a compact metric space and let T: 2 — Q be a continuous transformation. Let
A: Q — GL(2,R) be a continuous map. The pair (T, A) is a called a 2 x 2 matric
cocycle. We are interested in the following products, which play the role of Birkhoff
sums in our noncommmutative setting:

A (W) = AT W) - A(w), weQ, n=0. (1.1)

The Lyapunov exponents of the cocycle at a point w € 2, when they exist, are the
limits:
AM(A,w) = lim 1 log [A™ (W), Xa2(A,w):= lim 1 logm(A™ (w)) .
n—+on n—+o n
where, for definiteness, ||L| is the Euclidian operator norm of a matrix L, and
m(L) := L7~ is its mininorm.

Let i € {1,2}. If p is a T-invariant probability measure, then \;(A4,w) exists for
p-almost every w, and we denote \;(A4, n) = § (A4, w) dp(w). If p is ergodic then
Ai(A,w) = Ni(A, ) for p-almost every w.

The mazimal (or top) and minimal (or bottom) Lyapunov exponents are defined
respectively as:

A (A):= sup N(A,p), MN(A):= inf N\(A4,u), (1.2)
peMr peMr
where Mr denotes the set of all T-invariant Borel probability measures. These
four numbers are called the extremal Lyapunov exponents of the cocycle.
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A basic question is whether the sup’s and inf’s that appear in (1.2) are attained.
The answer is “yes” in the cases of A\] and A3, and “not necessarily” in the cases
of A} and A{; see subsection A.3. However, under the assumption of domination
(that we will explain next), all sup’s and inf’s in (1.2) are attained.

1.2. Domination. Consider a 2 x 2 matrix cocycle (T, A) where T is a homeomor-
phism. Suppose that for each w € 2 it is given a splitting of R? as the sum of two
one-dimensional subspaces ej(w), ez(w). We say that this is a dominated splitting
with respect to the cocycle (T, A) if the following conditions hold:

e equivariance: A(w)(e;(w)) = e;(Tw) for each w e Q, i € {1,2};

e dominance: there are constants ¢ > 0 and § > 0 such that

(n)
M >ce® forallweQand n > 1. (1.3)
|AM) (w)]e2(w)]|

An important property of dominated splittings is that they are always contin-
uous, that is, e; and ep, viewed as maps from 2 to the projective space P!, are
automatically continuous (see e.g. [BDV’05, § B.1]).

We say that a cocycle is dominated if admits a dominated splitting. Some
authors say that the cocycle is exponentially separated, which is perhaps a better
terminology. Domination is also sometimes called projective hyperbolicity, because
it can be expressed in terms of uniform contraction and expansion on the projective
space.

As shown in [Y’04, BG'09], a 2 x 2 cocycle (T, A) is dominated if and only if
there are constants ¢ > 0 and d > 0 such that

[ AT (w)] on
> ce forall we Q and n > 1. (1.4)
m(AM (w))

Notice that the LHS is a measure of “non-conformality” of the matrix A (w).

If a cocycle is dominated then the Lyapunov exponents are always distinct; actu-
ally 6 > 0 as in (1.4) is a uniform lower bound for the gap between them. Moreover
(see subsection 2.1 for details) the associated Oseledets directions coincide wherever
they exist (thus p-almost everywhere) with the directions e; and ey forming the
dominated splitting. In particular, the Lyapunov exponents are given by integrals:

Xi(A p) = f@i dp,  where p;(w) :=log|A(w)|e;(w)], (=1,2). (1.5)

As a consequence of these formulas, the problem of maximizing or minimizing
Lyapunov exponents for dominated cocycles is equivalent to the optimization of
Birkhoff averages of the continuous functions ¢;, and so many standard results
apply (see [Je’06])." In particular, one can easily show that:

1
Ai(4) = lim , Suplog | A (w)les(w)]],

n—oo N

N(4) = lim it log |A®) (w)ex(w)]

n—o0 N w

In order to avoid complications, our definition (1.2) of the extremal Lyapunov exponents
only considers regular points, as the alert reader will have noticed. On the other hand, non-
regular points have no effect in the optimization of Birkhoff averages (see [Je’06|). Therefore, for
dominated cocycles at least, non-regular points have no effect in the optimization of Lyapunov
exponents.
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Another consequence is that all sup’s and inf’s that appear in (1.2) are attained in
this case.

1.3. One-step cocycles. Fix an integer k& > 2. Let Q = {1,...,k}? be the space
of bi-infinite words on k symbols. With some abuse of notation, we denote this set
by kZ. Let T: kZ — k” be the shift transformation.

Given a k-tuple of matrices A = (Aj,...,A;) € GL(2,R)*, we associate the
locally constant map A: kZ — GL(d,R) given by A(w) = Ay,. In this case, (T, A)
is called a one-step cocycle, and the products (1.1) are simply

AN (W) = Ay, - Ay, -

The k-tuple of matrices A is called the generator of the cocycle. We denote A](A) =
NT(A), AH(A) = A (A).

We remark that for one-step cocycles, the values A](A) and A{(A) can be alter-
natively defined in a more elementary way (without speaking of measures) as:

.1

A(A) = nlgrgo - logz’f.l.l.I,)in A;, ... A, (1.6)
1

A (A) = lim —log inf |A;, ...A;]|. (1.7)

n—o n L yeeeyln

(see subsection A.2).
The numbers o™ (A) := eM®) and p*(A) := e} are called joint spectral radius
and joint spectral subradius and constitute an active topic of research: see [Ju’09].

1.4. Domination for one-step GL(2,R) cocycles. An one-step cocycle (T, A)
is dominated if and only if the number
(A1 = A2)*(A) == inf (A1(A, p) — A2(A, p)) (1.8)
/J,EMT

is positive; see subsection A.2 for the (easy) proof. Let us see still another charac-
terization of domination for one-step cocycles.

The standard positive cone in R2 := R? \ {0} is
Oy = {(z,y) e Ry ay > 0}

A cone in R is the image of C' by a linear isomorphism. A multicone in R2 is a
disjoint union of finitely many cones.

We say that a multicone M < R2 is forward-invariant with respect to A =
(Aq,..., Ag) if the image multicone | J; A;(M) is contained in the interior of M.

For example, if A;’s has positive entries then the standard positive cone C, is
a forward-invariant multicone for (Ay,..., Ax). For more complicate examples, see
[ABY’10].

It was proved in [ABY’10, BG’09| that the one-step cocycle generated by A is
dominated if and only if A has a forward-invariant multicone.

If M is a multicone, its complementary multicone M., is defined as the closure
(relative to RZ) of R2 \ M. Notice that if M is forward-invariant with respect
to (A1,...,Ag) then M., is backwards-invariant, that is, forward-invariant with
respect to (A7, ..., A,;l).
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1.5. Mather sets. Under the assumptions above, the extremal Lyapunov expo-
nents “live” in certain invariant sets:

Theorem 1.1. Suppose that the one-step cocycle generated by A € GL(2,R)* is
dominated. For each = € {T, 1}, let K* be the union of all supports of measures
e My such that AN(n) = A}. Then:

e K™ is a compact, nonempty, T-invariant set;
o any measure p € My supported in K* satisfies A(p) = \*.

An obvious consequence of the theorem is the existence of \j-optimizing mea-
sures.

We call KT and K* upper and lower Mather sets, respectively. (Our upper
Mather set corresponds to what Morris [Mo’13] calls a Mather set.) The terminol-
ogy is coherent with Lagrangian Dynamics, where Mather sets were first studied in
[Ma’91].

Actually the existence of the upper Mather set is guaranteed for 1-step cocycles
(in any dimension) without assumptions of domination: see [Mo’13].

The existence of both Mather sets in Theorem 1.1 can be deduced from Hélder
continuity of the Oseledets directions using the usual (commutative) ergodic opti-
mization theory. However, the proof of Theorem 1.1 that we will present is self-
contained and gives extra information which will be useful in the proof of our major
result, Theorem 1.3 below.

1.6. Zero entropy. We say that A = (A44,..., A) satisfies the forward NOC' (non-
overlapping condition) if it has a forward-invariant multicone M < R2 such that

A;(M)nA;(M) =2 whenever i # j.

We say that A = (Ai,..., Ay) satisfies the backwards NOC if (A7, ... 7A,:l) sat-
isfies the forward NOC. We say that (Ay,..., A) satisfies the NOC if it satisfies
both the forward and the backwards NOC.

Remark 1.2. The forward and the backwards NOC are not equivalent: for example,
if

-1 -1
Aliz(a() (O)Z)’ A2:=(ﬁl g>7 with >0, >0, 0 + 5% <1

then (A;, As) satisfies the forward NOC, but not the backwards NOC, as one can
easily check. <

The main result of this paper is the following:

Theorem 1.3. For every k, for every A € GL(2,R)*, if the one-step cocycle gener-
ated by A is dominated and satisfies the NOC then the restriction of the shift map
to either Mather set KT or K* has zero topological entropy.

The conclusion of the theorem means that for each » € {T, 1}, the number w*(¢)
of words of length ¢ in the alphabet {1, ..., k} that can be extended to an bi-infinite
word in the Mather set K™* is a subexponential function of ¢, that is,

1
lim - logw*(¢) = 0. (1.9)

£—0

(see [P’89, p. 265-266]).
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There are examples where Theorem 1.3 applies and K7 is non-discrete: In the
family of examples given in [BMa’02] where a maximizing measure is Sturmian
non-periodic, the NOC condition holds for some choices of the parameters.

There are also examples where Theorem 1.3 applies and either K7 or K* is not
uniquely ergodic: see subsection A.4.

1.7. Positive entropy. As a counterpoint to Theorem 1.3, we will see next non-
trivial situations where \;-minimizing measures with positive entropy exist.

A cocycle (T, A) is called uniformly hyperbolic if it has an equivariant splitting
into two bundles, one being uniformly expanding and the other being uniformly
contracting. Any uniformly hyperbolic cocycle is dominated, and the converse
holds for SL(2, R)-cocycles.

Theorem 1.4. Fiz k > 2 and let T be the full shift in k symbols. There exists an
open and dense subset U of SL(2,R)* such that for every AelU,

i) either the one-step cocycle over T generated by A is uniformly hyperbolic;

ii) or there exists a compact T-invariant set K < k% of positive topological
entropy and such that the norms |A"™ (w)| are uniformly bounded over
(w,n)e K x Z.

Notice that in the first case we have A\{(A) > 0, while in the second case by the
entropy variational principle (see [P’89, p. 269]), there exists a measure p € Mrp
such that h(T, ) > 0 and A; (A, ) = 0.

For a nonlinear version of Theorem 1.4, see [BBD, Theorem 2].

1.8. Organization of the paper and overview of the proofs. In section 2 we
collect basic fact about dominated cocycles.

A standard procedure to solve ergodic optimization problems is to look for a
change of variables under which the optimizing orbits become evident, or “re-
vealed”. Following this idea, in section 3 we construct what we call “Barabanov
functions” (in analogy to the Barabanov norms from joint spectral radius theory),
and immediately use them to prove the existence of the Mather sets (Theorem 1.1).

In section 4 we use the Barabanov functions to prove that the directions of the
dominated splitting for points on the Mather sets must obey severe geometrical
obstructions, which in turn imply that one direction uniquely determines the other,
with an at most countable number of exceptions. Using this property, we prove
Theorem 1.3 in section 5.

The simpler proof of Theorem 1.4 is given in section 6, and is independent of
the previous sections.

In Appendix A we present complementary information, including counterexam-
ples showing the limits of our results and alternative definitions for some of the
concepts we have discussed. We also pose a few problems and suggest some direc-
tions for future research.

2. PRELIMINARIES: BASIC FACTS ABOUT 2 X 2 DOMINATED COCYCLES

In this section we collect some simple facts about dominated cocycles that will
be needed in the sequel.
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2.1. General cocycles.

Proposition 2.1. Let T: Q — § be a homeomorphism, and let A: Q — GL(2,R)
be continuous. Assume that the cocycle (T, A) has a dominated splitting into direc-
tions ey, ea. Then there exists C > 1 such that

CTHAM )]z ()] < m(A™ (W) < [AW ()] < ClA™M (@)|er(@)]  (2.1)
foranywe Q andn = 1.

Proof. Denote aE") (w) := [|AM™ (w)]ei(w)|. By dominance, there exists ng such that
agn)(w) > aé") (w) for every n > ng. Let (u1,uz) be the canonical basis of R2.
For each w € Q, let M(w) be a 2 x 2 matrix such that such that M(w)u; is a
unit vector in the direction e;(w). (The map M may be discontinuous.) Consider
D(w) := M(T(w)) ' A(w)M(w). Then D™ (w) is a diagonal matrix with entries
ia&") (w) and iaén) (w). On the other hand, since the angle between e; and es is
uniformly bounded from below, there exists ¢ > 1 such that |M(z)*!| < c¢. In

particular, we obtain
cPm(DM (W) < m(A™M (W) < [A™ ()] < E DM ()] -

So inequalities (2.1) hold with C' = ¢? for n > ng. Increasing C if necessary, we
ensure that these inequalities hold for every n > 1. O

Corollary 2.2. If the cocycle (T, A) is dominated then, for any i€ {1,2},
1
. — lim — (n) )
M) = T log [A®) (@)lei(w)] (22)

for every w € Q such that at least one of these quantities is well-defined.

Proof. Use Proposition 2.1 together with the obvious estimates:
AT (@)lea(w)] = m(A™ (@) and A (W)]er(w)] < [A™ ()] 0

Notice that the RHS of (2.2) is a limit of Birkhoff averages, so the integral
formulas (1.5) follow.
Remark 2.3. Actually Proposition 2.1 implies that the dominated splitting coincides
with the Oseledets splitting whenever the latter is defined. The properties alluded
in Corollary 2.2 hold in general for Oseledets splittings. <

2.2. One-step cocycles. Let us fix some notation. The projective space of R? is
denoted by PL. Given z € R, let 2’ denote the unique line in P! containing z. Given
a linear isomorphism L of R?, let L’ the self-map of P! defined by L' (v') = (L(u))’.
If M < R2 is a multicone then let M’ := {2’/ € P!; x € M}.

Let Z_ (resp. Z,) be the set of negative (resp. nonnegative) integers. Define
projections

i kK — k2 m_(w)=(...,w_2,w_1),
o kP — kP T (w) = (wo,wr,...) - (2.4)

Proposition 2.4 ([ABY’10, BG’09]). Assume that (Ay,...,Ag) generate a domi-
nated one-step cocycle. Let e1, ea: k% — P be the invariant directions forming the
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dominated splitting, and let M < R2 be a forward-invariant multicone. Then for
any w € k% we have

fer(@)) = ()AL, AL (M) and {eaw)} = () AL, _,--- AL, (ML)

In particular the directions e1(w) and es(w) depend only on 7_(w) and 74 (w), re-
spectively, and so there are continuous maps €1, € such that the following diagrams
commute:

kZ €1 Pl ]CZ €2 ]PJ]
ﬂ_l ~ ml ~
el €2
kZ, kZ+

Corollary 2.5. Let €1, é3 be as in Proposition 2.4. Then:

e If the forward NOC is satisfied then &, is one-to-one; in particular ey (k%)
is a Cantor set contained in M.

e If the backwards NOC is satisfied then & is one-to-one; in particular ex(k%)
18 a Cantor set contained in M.

3. BARABANOV FUNCTIONS AND MATHER SETS

3.1. Statements. A Barabanov norm for a compact set A of d x d matrices is a
norm [|-]| on R? such that

max [|Az|| = 0" (A) ||z|| for all z € R4,
AeA

where o7 (A) = eM® is the joint spectral radius of A. It is known that a Barabanov
norm exists whenever A is irreducible (i.e., has no nontrivial invariant subspace):
see [B’88, W’02].

For definiteness, let us consider finite sets A < GL(2,R). One may wonder
about the existence of a version of the Barabanov for the joint spectral subradius
0+ (A) = ™ that is, a norm ||-|| such that

min ||Az|| = o*(A) ||z[| for all z € R?. (3.1)
AeA

Unfortunately, no such norm can in general exist, even assuming irreducibility of
A. For example, if the cocycle is such that AJ(A) < A{(A) then applying relation
(3.1) to the orbit of a nonzero vector in the second Oseledets bundle es we reach a
contradiction.

This example shows that if such a “minimizer Barabanov norm” exists, relation
(3.1) cannot hold for all vectors, but only for vectors away from the es-directions. In
general, the set of ep-directions can be large or even the whole P, but for dominated
cocycles it is a proper compact subset of P!,

As we show in this section, under the assumption of domination it is indeed pos-
sible to construct an object that retains the most useful properties of (the logarithm
of) a “minimizer Barabanov norm”. For convenience, we simultaneously consider
both the maximizer and minimizer cases:

Theorem 3.1. Let (Ay,...,Ax) be generators of a dominated one-step cocycle,
and let M < R? be a forward-invariant multicone. Then there exist functions

p':M—-R and p':M—R
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with the following properties:
e cxtremality: for all x € M,

max p'(A;z) =p (z)+A], (3.2)
€{l,...,k}

min  p'(A;z) = pt(x) + A7 ; (3.3)
ie{l,...,k}

o log-homogeneity: for all € {T,1}, x € M, and t € R\ {0},

p’(tz) = p*(x) + log|t|; (3.4)
o reqularity: there exists co > 0 such that for all x € {T,1} and x, y € M,
Ip* () = p* ()| < coF(x,y) + [log |z] — log [y]]. (3.5)

Related functions were used by Bousch and Mairesse [BMa’02, § 2.1]. Our con-
struction combines their techniques with properties of multicones and the Hilbert
metric. A higher-dimensional version of our construction was obtained in [BMo].

Let us also mention that similar constructions also play an important role on
ergodic optimization, action minimization in Lagrangian dynamics, and optimal
control: see [BMa’02] and references therein.

3.2. Proofs. In the rest of this section we prove Theorems 3.1 and 1.1.
The first step is the construction of an “adapted metric”. As in section 2, we
use a prime to denote projectivization.

Lemma 3.2. Let (A4,...,Ag) be generators of a dominated one-step cocycle, and
let M < R? be a forward-invariant multicone. There exist a metric d on the pro-
jectivization M’ and constants co > 1 and 0 < 7 < 1 such that for all x, y € M, we
have

d(Aj’, Aly') < 7d(a',y)  forallie{l,... k}, (3.6)
'K (zy) <d (2, y) < ad(z,y). (3.7)

Proof. By a compactness argument, there exists an open neighborhood U of M’ in
P! such that AL(U) < M’ for alli € {1,...,k}. We can assume that each connected
component of U contains exactly one connected component of M’.

Endow each connected component of U with its Hilbert metric, and restrict it to
the corresponding connected component of M’. We use the same letter d to denote
all those metrics. Rescaling if necessary, we can assume that d < 1/2 whenever
defined. Moreover, there are constants ¢; > 1 and 0 < 7 < 1 such that properties
(3.6) and (3.7) hold whenever z’ and 3’ are in the same connected component of
M.

Given z’, y' € M’, define £(2’,y') as the least integer n > 0 with the property that
for all w € k%, the directions A™ (w)’2’ and A" (w)'y’ belong to the same connected
component of M’. The function ¢ is uniformly bounded, has the following property:

0 (A, Aly') <max (¢(a',y') —1,0), forallie{l,... ,k},
and satisfies an ultrametric inequality:
(') <max (¢(2,2") L (y,7)).
We now extend d by setting d (z/,y') := £(2/,3/) if 2’ and ¢’ are in different con-

nected components of M’. Then d is a distance function. Moreover, increasing ¢,
and 7 if necessary, properties (3.6) and (3.7) are satisfied. O
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In the following proof of Theorem 3.1, we will also establish some facts that are
necessary for the subsequent proof of Theorem 1.1.

Proof of Theorem 3.1. For each i € {1,...,k}, define h;: P! — R by

Ail‘
hi(x/) = lOg || HxH ” ,

where ||-|| is the Euclidian metric, as usual. Fix a constant ¢ > 0 such that

|hi(2') = hi(y)| < oA (z,y) forallw, ye R2.

Let M be a forward-invariant multicone for (41, ..., Ax), and let d me the metric
on the projectivization M’ given by Lemma 3.2. Let B be the vector space of
continuous functions from M’ to R, endowed with the uniform (supremum) distance
|'|loo. Let ¢35 := c1c2/(1 —7) and let K < B be the set of functions that are c3-
Lipschitz with respect to d.

For each function f € K, define two functions T* f: M’ — R (where * € {T, 1})
by

(T"f)(@") == max [f (Aj2) +hi(2)] ,

i€{1,....,k}
(T f)(2') := ie{Iln.iflk} [f (Agx’) + hi(:v')] )

We claim that T* f € K. Indeed, for all 2/, ¥’ € M’, we have

(T £)(@') = (T )] < max | [F (Afa') + haa)] = [ (Ay') + hay)]
< max |f (Aia’) — f (Al")] + max |hi(2") = hi(y)]

< csmaxd (Ajx’, Aly') + c24 (2, y)
< csrd(2',y) + cread(2,y)
= c3d(2',y').

Thus we have defined maps T*: K — K. Next, we claim that these maps are
continuous. Indeed, for all f, g € K, we have

(T*f)a") = (T*g) (")
< sup max|f (4jz') — g (4j2')]

z’eM’

<|f =gl -

|T*f —T"glwwc = sup
z'eM’

Let B be the quotient of the space B by the subspace of constant functions; it
is a Banach space endowed with the quotient norm |f|, := inf{|f|; 7(f) = f},
where 7: B — B denotes the quotient projection. By the Arzela—Ascoli theorem,
the convex set K := 7(K) is compact. Since T* commutes with the addition of
a constant, there exists a map T*: K — K such that 7 o T* = T* o 7. The map
T+ is continuous, as it is easy to check; in particular, by the Schauder theorem, it
has a fixed point fg . This means that there exist fj € K and * € R such that
T*f5 = fo + B*. Define

p*(x) == fi(2") +log |z| for all z € M.
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Note that for every x € M, the following properties hold: property (3.4),

max p' (A;z)=p'(z)+ 8", (3.8)
ie{l,...k}
min  p*(A;z) = pt(z) + B, (3.9)
ie{l,....k}
and
p*(z) —log[z]| < ea (3.10)

where ¢4 := max (| f] |« , | f3]o0)-

Taking cg = cic3, we see that property (3.5) holds when 2z’ and ¢y’ are in the
same connected component of M’. Since the angle between directions in different
components is uniformly bounded from below, we can increase cy if necessary so
that property (3.5) fully holds.

To complete the proof of Theorem 3.1 we need to show that the numbers 57 and
B* that appear in (3.8) and (3.9) are respectively equal to the numbers A] and A{
that appear in (3.2) and (3.3). As we prove these equalities, we will also establish
some facts that will be useful in the forthcoming proof Theorem 1.1.

Take any w € k% and = € e;(w) ~\ {0}. Recall from Proposition 2.4 that z € M,
and so consider
P (w) = p*(Awyz) — p*(2) .
By (3.4) this value does not depend on the choice of  in eq(w) \ {0}; in this way
we define a continuous function ¥*: kZ — R.
By equivariance of the e; direction, for every w € k%, x € e1(w) ~ {0}, and n > 1
we have

n—1
P (A @)2) = pt () = 3 B (TIw).
j=0
Letting o1 (w) := log |A(w)]e1(w)], it follows from (3.10) that
n—1 ) n—1 )
—2¢4 < Z P (Tw) — Z 1 (T"w) < 2¢4.
j=0 3=0

Integrating with respect to some p € My, dividing by n, and making n — oo, we
conclude that §¢*du = {1 dp. Recalling the integral formula (1.5) (proved in
subsection 2.1), we conclude that

A(p) = Jw* dp for any pe Mr.
On the other hand, by (3.8) and (3.9), we have
PT< BT and Pt =B,
which in particular implies that
Br< AT <A <BT. (3.11)
Moreover, for any u € My, we have A1(u) = * if and only if ¢* = 8* p-almost
everywhere, or equivalently, if the T-invariant set
L* = {we k% p*(T"w) = B* VneZ} (3.12)
has total y-measure.
We will show that L* is compact and nonempty. We begin showing the following:
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Claim 3.3. For any w_ € k- there exists w; € k*+ such that if w = w_w, is
concatenation of w_ and wy then ¢*(T"w) = B* for all n > 0.

Proof of the claim. Recall from Proposition 2.4 that given a semi-infinite word
w_ = (...,w_9,w_1), the direction é;(w_) is determined, and by (3.2) or (3.3)
there exists a letter wg such that ¢*(w) (which is well-defined even if wy, wa, ...are
still undefined) equals 5*. Next we consider the shifted word (...,w_1,wp), and
repeat the reasoning above to find w; such that ¢¥*(Tw) = B*. Continuing by
induction, we find the desired w™, thus proving the claim. ([l

Let L% be the set of w € k% such that ¢*(T"w) = B* for all n > 0, which
by Claim 3.3 is nonempty. Since L’ is compact and contains T'(L% ), the set
L. =(),507"(L%) is compact and nonempty, as announced. In particular, there
exists at least one T-invariant probability measure p* supported on L*, and so
with Ay (pu*) = B*. Together with (3.11) this implies that * = A]. So (3.2)
and (3.3) respectively follow from (3.8) and (3.9) and the proof of Theorem 3.1 is
complete. O

Proof of Theorem 1.1. For each % € {T, L}, let M’ be the set of measures y e My
such that A(u) = A]. We have seen in the proof of Theorem 3.1 that there exists a
nonempty compact T-invariant set L* such that p € M7 if and only if supp p < L*.

Define the Mather set K* as the union of the supports of all measures p in M7.
To show that this is a compact set, we follow an argument from [Mo’13]. The
set of all Borel probabilities on k% with the usual weak-star topology is metrizable
and compact, and My is a compact subset. Since L* is compact, using Urysohn’s
lemma we see that the set M7 is also compact. In particular, it has a countable
dense sequence (vy). Consider v* := >,27 "y}, which is an element of MZ. It
is then easy to show that suppv* = K*, which in particular shows that K* is
compact.

The remaining assertions in Theorem 1.1 are now obvious, and the proof is
complete. ([

4. PROPERTIES OF LYAPUNOV-OPTIMAL ORBITS

In this section we explore consequences of Theorem 3.1. Let us remark that none
of the results of this section requires the nonoverlapping conditions.

Fix generators (A1, ..., Ax) of a dominated one-step cocycle, a forward-invariant
multicone M, and Barabanov functions p", p* on M.

4.1. Geometrical obstructions. In this subsection, we will show that the invari-
ant directions of points on the Mather sets must obey certain geometrical obstruc-
tions.

We begin considering certain sets of optimal future trajectories. For each x €
{1, 1}, let

J* = {(wt, z) e k¥ x M; p (A (WwH)z) = p*(2) + n\ Vo = 0}.

Since the functions p* are continuous, these sets are closed. Also notice that, as a
consequence of (3.2) and (3.3),

Voe M Jw' e k% such that (wh,2) e J*.
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Lemma 4.1. If (wt,z) € J* and y € M are such that x — y € éa(w™) then
p'(x)<p'(y) if»=T,
pr(@)=piy) if =1L

Proof. Let w* € k%" and z, y € M be such that  — y € é&(w™). Let z, :=
AP (wH)z and y, := A (wh)y, for n = 0. First, we will show that

nh—r}go [p*(yn) - p*(xn)] =0. (41)
Indeed, by property (3.5),

" (yn) — D" ()| < c0& (Y, 2n) + |10g |yn| — log |24 ]| -

Since © — y € éa(w™) and = ¢ é3(w™), domination implies that X (y,,x,) tends to
zero as n — 00. On the other hand,

lynl n| >< [0 — yn|

1og [ — log || < max( N N A N e 7 B

which, by domination again, tends to zero as n — co. This proves (4.1).
Next, assume (w™,z) € J*. So, for all n > 0,

p*(zn) = p"(x) + nAT .
By properties (3.2) and (3.3) we have
P (yn) <P"(Y) +nAp ifx =T,
pr(yn) Z P (y) + Ay ifx = L.
In particular,
P (yn) —p"(zn) <p'(y) —p'(2) ifx=T,
pr(yn) =P (zn) = p(y) —p*(z) ifx= L.
Passing to a limit n — o0 and using (4.1) we obtain the lemma. (]

2

%, no three of them collinear, we define their

Given vectors x1, y1, T2, y2 € R
cross-ratio
T1 X T2 Y1 XYz
T1 X Y2 Y1 X T2

where x denotes cross-product in R?, i.e. determinant. The cross-ratio actually
depends only on the directions defined by the four vectors, which allows us to
apply the same definition 4-tuples in (P*)* without three coinciding points. Also,
the cross-ration is invariant under linear transformations.

We now use Lemma 4.1 to prove the following important Lemma 4.2, which a
character similar to Proposition 2.6 from [BMa’02]:

(1,915 22, y2] = eRuU {0},

Lemma 4.2. For all (§,21), (n,y1) € J* and nonzero vectors xa € é3(€), ya € é2(n)
we have

ifx=T,
if x = 1.

|[x1,y1;x2,y2]

1>1
I[z1, 91522, 92]| <1
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Proof. Let us consider the case of J7; the other case is analogous.

Recall from Proposition 2.4 that any e; direction is different from any ey direc-
tion. So neither x; nor y; can be collinear to x5 or y». Hence the cross-ratio is well
defined. Moreover, we can write:

1 =axe+ Py1 and y; = Yy + dx1.
By Lemma 4.1,

p'(z1) < p"(By1) < p'(Bdw1) = p'(21) + log |B4].
Hence, |86] = 1. Substituting
Rl Y I et -
Y1 X T2 T1 X Y2
we get the assertion. O

From Lemma 4.2 we immediately obtain:
Lemma 4.3. If¢, ne K* then

[e1 (), e1(n); e2(€), e2(n)]]
|[e1(€), ex(n); e2(£), e2(n)]|

Let (x1,y1;22,y2) be a 4-tuple of distinct points in P!. Then one and only one
of the following possibilities hold:

e antiparallel configuration: x1 < ya < y1 < T2 < x7 for some cyclic order <
on P! (see Fig. 1);

e coparallel configuration: r1 < y1 < y2 < x2 < x1 for some cyclic order <
on P! (see Fig. 2);

e crossing configuration: x1 < Yy < To < Yo < x1 for some cyclic order < on
P! (see Fig. 3).

Y1 Y2 Y2 Y1 T2 Y1
T2 T T2 T Y2 Tl
F1c. 1. Antiparallel con- Fic. 2. Coparallel con- Fic. 3. Crossing config-

figuration figuration uration

The configuration is expressed in terms of the cross-ratio as follows:

Proposition 4.4. Consider a 4-tuple (x1,y1;%2,y2) of distinct points in PL. Then:

o the configuration is antiparallel iff [z1,y1; 22, y2] < O;
e the configuration is coparallel iff 0 < [x1,y1; 22, y2] < 1;
e the configuration is crossing iff [z1,y1; 2, y2] > 1.

Proof. With a linear change of coordinates, we can assume that the directions y1,
X9, Y2 contain the vectors (1,1), (1,0), (0,1), respectively. Let (a,b) be a nonzero
vector in the x; direction. Then [z1,y1;x2,y2] = b/a. The proposition follows by
inspection. [
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Define the following compact subsets of the torus P! x P!:
G* = {(e1(w), e2(w)); we K*}. (4.2)
As a consequence of Lemma 4.3 and Proposition 4.4, we have:

Corollary 4.5. Let (z1,z2), (y1,y2) € G*. Then:

o if x =T then (x1,y1;x2,y2) cannot be in coparallel configuration;
o if x = 1 then (z1,y1;T2,y2) cannot be in crossing configuration.

4.2. Each invariant direction essentially determines the other. Now we
will use show that for points w on the Mather sets, each invariant direction e (w)
or es(w) uniquely determines the other, except for a countable number of bad
directions. This fact (stated precisely in Lemma 4.6 below) is actually a simple
consequence of Corollary 4.5, and forms the core the proof of Theorem 1.3.

Consider the set G* defined (4.2); we decompose it into fibers in two different
ways:

G'= |J fa}xGie)= | Gilw)x{aa}.

xleel(K*) IQESQ(K*)
Define also
N7 :={x; € e1(K™*); G5(x1) has more than one element}, (4.3)
NJ = {x9 € ea(K™); Gj(x2) has more than one element} . (4.4)

So the following implication holds:

§me K* _ Jeal@=eam
ei<§>=ei<n>¢N;} {62(§)=62(n) (4.5)

Lemma 4.6. For each € {T, 1} and i € {1,2}, the set N} is countable.

For the proof of the lemma it is convenient to consider the unit disk D = {z €
C; |z| < 1} endowed with the Poincaré hyperbolic metric. Given two different
points x1, zo in the unit circle dD, let ZToz7 denote the oriented hyperbolic geodesic
from x5 to z1. We identify dD with the projective space P! as follows:

e? e D « (cosh,sinf) e P.

Under this identification, we say that two geodesics Toxi and 7zy; with distinct
endpoints are antiparallel, coparallel, or crossing according to the configuration of
the 4-tuple (z1,y1; 22, y2).

Proof of Lemma 4.6. We will consider the case i = 1; the case i = 2 is entirely
analogous.
For each z € N7, let I*(x) be the least closed subinterval of P! \ {z} containing
We begin with the case of N7.

Claim 4.7. If z, y € N{ are distinct then I"(z) and I" (y) have disjoint interiors in
the circle P!. (See Fig. 4.)

Proof of the claim. Let v and w be the endpoints of the interval I (x) and take any
point z in its interior. Then the geodesic Z7 is coparallel to one of the two geodesics
vt or wi. Since (z,v) and (z,w) belong to GT, by Corollary 4.5 we conclude
that (y,z) does not. This shows that GJ(y) nintI"(z) = &, and, in particular,



16 J. BOCHI AND M. RAMS

IT
(¥) x

FIG. 4. © # y € N{; the intervals Fic. 5. @ # y € Ni; tbe. t.riar.lgles
I"(z) and I"(y) have disjoint inte- A(z) and A(y) have disjoint inte-

riors. riors.

oI (y) mint I"(x) = &. An analogous argument gives 01" () nintI"(y) = @. Tt
follows that int I (z) nint I (y) = @. O

It follows from separability of the circle that Ny is countable.

Now let us consider the case of Ni. For each z € N{, let A(z) be the ideal
triangle whose vertices are x and the two endpoints of the interval I*(x).

Claim 4.8. If x, y € Ni are distinct then A(z) and A(y) have disjoint interiors in
the disk D. (See Fig. 5.)

Proof of the claim. Let v and w be the endpoints of the interval I (x). Since these
points belong to e (K*), which is disjoint from e; (K*), none of them can be equal
to y. Let C be the connected component of D N int A(z) whose closure at infinity
contains y. Let z € G(y). By Corollary 4.5, the geodesic Z does not cross U2 nor
wi. It follows that z7 is disjoint from int A(z), and so it is contained in C. Since
C' is geodesically convex, it follows that A(y) < C. This proves the claim. O

It follows from separability of the disc that Ni is also countable, thus completing
the proof of Lemma 4.6. O

5. OBTAINING ZERO ENTROPY

In this section we prove Theorem 1.3. The basic idea is as follows: Given a
bi-infinite word w € k%, write it as a concatenation w_w, of its “past” w_ and its
“future” wy (i.e.,, wy = 74 (w) in notation (2.3)—(2.4)). Due to the NOC, there
is a bijection between possible pasts (resp. futures) and e; (resp. eg) directions,
as we have seen in Corollary 2.5. Using Lemma 4.6, we will show that e;(w)
uniquely determines es(w) and vice versa for almost every point with respect to
any probability measure supported on a Mather set. So, with respect to those
measures, the past and the future almost surely determine each other and therefore
the entropy is zero. A precise proof follows.

5.1. Generalities about entropy. Let C := {[ ],...,[Kk]} be the partition of k%
into the time-0 cylinders [j] := {w € k%; j} If K c k” is a T-invariant
compact set, define the partition C(K) := { N [1],. N [k]}
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Let B(K) be the Borel o-algebra of K, and consider the following sub-c-algebra:
CoL(K) == \/ T (C(K)).

n<0
Fix a measure u € M supported on K. Recall (see [P’89, p. 244-245]) that a
sufficient (and actually also necessary) condition for the vanishing of the entropy
h(T, ) is that the partition C(K) is a one-sided generator modulo zero sets, that

C L (K) =B(K),

where the bar denotes taking the completion of a o-algebra with respect to the
measure . We will find it useful to give an alternative description of the o-algebra
on the LHS.

Let m_ be as in (2.3). Define

S(K):={DeB(K); K nn_'(r_(D)) = D}. (5.1)

The elements of S(K) are called saturated sets.

Lemma 5.1. S(K) is a o-algebra and S(K) = C~L (K).

—0o0

Proof. Tt is easily checked that saturated sets form a o-algebra of subsets of K. It
is also clear that \/;1771 T~C(K)) = S(K) for each n > 0, and it follows that

C~2(K) c S(K). To conclude the proof of the lemma we need to prove that

S(K) c C-L(K). (5.2)

Let us first consider sets U € S(K) that are relatively open in K. Then there is
a sequence of cylinders C,, on k% such that

U=UK0QP

subset of the saturated set U and an element of =1 (K); therefore U = | J, K nC,
is also an element of C”L (K). We have shown that C~L (K) contains all saturated
sets that are relatively open in K, and so it also contains all compact saturated
sets.

This proves that all elements of S(K) that are relatively open belong to % (K).
Consequently, the same holds for compact subsets.

Now consider an arbitrary D € S(K). By regularity of the measure, there exist
a sequence of compact sets E,, and a set Z € B(K) with p(Z) = 0 such that

For each n, the set C,, := 7~ (7_(C,,)) is also a cylinder. Then each set K nC,, is a

D:ZUUEW

For each n, let E, := K n 7' (7_(E,)). Since each E,, is a subset of D, we have
D = ZulJ, En. Each set E,, is compact and is an element of S(K), and it follows

from what was proved previously that E, € C_L (K). In particular, D € C~L (K),
therefore completing the proof of (5.2) and the lemma. O
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5.2. Proof of Theorem 1.3.

Proof. Fix = € {T, 1}. By the entropy variational principle (see [P’89, p. 269]), in
order to prove that T|K* has zero topological entropy, it is sufficient to prove that
h(T, u) = 0 for every ergodic probability measure u supported on K*. Fix any such
measure p. Let us assume that p is non-atomic, because otherwise there is nothing
to prove. Recall the definitions (4.3)—(4.4) of the sets N}.

Claim 5.2. p(e; '(N})) = 0 for each i € {1,2}.

Proof of the claim. By Lemma 4.6, the set N7 < P! is countable. Since A has the
forward NOC, by Corollary 2.5 the set e; ' (N7) < k% is a countable union of sets
of the form {w_} x k%+. Assume for a contradiction that u (el_l(Nl*)) > 0. Then
there exists w_ € k%~ such that F := {w_} x k%+ has measure u(F) > 0.

By Poincaré recurrence, there exists p = 1 such that T~P(F)n F # @. It follows
that the infinite word w_ is periodic with period p, which in turn implies that
T~P(F) c F. By invariance, p (F \T7P(F)) = 0 and

" (ﬂ T”P(F)) = u(F) — p (F T P(F)) — p (TP(F) ~ T2 (F)) —

n=0

= u(F) > 0.

But the set (1,-, 7~ "P(F) is a singleton, thus contradicting the assumption that
4 is non-atomic.

We have proved the claim when ¢ = 1. The case i = 2 is analogous, using instead
the backwards NOC. |

Recalling notation (5.1), our next step is to show the following:

Claim 5.3. S(K*) = B(K*).

Proof. We need to show that B(K*) c S(K*). For that, it is sufficient to prove that
the o-algebra S(K*) contains all the compact subsets of K*. So fix an arbitrary
compact set C < K*, and define

D= K* neyt(ex(0)) N erH(NY),

The set e2(C') is compact and, in particular, Borel; so D is a Borel subset of K*.
Let us show that

De S(K™). (5.3)
Take n e K* nw_'(7_(D)). Then there exists £ € D such that 7_(¢) = 7_(n), that
is, £ and 7 have the same past. So e1(n) equals e; (&), which, by definition of D,
does not belong to Ny. Using (4.5) we obtain ea(n) = e2(&) € e2(C), thus proving
that 7 € D. We have shown that K* n7~!(7_(D)) < D, which implies (5.3).
Next, let us show that
w(DaC)=0. (5.4)
Take £ € D \ C; then there exists n € C such that es(n) = e2(£). Since n # £, by
Corollary 2.5 we deduce that ej(n) # e1(§), and so ea(€) € Nj. This shows that
D~ C c e;'(N3). On the other hand, it is immediate that C' ~ D < e] }(N7).
Using Claim 5.2 we obtain (5.4).
Facts (5.3) and (5.4) put together imply that C' € S(K*), as we wanted to
prove. [
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Using Lemma 5.1 and Claim 5.3 we conclude that the partition C(K™) is a one-
sided generator up to sets of zero py-measure. It follows that h(T, ) = 0, completing
the proof of the theorem. O

6. OBTAINING POSITIVE ENTROPY

In this section we prove Theorem 1.4.

6.1. Sufficient conditions for the existence of many bounded products.

Lemma 6.1. Given a sequence By, Bi, ...of matrices in SL(2,R), let P; :=
B;_1--- By and let u;, v; be unit vectors in R? such that Piu; = |P;||lv;. Suppose
that there are constants 0 < k < 1 < C such that

|Bil| < C and |Bivil| <k for everyi.

Then
V2C
V1—k?
Proof. Recall that the Hilbert—Schmidt norm of a matrix A is defined as |A|gs :=
Vir A*A. If A e SL(2,R) then |A|3g = |A]* + | 4] 2.
Let B;, P;, u;, v;, C and k be as in the statement of the lemma. Let viJ- be a
unit vector orthogonal to v;. With respect to the basis {v;, v;*} we can write

20 . 5)
prr= (" 2} and BB = (% 1),
! (0 Pi 2) ! (51 Vi

where p; = |P;|| and o; = (B¥ Bjv;,vi) = | Bivs||*. So

1P| < for every i.

| Pisa|fis = tr Bf Bi P, ;'

= aip} +p;

= |Biwil*| Pi|* + (I Bilfis — |Bswill®) |12~
| Bivil || Pill s + [ Bilis

<
< K2||Pi|Ag + 2C2.

It follows by induction that || P;|%g < 2C%/(1 — k?) for every i, which implies the
lemma. ]

Given A = (A4, ..., Ay) € SL(2,R)*, let (A) be the semigroup generated by A,
that is, the set of all products of the form 4; ...A; (wheren >1).

Let C be the set of A € SL(2,R)* such that for every v € R? and £ > 0 there
exists P € (A) such that |Pv| < e. It is easily seen that A € C if and only if for
every unit vector v € S! there exists P = Ai, - Aiy € (A) such that |[Pv| < 1.
It follows from compactness of the unit circle that the lengths n(v) can be chosen
uniformly bounded, and that C is open.

Lemma 6.2. Every A € C satisfies the second alternative in Theorem 1.4.

Proof. Fix A € C. Let C := max|A;||. It is an easy exercise to show that there
exist k£ € (0,1) and an integer £ > 2 such that for every unit vector v € R? there
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exists a product P € (A) of length ¢ — 1 such that | Pv|| < C~'k, and in particular
|A;Pv| < k for every i = 1,... k. Let

V2cet
V1 — K2

It follows from Lemma 6.1 that L # &; actually given any bi-infinite sequence

L:= {w e k% HAE"(w)H <Cy Vne Z}, where C :=

of symbols ...,w_g, wp,ws,way, ... in the alphabet {1,...,k}, we can choose the
remaining symbols to form a word w in L.
Let

K = {wek? |[A"(T™w)| < C*C} ¥n,me Z}.
By definition, this set is compact and T-invariant, and it is easy to see that it
contains L. It follows from the previous observations about L that the topological
entropy of K is at least £~!log k, and thus positive as required. ([

6.2. Checking denseness. Let H be the set of A € SL(2,R)* such that the one-
step cocycle generated by A is uniformly hyperbolic). Consider the open set U :=
H u C. By Lemma 6.2, every element of U satisfies one of the alternatives of
Theorem 1.4. Therefore, to prove the theorem, it is sufficient to show that U/ is
dense.

Let & be the set of A € SL(2,R)* for which the semigroup (A) contains an elliptic
element R (that is, such that [tr R| < 2). The sets H and & are open and pairwise
disjoint. We recall the following result:

Theorem 6.3 ([Y'04, Prop. 6]). H U & is dense in SL(2,R)*.
Therefore, to show that U := H U C is dense in SL(2,R)*, we need to show:
Lemma 6.4. C n &€ is dense in £.

Let Z be the set of A € £ such that (A) contains a matrix conjugate to an
irrational rotation.

Lemma 6.5. 7 is dense in &.

Proof. Let (A1,...,Ar) € &, and fix an elliptic product A4;, ... A4;,. Let Py :=
RoA;, ... RpA;,, where Ry denotes the rotation by angle §. By [ABY’10, Lemma A 4],
the function 6 — tr Py has a nonzero derivative at § = 0. Therefore we can find 6y
arbitrarily close to 0 such that Py, is conjugate to an irrational rotation. Therefore
(Rg, A1, - .., Ro, Ar) € Z, proving the lemma. O

Proof of Lemma 6.4. Let N be the set of A = (Ay,...,A;) € SL(2,R)* such that
not all A; commute; then N is open and dense. We will show that

NnIccC, (6.1)

and so the desired result will follow from Lemma 6.5.

Take A = (A1,...,Ar) € N nZ. Let R € (A) be conjugate to an irrational
rotation. Since the sets N, Z and C are invariant by conjugation, we can assume
that R is an irrational rotation. Since A € N/, there exists a generator A; that does
not commute with R. Using the singular value decomposition of A;, we see that
there exist n, m = 0 such that H := R™A; R™ is a hyperbolic matrix. Let s be the
contracting eigendirection of H. Now, given any unit vector v and any ¢ > 0, we
can find j > 0 such that the unit vector R/v is sufficiently close to s, and so there
exists £ > 0 such that |H*R7v| < e. This shows that A € C, thus proving (6.1) and
the lemma. (]
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As explained before, Theorem 1.4 follows.

Comparing to the present paper, the proof of Theorem 2 in [BBD]| uses similar
but slightly simpler arguments to get zero exponents. It does not obtain bounded
norms, however. The present construction, especially Lemma 6.1, is more related
to strategy suggested on |[BBD, Remark 11.3].

APPENDIX A. COMPLEMENTARY FACTS

A.1. Optimization of other dynamical quantities. The results we have proved
up to this point concern the optimization (maximization or minimization) of the
upper Lyapunov exponent A;. Let us discuss briefly how to obtain results for the
lower Lyapunov exponent Ao and for the difference A\; — Ao (which is a measure of
non-conformality).

Suppose T': 0 — € is a continuous transformation of a compact metric space
and A: X — GL(2,R) is a continuous map.

Define B: X — GL(d,R) by
B(w) := A(T7'w)™1, (A1)
and consider it as a cocycle over T~!. Then a point w € € is Oseledets regular with
respect to (T, A) iff if it is regular with respect to (T~!, B), and
M(T7Y Bw) = —\(T,A,w) and X (T7Y, B,w) = =\ (T, A, w).
In particular,
M(T,A) = —M\H(T7',B) and Mi(T,A) = -\](T"',B).

If (T, A) is an one-step cocycle then so is (T, B) (after taking an appropriate con-
jugation between T and 7!), and a multicone for one of them is a complementary
multicone for the other.

It is then obvious how to adapt Theorems 1.1, 1.3 and 1.4 to As-optimization.

Now define another matrix-valued map
C(w) = |det A(w)|"* A(w). (A.2)
Then for all w in a full probability set,
AM(A,w) — A(A w) =20 (Cyw) = =212 (C,w) .

Also note that the cocycle (T, A) is dominated if and only if (T, C) is uniformly
hyperbolic. If (T, A) is an one-step cocycle then so is (T, C), and a multicone for
one of them is a multicone for the other.

It is then obvious how to adapt Theorems 1.1 and 1.3 to (A; — A2)-optimization.
In the converse direction, let us see SL(2,R)-cocycles, can be adapted to cocycles
taking values in GL4(2,R) (the group of matrices with positive determinant) as
follows:

Corollary A.1. Fiz k > 2 and let T be the full shift in k symbols. There exists an
open and dense subset V of GL, (2,R)* such that for every A€V,

i) either the one-step cocycle over T generated by A is dominated;

ii) or there exists a compact T-invariant set K < k% of positive topological
entropy and such that the “non-conformalities” |A™ (w)[/m(A™ (w)). are
uniformly bounded over (w,n) € K x Z.
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Notice that in the first case we have (A1 — A2)*(A) > 0, while in the second
case there exists a measure u € My such that (A — A2)(A, ;) = 0 and moreover
h(T, ) > 0.

Proof of Corollary A.1. Let p: GL,(2,R) — SL(2,R) be the continuous open map-

ping A — |det A|_1/2 A. Let U be given by Theorem 1.4, and define V as the pre-
image of U by p* (the cartesian product of k copies of p). Then V has the stated
properties. O

A.2. Alternative characterizations of extremal exponents and of domina-
tion. Some lesser assertions made at the Introduction were left unjustified, so let
us deal with them now.

First, relation (1.6) actually holds in much greater generality: see Theorems 2.1
and A.3 in [Mo’13].

Next, let us prove relation (1.7). By subadditivity, its RHS equals

R :=inf 1 log inf |A4; ...A;].
n -n UL yeeyln
So A{(A) = R by definition. To check the converse inequality, fix ¢ > 0 and
take symbols i1,...,i, such that +log|A4;, ... A; | < R+ e. Consider the shift-
invariant probability measure on k% supported on the periodic orbit (iy ...4,)*
Then A(A) < A (4, 1) < R+ . Since ¢ is arbitrary, we conclude that A\{ (A) = R,
so proving (1.7).

Finally, let us show that an one-step 2 x 2 cocycle is dominated if and only if the
number (A\; — A2)* defined by (1.8) is positive. The “only if” part is evident, and
actually does not require the one-step condition. To prove the “if” part, notice the
equality

L .1 . |4, - Ai
()\1 N A2) (A) B T}LIBC E lOg ll,lnf,‘ln m(Ai" e A“) ’
which follows from (1.7) applied to the “normalized” one-step cocycle defined by
(A.2). So if this number is positive then we can find positive constants ¢, & such
that (1.4) holds, and therefore the cocycle is dominated.

Let us remark that for general cocycles, (A} — A3)*(A4) > 0 does not imply that
the cocycle is dominated: for example T can be uniquely ergodic and the cocycle
can have different Lyapunov exponents without being dominated: see e.g. [H’83,

§ 4].

A.3. More on the existence of optimizing measures. Given a cocycle (T, A),
the numbers A\ (A, 1) and A2 (A4, ) respectively depend upper- and lower-semicontinuously
on i € My, and therefore by compactness of My, A\j-maximizing and Aso-minimizing
measures always exist. For a similar reason, (A; — A2)-maximizing measures always
exist.

There are one-step cocycles where no A;-minimizing measure exists: see [BMo,
Remark 1.7]; a simple example is A = (H, cRy) where H € SL(2,R) is hyperbolic,
f/m is irrational, and ¢ > 1. Similarly, there are one-step cocycles where no As-
maximizing measure exists: the same example but with ¢ < 1.

Let us give an example where no (A; — A2)-minimizing measure exists. We will
actually exhibit an example of an one-step SL(2, R)-cocycle where no A;-minimizing
measure exists.
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Given a hyperbolic matrix L in SL(2,R), let ur, s; € P! denote its eigendi-
rections, with uy, corresponding to an eigenvalue of modulus bigger than 1. For
convenience, the action of L on P! will also be denote by L.

Take Aj, As hyperbolic matrices in SL(2,R) such that tr Ay, tr Ay > 2 and
tr A Ay < —2; then by [ABY’10, Prop. 3.4] there exists a cyclical order < on P!
such that

UA, < UAA; < SA A < SA; UA, UA A, < SA1A;, <S4, < UA, -

Now take a hyperbolic matrix C' € SL(2,R) such that (see Fig. 6):

UAg € (SAy,UA, )y  SAs € (Say,ua,), and Asua, = sa, .

F1G. 6. The example of Proposition A.2. The thick part represents the “non-strict multicone”
M. For each L, the arrow labelled L represents the hyperbolic geodesic from sy, to up,.

Proposition A.2. The one-step cocycle generated by A := (A1, Aa, As) has no
A1-minimizing measure.

We note that the example is in the boundary of the hyperbolic component H —
SL(2,R)? described in [ABY’10, Prop. 4.16].

Before proving the proposition, let us describe a general geometrical construc-
tion. Consider a cocycle given by T': Q@ — Q and A: Q@ — GL(2,R). Let S be the
skew-product map on 2 x P! induced by the cocycle. The derivative along the P*
fiber of the map S at a point (w,z) € Q x P! is a linear map

L(w,z): T,P' — Ty, P (A.3)

Fix a rotation-invariant Riemannian metric on P!, and let f(w,z) denote the op-
erator norm of L(w, ).

Now suppose that p is an ergodic T-invariant measure and f is a S-invariant
probability measure that projects to u. Then we have the following fact (whose
easy proof is left to the reader):

Lemma A.3. If A (A, p) = 0 then § i log fdj = 0.
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Proof of Proposition A.2. Let Ay, As, Az be as above, and consider the one-step
cocycle (T, A), where T is the shift on Q := {1,2,3}%+, and A: Q — SL(2,R) is
given by A(w) = A,,. Also let S be the induced skew-product map on € x PL.

Due to the “heteroclinic connection” Asua, = sa,, the cocycle is not uniformly
hyperbolic, and therefore A\{(A) = 0. To prove the proposition we will show that
A1(A, p) > 0 for every ergodic u € M.

Fix a point ¢ in the interval (ua,4,,54,4,), and then a point p in the interval
(A1q, A5 'q). Let M := (s4,,p) U (ua,,q), as in Fig. 6. Then the set M is forward-
invariant under the projection action of each matrix A;.

Endow each connected component of M with its Riemannian Hilbert metric.
Given a point (w,x) € Q x M, let g(w,x) denote the operator norm of the linear
map (A.3), where we take Hilbert metrics on both tangent spaces. Since the set
A(w)(M) is contained in M and none of its connected components coincided with
a connected component of M, we have g(w,z) < 1.

Take any ergodic T-invariant measure p, and lift it to a S-invariant measure f
supported on the forward S-invariant compact set Q x M. We can assume that p
is neither 1% nor da=, because otherwise Aj (A, u) > 0 trivially. It is then easy to
see that [i gives zero weight to the subset {2 x 0M, and in particular the integral
I := {log gdji is well-defined. It is immediate from the definitions that log g —log f
is coboundary with respect to S, and therefore Slogfdﬂ = 1. Since g < 0, we have
I <0 and so Lemma A.3 gives A1 (A, u) # 0, as we wanted to show. O

A .4. Examples of non-uniqueness of optimizing measures. Let us show that
in the context of Theorem 1.3, the Mather sets KT and K* are not necessarily
uniquely ergodic. In other words, the A\;-maximizing and A;-minimizing measures
can fail to be unique.

Take a pair of matrices A; and A, in GL(2,R)? with respective eigenvalues
x1(A1) > x2(A1) and x1(A2) > x2(A2), all of them positive. Let v;(A;) € P! be
the eigendirection of A; corresponding to the eigenvalue x;(A4;). We can choose the
pair A = (A1, As) so that:

e the geodesics vo(A1)v1(A;) and vy(As)vy (As) cross;
e A has a forward invariant cone M < P! with the forward nonoverlapping

property;
o A has a backwards invariant cone N c P* with the backards nonoverlapping

property.
See Fig. 7.

Claim A4. If £, ne KT are such that

§a1=1 &=2 na1=2 mn=1L (A.4)
then ¢ KT orn¢ K.
Proof of the claim. The four relations in (A.4) respectively imply:

e1(€) € A (M), ex(§) € AN (N), ex(n) € A2(M), ea(n) € AT'(N).

It follows that the geodesics ex(€)e;(€) and ex(n)ei(n) are coparallel (see Fig. 7).
The claim now follows from Corollary 4.5. (I
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va(A2) v1 (A1)
Ay (V)

va (A1) v1 (A1)

A1 (M)

e2(§) e1(§)

ATH) Az (M) A7 H(N) Aa(M)

va(Ar) v1(Az2) v2(Az) v1(Az)
F1G. 7. An example with KT = Fic. 8. An example with K! =
{1%0,2%°}. {190,204},

Let 1% and 2% € {1,2}Z be the two fixed points of the shift, and let ¢!? and
¢?! € k% be the following “homoclinic points”:

gz |1 if n <0, o ]2 if n <0,
" 2 ifn>0, " 1 ifn=0.

It follows from Claim A.4 that K7 is contained in the closure of the orbit of either
¢'2 or ¢?'. Since KT equals the union of supports of the invariant probability
measures that give full weight to K7 itself, it follows that KT < {1°,2%}.

Of course we can choose Aj, Ay such that additionally x1(A1) = x1(A2); in this
case KT equals {1%,2%} and so it is not uniquely ergodic.

In a very similar way we produce an example where K* = {1%°,2%}. The only
difference is that A = (A, A3) are chosen so that the geodesics va(A;)v1 (A7) and
va(Az)v1(Az) are coparallel, and so if the points &, n satisfy (A.4) then the geodesics

ez(€)e1(€) and ez(n)er(n) cross. (See Fig. 8.)

A.5. Open questions and directions for future research. There are several
different directions along which one could try to extend the results of this paper.

Notice that the NOC is indeed necessary for the validity of Theorem 1.3; an
example is given in Remark 1.2 for @« = 5. However all the examples we know
are very non-generic. So we ask whether the NOC can be replaced by a weaker
condition, preferably one that is “typical” (open and dense) among k-tuples of
matrices that generate dominated cocycles.

Regarding more general cocycles, we remark that there is also a notion of multi-
cones for one-step cocycles over subshifts of finite type: see [ABY’10]. It seems to
be straightforward to adapt the arguments given here to that more general situation
(and thus also for n-step cocycles) with appropriate nonoverlapping conditions, but
we have not checked the details.

Even more generally, we would like to have results about Lyapunov-optimizing
measures for cocycles that are not locally constant. We believe that some of the
construction of this paper should extend to cocycles admitting unstable and stable
holonomies (over a hyperbolic base dynamics).

Let us return to one-step cocycles over the full shift. A possible strengthening
of the conclusions of Theorem 1.3 would be to replace subexponential complexity
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(zero entropy) by linear complexity (as in [BMa’02]), or polynomial complexity
(as in [HMS’13|). Perhaps under generic conditions we can even obtain bounded
complexity (periodic orbits), in the style of [C].

Another line of study is to consider a relative Lyapunov-optimization problem
for one-step cocycles where the frequencies of each matrix are fixed. The paper
[JS’90] deals with a problem which can be reformulated in this terms. See |GL’07]
for general results on relative optimization in the classical commutative setting.
Let us also remark that this relative optimization setting is natural in the context
of Lagrangian dynamics, where it corresponds to fixing the homology; see [Ma’91].

It should also be worthwhile to investigate the relations between Lyapunov-
optimizing results as ours and the geometry of Riemann surfaces.

Regarding non-dominated one-step SL(2,R)-cocycles, Theorem 1.4 says that we
should not expect A\;-minimizing measures to have zero entropy. However, it seems
likely that Aj-maximizing measures should have zero entropy. Notice that the
corresponding Mather set (whose existence is given by [Mo’13]) is automatically
uniformly hyperbolic.

Let us also remark that the only examples of k-tuples of matrices that do not
satisfy the dichotomy of Theorem 1.4 (or Corollary A.l) are very particular ones
(e.g., appropriate k-tuples with a common invariant direction). So we ask whether
these counterexamples can be described explicitly, or at least whether they are
contained in a finite union of submanifolds of positive codimension.

Of course most of the concepts and questions discussed in this paper make sense
in higher dimension. In particular, we ask whether a higher-dimensional version
of our zero entropy Theorem 1.3 (stated in terms of domination of index 1) holds
true. As mentioned above, the construction of Barabanov functions can be adapted
to this situation: see [BMo, § 2.2]. Lemma 4.2 should also be possible to extend:
compare with [BMa’02, Prop. 2.6]. However, the rest of our proof relies on low-
dimensional arguments.

Finally, we remark that the results obtained here can be considered as part of
the multifractal analysis of Lyapunov exponents of linear cocycles, a broad field of
study launched essentially by Feng [F’03].
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