Subexponentially increasing sums of partial quotients in continued fraction expansions

BY LINGMIN LIAO

LAMA UMR 8050, CNRS, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France e-mail: lingmin.liao@u-pec.fr

AND MICHAŁ RAMS

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland e-mail: rams@impan.pl

(Received)

Abstract

We investigate from a multifractal analysis point of view the increasing rate of the sums of partial quotients $S_n(x) = \sum_{j=1}^n a_j(x)$, where $x = [a_1(x), a_2(x), \cdots]$ is the continued fraction expansion of an irrational $x \in (0,1)$. Precisely, for an increasing function $\varphi : \mathbb{N} \to \mathbb{N}$, one is interested in the Hausdorff dimension of the sets

$$E_{\varphi} = \left\{ x \in (0,1) : \lim_{n \to \infty} \frac{S_n(x)}{\varphi(n)} = 1 \right\}.$$

Several cases are solved by Iommi and Jordan, Wu and Xu, and Xu. We attack the remaining subexponential case $\exp(n^{\gamma})$, $\gamma \in [1/2,1)$. We show that when $\gamma \in [1/2,1)$, E_{φ} has Hausdorff dimension 1/2. Thus, surprisingly, the dimension has a jump from 1 to 1/2 at $\varphi(n) = \exp(n^{1/2})$. In a similar way, the distribution of the largest partial quotient is also studied.

$1. \ Introduction$

Each irrational number $x \in [0, 1)$ admits a unique infinite continued fraction expansion of the form

$$x = \frac{1}{a_1(x) + \frac{1}{a_2(x) + \frac{1}{a_3(x) + \cdots}}},$$
(1.1)

2010 Mathematics Subject Classification: Primary 11K50 Secondary 37E05, 28A80

where the positive integers $a_n(x)$ are called the partial quotients of x. Usually, (1.1) is written as $x = [a_1, a_2, \cdots]$ for simplicity. The n-th finite truncation of (1.1): $p_n(x)/q_n(x) = [a_1, \cdots, a_n]$ is called the n-th convergent of x. The continued fraction expansions can be induced by the Gauss transformation $T : [0, 1) \to [0, 1)$ defined by

$$T(0) := 0$$
, and $T(x) := \frac{1}{x} \pmod{1}$, for $x \in (0, 1)$.

It is well known that $a_1(x) = \lfloor x^{-1} \rfloor$ ($\lfloor \cdot \rfloor$ stands for the integer part) and $a_n(x) = a_1(T^{n-1}(x))$ for $n \geq 2$.

For any $n \geq 1$, we denote by $S_n(x) = \sum_{j=1}^n a_j(x)$ the sum of the n first partial quotients. It was proved by Khintchine [5] in 1935 that $S_n(x)/(n\log n)$ converges in measure (Lebesgue measure) to the constant $1/\log 2$. In 1988, Philipp [7] showed that there is no reasonable normalizing sequence $\varphi(n)$ such that a strong law of large numbers is satisfied, i.e., $S_n(x)/\varphi(n)$ will never converge to a positive constant almost surely.

From the point of view of multifractal analysis, one considers the Hausdorff dimension of the sets

$$E_{\varphi} = \left\{ x \in (0,1) : \lim_{n \to \infty} \frac{S_n(x)}{\varphi(n)} = 1 \right\}.$$

where $\varphi : \mathbb{N} \to \mathbb{N}$ is an increasing function.

The case $\varphi(n) = \gamma n$ with $\gamma \in [1, \infty)$ was studied by Iommi and Jordan [3]. It is proved that with respect to γ , the Hausdorff dimension (denoted by \dim_H) of E_{φ} is analytic, increasing from 0 to 1, and tends to 1 when γ goes to infinity. In [9], Wu and Xu proved that if $\varphi(n) = n^{\gamma}$ with $\gamma \in (1, \infty)$ or $\varphi(n) = \exp(n^{\gamma})$ with $\gamma \in (0, 1/2)$, then $\dim_H E_{\varphi} = 1$. Later, it was shown by Xu [10], that if $\varphi(n) = \exp(n)$ then $\dim_H E_{\varphi} = 1/2$ and if $\varphi(n) = \exp(\gamma^n)$ with $\gamma > 1$ then $\dim_H E_{\varphi} = 1/(\gamma + 1)$. The same proofs of [10] also imply that for $\varphi(n) = \exp(n^{\gamma})$ with $\gamma \in (1, \infty)$ the Hausdorff dimension $\dim_H E_{\varphi}$ stays at 1/2. So, only the subexponentially increasing case: $\varphi(n) = \exp(n^{\gamma}), \gamma \in [1/2, 1)$ was left unknown. In this paper, we fill this gap.

Theorem 1.1. Let $\varphi(n) = \exp(n^{\gamma})$ with $\gamma \in [1/2, 1)$. Then

$$\dim_H E_{\varphi} = \frac{1}{2}.$$

We also show that there exists a jump of the Hausdorff dimension of E_{φ} between $\varphi(n) = \exp(n^{1/2})$ and slightly slower growing functions, for example $\varphi(n) = \exp(\sqrt{n}(\log n)^{-1})$.

THEOREM 1.2. Let $\varphi(n) = \exp(\sqrt{n} \cdot \psi(n))$ be an increasing function with ψ being a \mathcal{C}^1 positive function on \mathbb{R}_+ satisfying

$$\lim_{x \to \infty} \frac{\sup_{y \ge x} \psi(y)^2}{\psi(x)} = 0 \quad and \quad \lim_{x \to \infty} \frac{x\psi'(x)}{\psi(x)} = 0.$$
 (1.2)

Then

$$\dim_H E_{\varphi} = 1.$$

We remark that the assumption (1.2) on the function ψ says that ψ decreases to 0 slower than any polynomial. We also remark that when ψ is decreasing, then the first condition of (1.2) is automatically satisfied.

Theorems $1\cdot 1$ and $1\cdot 2$ show that, surprisingly, there is a jump of the Hausdorff dimensions from 1 to 1/2 in the class $\varphi(n) = \exp(n^{\gamma})$ at $\gamma = 1/2$ and that this jump cannot be

easily removed by considering another class of functions. See Figure 1 for an illustration of the jump of the Hausdorff dimension.

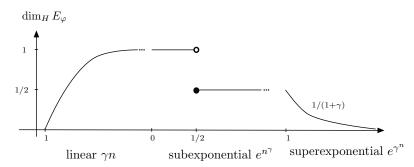


Fig. 1. $\dim_H E_{\varphi}$ for different φ .

By the same method, we also prove some similar results on the distribution of the largest partial quotient in continued fraction expansions. For $x \in [0,1) \setminus \mathbb{Q}$, define

$$T_n(x) := \max\{a_k(x) : 1 \le k \le n\}.$$

One is interested in the following lower limit:

$$T(x) := \liminf_{n \to \infty} \frac{T_n(x) \log \log n}{n}.$$

It was conjectured by Erdös that almost surely T(x) = 1. However, it was proved by Philipp [6] that for almost all x, one has $T(x) = 1/\log 2$. Recently, Wu and Xu [8] showed that

$$\forall \alpha \geq 0, \quad \dim_H \left\{ x \in [0,1) \setminus \mathbb{Q} : \lim_{n \to \infty} \frac{T_n(x) \log \log n}{n} = \alpha \right\} = 1.$$

They also proved that if the denominator n is replaced by any polynomial the same result holds. In this paper, we show the following theorem.

Theorem 1.3. For all $\alpha > 0$,

$$F(\gamma, \alpha) = \left\{ x \in [0, 1) \setminus \mathbb{Q} : \lim_{n \to \infty} T_n(x) / \exp(n^{\gamma}) = \alpha \right\}$$

satisfies

$$\dim_H F(\gamma, \alpha) = \begin{cases} 1 & \text{if } \gamma \in (0, 1/2) \\ \frac{1}{2} & \text{if } \gamma \in (1/2, \infty). \end{cases}$$

We do not know what happens in the case $\gamma = 1/2$.

2. Preliminaries

For any $a_1, a_2, \dots, a_n \in \mathbb{N}$, call

$$I_n(a_1, \dots, a_n) := \{x \in [0, 1) : a_1(x) = a_1, \dots, a_n(x) = a_n\}$$

a rank-n basic interval. Denote by $I_n(x)$ the rank-n basic interval containing x. Write |I| for the length of an interval I. The length of the basic interval $I_n(a_1, a_2, \dots, a_n)$ satisfies

$$\prod_{k=1}^{n} (a_k + 1)^{-2} \le \left| I_n(a_1, \dots, a_n) \right| \le \prod_{k=1}^{n} a_k^{-2}.$$
 (2.1)

Let $A(m,n):=\left\{(i_1,\ldots,i_n)\in\{1,\ldots,m\}^n:\ \sum_{k=1}^ni_k=m\right\}$. Let $\zeta(\cdot)$ be the Riemann zeta function.

LEMMA 2·1. For any $s \in (1/2, 1)$, for all $n \ge 1$ and for all $m \ge n$, we have

$$\sum_{(i_1,\dots,i_n)\in A(m,n)} \prod_{k=1}^n i_k^{-2s} \le \left(\frac{9}{2} (2+\zeta(2s))\right)^n m^{-2s}.$$

Proof. The proof goes by induction. First consider the case n=2. For m=2 the assertion holds, assume that m>2. We will estimate the sum $\sum_{i=1}^{m-1} i^{-2s} (m-i)^{-2s}$. For any $u\in [1,m/2]$ we have

$$\sum_{i=1}^{m-1} i^{-2s} (m-i)^{-2s} = 2 \sum_{i=1}^{u-1} i^{-2s} (m-i)^{-2s} + \sum_{i=u}^{m-u} i^{-2s} (m-i)^{-2s}$$

$$\leq 2 \left(\sum_{i=1}^{u-1} i^{-2s} \right) (m-u)^{-2s} + (m-2u+1)u^{-2s} (m-u)^{-2s}$$

$$\leq 2\zeta (2s) (m-u)^{-2s} + (m-2u+1)u^{-2s} (m-u)^{-2s}.$$

Take $u = \lfloor m/3 \rfloor$. Then one has

$$(m-2u+1)u^{-2s} = (m+1)u^{-2s} - 2u^{1-2s} \le (m+1)\lfloor \frac{m}{3} \rfloor^{-2s} - 2 \le 4.$$

Hence, the above sum is bounded from above by

$$(4+2\zeta(2s))\cdot \left(\frac{2m}{3}\right)^{-2s} \le \frac{9}{2}(2+\zeta(2s))\cdot m^{-2s}.$$

Suppose now that the assertion holds for $n \in \{2, n_0\}$. Then for $n = n_0 + 1$, we have

$$\sum_{(i_1,\dots,i_{n_0+1})\in\{1,\dots,m\}^{n_0+1},\ \sum i_k=m}\prod_{k=1}^{n_0+1}i_k^{-2s}$$

$$=\sum_{i=1}^{m-1}i^{-2s}\sum_{(i_1,\dots,i_{n_0})\in\{1,\dots,m\}^{n_0},\ \sum i_k=m-i}\prod_{k=1}^{n_0}i_k^{-2s}$$

$$\leq\sum_{i=1}^{m-1}i^{-2s}\left(\frac{9}{2}(2+\zeta(2s))\right)^{n_0}(m-i)^{-2s}$$

$$=\left(\frac{9}{2}(2+\zeta(2s))\right)^{n_0}\cdot\sum_{i=1}^{m-1}i^{-2s}(m-i)^{-2s}$$

$$\leq\left(\frac{9}{2}(2+\zeta(2s))\right)^{n_0}\cdot\left(\frac{9}{2}(2+\zeta(2s))\right)m^{-2s}$$

$$=\left(\frac{9}{2}(2+\zeta(2s))\right)^{n_0+1}m^{-2s}.$$

Let

$$A(\gamma, c_1, c_2, N) := \left\{ x \in (0, 1) : c_1 < \frac{a_n(x)}{e^{n^{\gamma}}} < c_2, \ \forall n \ge N \right\}.$$

Denote by N_0 the smallest integer n such that $(c_2-c_1)\cdot e^{n^{\gamma}}>1$. Then the set $A(\gamma,c_1,c_2,N)$ is non-empty when $N\geq N_0$.

LEMMA 2.2. For any $\gamma > 0$, any $N \geq N_0$ and any $0 < c_1 < c_2$,

$$\dim_H A(\gamma, c_1, c_2, N) = \frac{1}{2}.$$

Proof. This lemma is only a simple special case of [2, Lemma 3.2], but we will sketch the proof (based on [4]), needed for the next lemma. Without loss of generality, we suppose $N_0 = 1$ and let N = 1 (the proof for other N is almost identical).

Let a_1, a_2, \ldots, a_n satisfy $c_1 < a_j e^{-j^{\gamma}} < c_2$ for all j. Those are exactly the possible sequences for which the basic interval $I_n(a_1, \ldots, a_n)$ has nonempty intersection with $A(\gamma, c_1, c_2, 1)$.

There are approximately

$$\prod_{j=1}^{n} (c_2 - c_1) e^{j^{\gamma}} \approx e^{\sum_{1}^{n} j^{\gamma}}$$
(2.2)

of such basic intervals, each of diameter

$$|I_n(a_1,\dots,a_n)| \approx e^{-2\sum_{j=1}^n j^{\gamma}},\tag{2.3}$$

(both estimations are up to a factor exponential in n). Hence, by using the intervals $\{I_n(a_1,\ldots,a_n)\}$ as a cover, we obtain

$$\dim_H A(\gamma, c_1, c_2, 1) \le \frac{1}{2}.$$

To get the lower bound, we consider a probability measure μ uniformly distributed on $A(\gamma, c_1, c_2, 1)$, in the following sense: given a_1, \ldots, a_{n-1} , the probability of a_n taking any particular value between $c_1e^{n^{\gamma}}$ and $c_2e^{n^{\gamma}}$ is the same.

The basic intervals $I_n(a_1,\ldots,a_n)$ have, up to a factor c^n , the length $\exp(-2\sum_1^n j^\gamma)$ and the measure $\exp(-\sum_1^n j^\gamma)$. They are distributed in clusters: all $I_n(a_1,\ldots,a_n)$ contained in a single $I_n(a_1,\ldots,a_{n-1})$ form an interval of length $\exp(n^\gamma)\cdot\exp(-2\sum_1^n j^\gamma)$ (up to a factor c^n , with c being a constant), then there is a gap, then there is another cluster. Hence, for any $r \in (\exp(-2\sum_1^n j^\gamma), \exp(-2\sum_1^{n-1} j^\gamma))$ and any $x \in A(\gamma, c_1, c_2, 1)$ we can estimate the measure of B(x, r):

$$\mu(B(x,r)) \approx \begin{cases} r \cdot e^{-\sum_{1}^{n} j^{\gamma}} & \text{if } r < e^{-2\sum_{1}^{n} j^{\gamma} + n^{\gamma}} \\ e^{-\sum_{1}^{n-1} j^{\gamma}} & \text{if } r > e^{-2\sum_{1}^{n} j^{\gamma} + n^{\gamma}} \end{cases}$$

(up to a factor c^n). The minimum of $\log \mu(B(x,r))/\log r$ is thus achieved for $r=e^{-2\sum_{i=1}^{n}j^{\gamma}+n^{\gamma}}$, and this minimum equals

$$\frac{-\sum_{1}^{n-1} j^{\gamma}}{-2\sum_{1}^{n} j^{\gamma} + n^{\gamma}} \approx \frac{-n^{\gamma+1}/(\gamma+1)}{-2n^{\gamma+1}/(\gamma+1) - n^{\gamma}} = \frac{1}{2} - O(1/n).$$

Hence, the lower local dimension of μ equals 1/2 at each point of $A(\gamma, c_1, c_2, 1)$, which implies

$$\dim_H A(\gamma, c_1, c_2, 1) \ge \frac{1}{2}$$

by the Frostman Lemma (see [1, Principle 4.2]). \square

Let now c_1 and c_2 not be constant but depend on n:

$$B(\gamma, c_1, c_2, N) = \left\{ x \in (0, 1) : c_1(n) < \frac{a_n(x)}{e^{n^{\gamma}}} < c_2(n) \ \forall n \ge N \right\}.$$

A slight modification of the proof of Lemma 2.2 gives the following.

LEMMA 2.3. Fix $\gamma > 0$. Assume $0 < c_1(n) < c_2(n)$ for all n. Assume also that

$$\lim_{n \to \infty} \frac{\log(c_2(n) - c_1(n))}{n^{\gamma}} = 0$$

and

$$\liminf_{n \to \infty} \frac{\log c_1(n)}{\log n} > -\infty \quad and \quad \limsup_{n \to \infty} \frac{\log c_2(n)}{\log n} < +\infty.$$

Then there exists an integer N_1 such that $(c_2(n) - c_1(n)) \cdot e^{n^{\gamma}} > 1$ for all $n \geq N_1$, and for all $N \geq N_1$,

$$\dim_H B(\gamma, c_1, c_2, N) = 1/2.$$

Proof. We need only to replace the constants c_1 and c_2 by $c_1(n)$ and $c_2(n)$ in the proof of Lemma 2·2. Notice that by the assumptions of Lemma 2·3, the formula (2.2) holds up to a factor $\exp(\varepsilon \sum_{1}^{n} j^{\gamma})$ for a sufficiently small $\varepsilon > 0$. While the formula (2.3) holds up to a factor $\exp(cn \log n)$ for some bounded c. All these factors are much smaller than the main term $\exp(\sum_{1}^{n} j^{\gamma})$ which is of order $\exp(n^{1+\gamma})$. The rest of the proof is the same as that of Lemma 2·2. \square

3. Proofs

Proof of Theorem 1.1 Let $\varphi : \mathbb{N} \to \mathbb{N}$ be defined by $\varphi(n) = \exp(n^{\gamma})$ with $\gamma > 0$. For this case, we will denote E_{φ} by E_{γ} .

Let us start from some easy observations, giving (among other things) a simple proof of $\dim_H E_{\gamma} = 1/2$ for $\gamma \geq 1$.

Consider first $\gamma \geq 1/2$. If $x \in E_{\gamma}$ then for any $\varepsilon > 0$ and for n large enough

$$(1 - \varepsilon)e^{n^{\gamma}} \le S_n(x) \le (1 + \varepsilon)e^{n^{\gamma}} \tag{3.1}$$

and

$$(1-\varepsilon)e^{(n+1)^{\gamma}} \le S_{n+1}(x) \le (1+\varepsilon)e^{(n+1)^{\gamma}}.$$

Hence

$$(1-\varepsilon)e^{(n+1)^{\gamma}} - (1+\varepsilon)e^{n^{\gamma}} \le a_{n+1}(x) \le (1+\varepsilon)e^{(n+1)^{\gamma}} - (1-\varepsilon)e^{n^{\gamma}}.$$

For $\gamma \geq 1$ this implies

$$E_{\gamma} \subset \bigcup_{N} A(\gamma, c_1, c_2, N)$$

for some constants c_1, c_2 . By Lemma 2.2,

$$\dim_H E_{\gamma} \leq \frac{1}{2}, \quad \forall \gamma \geq 1.$$

Consider now any $\gamma > 0$. Set

$$c_1(n) = (e^{n^{\gamma}} - e^{(n-1)^{\gamma}})e^{-n^{\gamma}}$$
 and $c_2(n) = \frac{n+1}{n}c_1(n)$.

For $\gamma \geq 1$, $c_1(n)$ and $c_2(n)$ are bounded from below. For $\gamma < 1$ and n large, we have

$$(e^{n^{\gamma}} - e^{(n-1)^{\gamma}})e^{-n^{\gamma}} \approx \gamma n^{\gamma - 1}.$$

Thus, in both cases the assumptions of Lemma 2·3 are satisfied. Checking $B(\gamma, c_1, c_2, N) \subset E_{\gamma}$, we deduce by Lemma 2·3 that

$$\dim_H E_{\gamma} \ge \frac{1}{2}, \quad \forall \gamma > 0.$$

Therefore, we have obtained $\dim_H E_{\gamma} = 1/2$ for $\gamma \ge 1$ and $\dim_H E_{\gamma} \ge 1/2$ for $\gamma > 0$. What is left to prove is that for $\gamma \in [1/2, 1)$ we have $\dim_H E_{\gamma} \le 1/2$.

Let us first assume that $\gamma > 1/2$. Remember that if $x \in E_{\gamma}$, then for any $\varepsilon > 0$ and for n large enough we have (3.1). Take a subsequence $n_0 = 1$, and $n_k = k^{1/\gamma}$ $(k \ge 1)$. Then there exists an integer $N \ge 1$ such that for all $k \ge N$,

$$(1-\varepsilon)e^{n_k^{\gamma}} \le S_{n_k}(x) \le (1+\varepsilon)e^{n_k^{\gamma}}$$

and (as $\exp(n_k^{\gamma}) = e^k$)

$$(1-\varepsilon)e^k - (1+\varepsilon)e^{k-1} \le S_{n_k}(x) - S_{n_{k-1}}(x) \le (1+\varepsilon)e^k - (1-\varepsilon)e^{k-1}.$$

Thus

$$E_{\gamma} \subset \bigcup_{N} \bigcap_{k>N} A(\gamma, k, N),$$

with $A(\gamma, k, N)$ being the union of the intervals $\{I_{n_k}(a_1, a_2, \cdots, a_{n_k})\}$ such that

$$\sum_{j=n_{\ell-1}+1}^{n_{\ell}} a_j = m \quad \text{with} \quad m \in D_{\ell}, \quad N \le \ell \le k,$$

where
$$D_{\ell} := [(1-\varepsilon)e^{n_{\ell}^{\gamma}} - (1+\varepsilon)e^{n_{\ell}^{\gamma}-1}, (1+\varepsilon)e^{n_{\ell}^{\gamma}} - (1-\varepsilon)e^{n_{\ell}^{\gamma}-1}].$$

Now, we are going to estimate the upper bound of the Hausdorff dimension of $E_{\varphi}^{(1)} = \bigcap_k A(\gamma, k, 1)$. For $E_{\varphi}^{(N)} = \bigcap_{k \geq N} A(\gamma, k, N)$ with $N \geq 2$ we have the same bound and the proofs are almost the same.

Observe that every set $A(\gamma, k, N)$ has a product structure: the conditions on a_i for $i \in (n_{\ell_1}, n_{\ell_1+1}]$ and for $i \in (n_{\ell_2}, n_{\ell_2+1}]$ are independent from each other. Hence, for any $s \in (1/2, 1)$ we can apply Lemma $2 \cdot 1$ together with the formula

$$|I_{n_k}|^s \le \prod_{\ell=1}^k (a_{n_{\ell-1}+1}a_{n_{\ell-1}+2}\cdots a_{n_\ell})^{-2s}$$

to obtain

$$\sum_{I_{n_k} \subset A(\gamma,k,1)} |I_{n_k}|^s \leq \prod_{\ell=1}^k \sum_{m \in D_\ell} \left(\frac{9}{2} \big(2 + \zeta(2s) \big) \right)^{n_\ell - n_{\ell-1}} m^{-2s}.$$

Denote $r_1 := 2\varepsilon(1 - e^{-1})$ and $r_2 := (e - 1 - \varepsilon e - \varepsilon)/e$. Then we have $|D_\ell| \le r_1 e^{\ell}$ and any $m \in D_\ell$ is not smaller than $r_2 e^{\ell}$. Thus we get

$$\sum_{I_{n_k} \subset A(\gamma,k,1)} |I_{n_k}|^s \le \prod_{\ell=1}^k r_1 e^{\ell} \cdot \left(\frac{9}{2} \left(2 + \zeta(2s)\right)\right)^{\ell^{1/\gamma} - (\ell-1)^{1/\gamma}} \cdot r_2^{2s} e^{-2s\ell}. \tag{3.2}$$

We have $\ell^{1/\gamma} - (\ell-1)^{1/\gamma} \approx \ell^{1/\gamma-1}$. As $\gamma > 1/2$, we have $1/\gamma - 1 < 1$, and the main term in the above estimate is $e^{(1-2s)\ell}$. Thus for any s > 1/2, the product is uniformly bounded. Thus $\dim_H E_{\varphi}^{(1)} \leq 1/2$.

If $\gamma = 1/2$, we take $n_k = k^2/L^2$ with L being a constant and we repeat the same

argument. Observe that now $\exp(n_k^{\gamma}) = e^{k/L}$. Then the same estimation will lead to

$$\sum_{I_{n_k} \subset A(\gamma, k, 1)} |I_{n_k}|^s \le \prod_{\ell=1}^k r_1 r_2^{2s} \cdot \left(\frac{9}{2} \left(2 + \zeta(2s)\right)\right)^{\frac{\ell^2 - (\ell-1)^2}{L^2}} e^{(1-2s)\ell/L}. \tag{3.3}$$

The main term of the right side of the above inequality should be

$$\left(\frac{9}{2}(2+\zeta(2s))\right)^{2\ell/L^2} \cdot e^{(1-2s)\ell/L}.$$

We solve the equation

$$\left(\frac{9}{2}(2+\zeta(2s))\right)^{2/L^2} \cdot e^{(1-2s)/L} = 1,$$

which is equivalent to

$$\left(\frac{9}{2}(2+\zeta(2s))\right) = e^{\frac{2s-1}{2}L}.$$
(3.4)

Observe that the graphs of the two sides of (3.4) (as functions of the variable s) always have a unique intersection for some $s_L \in [1/2, 1]$, when L is large enough. These s_L are upper bounds for the Hausdorff dimension of $E_{\varphi}^{(1)}$. Notice that the intersecting point $s_L \to 1/2$ as $L \to \infty$ since the zeta function ζ has a pole at 1. Thus the dimension of $E_{\varphi}^{(1)}$ is not greater than 1/2.

So, in both cases, we have obtained $\dim_H E_{\gamma} \leq 1/2$. \square

Sketch proof of Theorem 1.2 The proof goes like Section 4 of [9] with the following changes. We choose $\varepsilon_k = \psi(k)$. Let n_1 be such that $\varphi(n_1) \geq 1$ and define n_k as the smallest positive integer such that

$$\varphi(n_k) \ge (1 + \varepsilon_{k-1})\varphi(n_{k-1}). \tag{3.5}$$

For a large enough integer M, set

$$E_M(\varphi) := \Big\{ x \in [0,1) : a_{n_1}(x) = \lfloor (1+\varepsilon_1)\varphi(n_1) \rfloor + 1,$$

$$a_{n_k}(x) = \lfloor (1+\varepsilon_k)\varphi(n_k) \rfloor - \lfloor (1+\varepsilon_{k-1})\varphi(n_{k-1}) \rfloor + 1 \text{ for all } k \ge 2,$$
and $1 \le a_i(x) \le M$ for $i \ne n_k$ for any $k \ge 1 \Big\}.$

We can check that $E_M(\varphi) \subset E_{\varphi}$.

To prove $\dim_H E_{\varphi} = 1$, for any $\varepsilon > 0$, we construct a $(1/(1+\varepsilon))$ -Lipschitz map from $E_M(\varphi)$ to E_M , the set of numbers with partial quotients less than some M in its continued fraction expansion. The theorem will be proved by letting $\varepsilon \to 0$ and $M \to \infty$.

Such a Lipschitz map can be constructed by send a point x in $E_M(\varphi)$ to a point \tilde{x} by deleting all the partial quotients a_{n_k} in its continued fraction expansion. Define $r(n) := \min\{k : n_k \le n\}$. The $(1/(1+\varepsilon))$ -Lipschitz property will be assured if

$$\lim_{n \to \infty} \frac{r(n)}{n} = 0,\tag{3.6}$$

and

$$\lim_{n \to \infty} \frac{\log(a_{n_1} a_{n_2} \cdots a_{n_{r(n)}})}{n} = 0.$$
 (3.7)

In fact, by (1.2), we can check for any $\delta > 0$, $\psi(n) \leq n^{\delta}$ for n large enough. Thus by definition of n_k , we can deduce that $r(n) \leq n^{1/2+\delta}$. Hence (3.6) is satisfied.

Further, we have

$$\sum_{k=1}^{r(n)} \varepsilon_k \approx r(n)\psi(r(n)). \tag{3.8}$$

By (3.5)

$$\varphi(n) \ge \varphi(n_{r(n)}) \ge \prod_{k=1}^{r(n)-1} (1+\varepsilon_k)\varphi(n_1) \ge e^{\sum_{k=1}^{r(n)} \varepsilon_k/2} \varphi(n_1).$$

Thus (3.8) implies

$$r(n)\psi(r(n)) \ll \sqrt{n}\psi(n),$$
 (3.9)

where $a_n \ll b_n$ means that a_n/b_n is bounded by some constant when $n \to \infty$. On the other hand, by (2.1) and (3.5), we have

$$\log(a_{n_1}a_{n_2}\cdots a_{n_{r(n)}}) \le r(n)\log(2\varphi(n)) + \sum_{k=1}^{r(n)} \varepsilon_k.$$

Hence (3.8) and (3.9) give

$$\log(a_{n_1}a_{n_2}\cdots a_{n_{r(n)}}) \ll r(n)\sqrt{n}\psi(n) + r(n)\psi(r(n)) \ll \frac{n\psi^2(n)}{\psi(r(n))} + r(n).$$

Finally, (3.7) follows from the assumption (1.2) and the already proved formula (3.6). \square

Proof of Theorem 1.3 For the case $\gamma < 1/2$, the set constructed in Section 4 of [9] (as a subset of the set of points for which $S_n(x) \approx e^{n^{\gamma}}$) satisfies also $T_n(x) \approx e^{n^{\gamma}}$ and has Hausdorff dimension one. We proceed to the case $\gamma > 1/2$.

The lower bound is a corollary of Lemma 2·3. Take $c_1(n) = \alpha(1 - \frac{1}{n})$ and $c_2(n) = \alpha$. Let N_1 be the smallest integer n such that $\frac{\alpha}{n}e^{n^{\gamma}} > 1$. Then the conditions of Lemma 2·3 are satisfied, and for all points x such that $c_1(n)e^{n^{\gamma}} < a_n(x) < c_2(n)e^{n^{\gamma}}$, we have

$$T_n(x)/e^{n^{\gamma}} \ge c_1(n) = \alpha \left(1 - \frac{1}{n}\right),$$

and

$$T_n(x)/e^{n^{\gamma}} = a_k/e^{n^{\gamma}} \le \alpha e^{k^{\gamma}}/e^{n^{\gamma}} \le \alpha,$$

where $k \leq n$ is the position at which the sequence a_1, \ldots, a_n achieves a maximum. Thus for all $x \in B(\gamma, c_1, c_2, N_1)$

$$\lim_{n \to \infty} T_n(x) / e^{n^{\gamma}} = \alpha.$$

Hence, $B(\gamma, c_1, c_2, N_1) \subset F(\gamma, \alpha)$ and the lower bound follows directly from Lemma 2·3. The upper bound is a modification of that of Theorem 1·1. We consider the case $\alpha = 1$ only, since for other $\alpha > 0$, the proofs are similar.

Notice that for any $\varepsilon > 0$, if $x \in F(\gamma, 1)$, then for n large enough,

$$(1-\varepsilon)e^{n^{\gamma}} \le S_n(x) \le n(1+\varepsilon)e^{n^{\gamma}}.$$

Take a subsequence $n_k = k^{1/\gamma} (\log k)^{1/\gamma^2}$. Then

$$(1-\varepsilon)e^{k(\log k)^{1/\gamma}} \le S_{n_k}(x) \le k^{1/\gamma}(\log k)^{1/\gamma^2}(1+\varepsilon)e^{k(\log k)^{1/\gamma}},$$

10

and

$$u_k \le S_{n_k}(x) - S_{n_{k-1}}(x) \le v_k,$$

with

$$u_k := (1 - \varepsilon)e^{k(\log k)^{1/\gamma}} - (k - 1)^{1/\gamma}(\log(k - 1))^{1/\gamma^2}(1 + \varepsilon)e^{(k - 1)(\log(k - 1))^{1/\gamma}}$$

and

$$v_k := k^{1/\gamma} (\log k)^{1/\gamma^2} (1+\varepsilon) e^{k(\log k)^{1/\gamma}} - (1-\varepsilon) e^{(k-1)(\log(k-1))^{1/\gamma}}.$$

We remark that

$$u_k > \frac{1}{2} e^{k(\log k)^{1/\gamma}}, \quad v_k < \frac{3}{2} k^{1/\gamma} (\log k)^{1/\gamma^2} e^{k(\log k)^{1/\gamma}}$$
 (3.10)

when k is large enough.

Observe that

$$F(\gamma,1) \subset \bigcup_{N} B(\gamma,N),$$

with $B(\gamma, N)$ being the union of the intervals $\{I_{n_k}(a_1, a_2, \cdots, a_{n_k})\}_{k \geq N}$ such that

$$\sum_{j=n_{\ell-1}+1}^{n_{\ell}} a_j = m \quad \text{with} \quad m \in D_{\ell}, \quad N \le \ell \le k,$$

where D_{ℓ} is the set of integers in the interval $[u_{\ell}, v_{\ell}]$.

As in the proof of Theorem 1·1, we need only study the set $B(\gamma, 1)$. For any $s \in (1/2, 1)$, since

$$|I_{n_k}|^s \le \prod_{\ell=1}^k (a_{n_{\ell-1}+1}a_{n_{\ell-1}+2}\cdots a_{n_\ell})^{-2s},$$

by Lemma $2 \cdot 1$,

$$\sum_{I_{n_k} \subset B(\gamma,N)} |I_{n_k}|^s \leq \prod_{\ell=1}^k \sum_{m \in D_\ell} \left(\frac{9}{2} \big(2 + \zeta(2s)\big)\right)^{n_\ell - n_{\ell-1}} m^{-2s}.$$

Note that by (3.10) the number of integers in D_{ℓ} satisfies

$$|D_{\ell}| \le v_{\ell} - u_{\ell} \le v_{\ell} < \frac{3}{2} \cdot \ell^{1/\gamma} (\log \ell)^{1/\gamma^2}.$$

By (3.10), we also have

$$m \ge u_{\ell} > \frac{1}{2} e^{\ell(\log \ell)^{1/\gamma}}$$
 for any $m \in D_{\ell}$.

Similar to (3.2) and (3.3), we deduce that $\sum_{I_{n_k}\subset B(\gamma,N)}|I_{n_k}|^s$ is less than

$$\prod_{\ell=1}^k \frac{3}{2} \cdot \ell^{1/\gamma} (\log \ell)^{1/\gamma^2} e^{\ell(\log \ell)^{1/\gamma}} \left(\frac{9}{2} (2 + \zeta(2s)) \right)^{n_\ell - n_{\ell-1}} 2^{2s} e^{-2s\ell(\log \ell)^{1/\gamma}}.$$

Since $n_{\ell} - n_{\ell-1} \approx \ell^{1/\gamma - 1 + o(\varepsilon)}$ and $1/\gamma - 1 < 1$, the main term in the above estimation is $e^{(1-2s)\ell(\log \ell)^{1/\gamma}}$. Thus for any s > 1/2 the product is uniformly bounded and we have the Hausdorff dimension of $B(\gamma,1)$ is not greater than 1/2. Then we can conclude $\dim_H F(\gamma,1) \leq 1/2$ and the proof is completed. \square

11

4. Generalizations

In this section we consider after [4] certain infinite iterated function systems that are natural generalizations of the Gauss map. For each $n \in \mathbb{N}$, let $f_n : [0,1] \to [0,1]$ be C^1 maps such that

(1) there exists $m \in \mathbb{N}$ and 0 < A < 1 such that for all $(a_1, ..., a_m) \in \mathbb{N}^m$ and for all $x \in [0, 1]$

$$0 < |(f_{a_1} \circ \cdots \circ f_{a_m})'(x)| \le A < 1,$$

- (2) for any $i, j \in \mathbb{N}$ $f_i((0,1)) \cap f_j((0,1)) = \emptyset$,
- (3) there exists d > 1 such that for any $\varepsilon > 0$ there exist $C_1(\varepsilon), C_2(\varepsilon) > 0$ such that for $i \in \mathbb{N}$ there exist constants ξ_i, λ_i such that for all $x \in [0, 1]$ $\xi_i \leq |f_i'(x)| \leq \lambda_i$ and

$$\frac{C_1}{i^{d+\varepsilon}} \le \xi_i \le \lambda_i \le \frac{C_2}{i^{d-\varepsilon}}.$$

We will call such an iterated function system a d-decaying system. It will be further called $Gauss\ like$ if

$$\bigcup_{i=1}^{\infty} f_i([0,1]) = [0,1)$$

and if for all $x \in [0,1]$ we have that $f_i(x) < f_i(x)$ implies i < j.

We have a natural projection $\Pi: \mathbb{N}^{\mathbb{N}} \to [0,1]$ defined by

$$\Pi(\underline{a}) = \lim_{n \to \infty} f_{a_1} \circ \cdots \circ f_{a_n}(1),$$

which gives for any point $x \in [0, 1]$ its symbolic expansion $(a_1(x), a_2(x), \ldots)$. This expansion is not uniquely defined, but there are only countably many points with more than one symbolic expansions.

For a d-decaying Gauss like system we consider $S_n(x) = \sum_{i=1}^n a_i(x)$. Given an increasing function $\varphi : \mathbb{N} \to \mathbb{N}$ we denote

$$E_d(\varphi) = \left\{ x \in (0,1) : \lim_{n \to \infty} \frac{S_n(x)}{\varphi(n)} = 1 \right\}.$$

Theorem 4.1. Let $\{f_i\}$ be a d-decaying Gauss like system. We have

i) if $\varphi(n) = e^{n^{\gamma}}$ with $\gamma < 1/d$,

$$\dim_H E_d(\varphi) = 1,$$

ii) if $\varphi(n) = e^{n^{\gamma}}$ with $\gamma > 1/d$,

$$\dim_H E_d(\varphi) = \frac{1}{d},$$

iii) if $\varphi(n) = e^{\gamma^n}$ with $\gamma > 1$,

$$\dim_H E_d(\varphi) = \frac{1}{\gamma + d - 1}.$$

The proofs (both from Section 3 and from [9, 10]) go through without significant changes.

Acknowledgements. M.R. was partially supported by the MNiSW grant N201 607640 (Poland). L.L. was partially supported by 12R03191A - MUTADIS (France).

REFERENCES

- [1] K. FALCONER. Fractal Geometry, Mathematical Foundations and Application (Wiley, 1990).
- [2] A. H. FAN, L. M. LIAO, B. W. WANG, and J. Wu. On Kintchine exponents and Lyapunov exponents of continued fractions. *Ergod. Th. Dynam. Sys.* 29 (2009), 73-109.
- [3] G. IOMMI AND T. JORDAN. Multifractal analysis of Birkhoff averages for countable Markov maps, Ergod. Th. Dynam. Sys. 35 (2015), 2559-2586.
- [4] T. JORDAN and M. RAMS. Increasing digit subsystems of infinite iterated function systems. Proc. Amer. Math. Soc. 140 (2012), no. 4, 1267-1279.
- [5] A. YA. KHINTCHINE. Metrische Kettenbruchprobleme. Compositio Math. 1 (1935), 361-382.
- [6] W. PHILIPP. A conjecture of Erdös on continued fractions. Acta Arith. 28 (1975/76), no. 4, 379-386.
- [7] W. Philipp. Limit theorems for sums of partial quotients of continued fractions. Monatshefte für Math. 105 (1988), 195-206.
- [8] J. Wu and J. Xu. The distribution of the largest digit in continued fraction expansions. Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 1, 207-212.
- [9] J. Wu and J. Xu. On the distribution for sums of partial quotients in continued fraction expansions. *Nonlinearity* **24** (2011), no. 4, 1177-1187.
- [10] J. Xu. On sums of partial quotients in continued fraction expansions. *Nonlinearity* 21 (2008), no. 9, 2113-2120.