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Abstract. Every x ∈ [0, 1) can be expanded as a continued fraction:
x = [a1(x), a2(x), · · · ]. Let ψ : N → N be a function with ψ(n)/n → ∞
as n→∞. The (upper, lower) fast Khintchine spectrum for ψ is defined
as the Hausdorff dimension of the set of numbers x ∈ (0, 1) for which
the (upper, lower) limit of 1

ψ(n)

∑n
j=1 log aj(x) is equal to 1. The fast

Khintchine spectrum was determined by Fan, Liao, Wang, and Wu.
We calculate the upper and lower fast Khintchine spectra. These three
spectra can be different.

1. Introduction

Each irrational number x ∈ [0, 1) admits a unique infinite continued frac-
tion expansion of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

,(1.1)

where the integers an(x), called the partial quotients of x, can be generated
by using the Gauss transformation T : [0, 1)→ [0, 1) defined by

T (0) := 0, T (x) =
1

x
(mod 1), for x ∈ (0, 1).

In fact, let a1(x) = bx−1c (b·c stands for the integral part), then an(x) =
a1(Tn−1(x)) for n ≥ 2. For simplicity, (1.1) is often written as x = [a1, a2, · · · ].

For any x ∈ (0, 1), the Khintchine exponent of x is defined by the limit
(if it exists)

ξ(x) := lim
n→∞

log a1(x) + · · ·+ log an(x)

n
.

Khintchine [5] proved that for Lebesgue almost all points x, we have

ξ(x) =

∫ 1

0

log a1(x)

(1 + x) log 2
dx = 2.6854....

Let ψ : N→ N and let α > 0. Define

E(ψ, α) =

{
x ∈ [0, 1) : lim

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= α

}
.
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When ψ(n) = n, the set E(ψ, α) is a level set of the Khintchine exponent,
whose Hausdorff dimension is determined in [2]. The function of the Haus-
dorff dimension associated to each α is called the Khintchine spectrum.

Later, in [3], the authors studied the fast Khintchine spectrum, i.e. the
Hausdorff dimension of E(ψ, α) where ψ satisfies that ψ(n)/n → ∞ as
n → ∞. In this case, it turns out that the Hausdorff dimension does not
depend on the level α, but only on the increasing rate of ψ. More precisely,
let ψ and ψ̃ be two functions defined on N. We say ψ and ψ̃ are equivalent

if ψ(n)

ψ̃(n)
→ 1 as n → ∞. We denote the Hausdorff dimension by dimH . The

authors of [3] proved the following theorem.

Theorem 1.1 ([3]). Let ψ : N → N with ψ(n)/n → ∞ as n → ∞. If ψ is
equivalent to an increasing function, then for all α > 0, E(ψ) 6= ∅ and

dimH E(ψ, α) =
1

1 + β
, with β = lim sup

n→∞

ψ(n+ 1)

ψ(n)
.

Otherwise, E(ψ, α) = ∅ for all α > 0.

When the sets E(ψ, α) are not empty, the dimensional function associated
to ψ (and α) is called the fast Khintchine spectrum in [3].

In this note, we consider the following sets

E(ψ) =

{
x ∈ [0, 1] : lim sup

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= 1

}
,

and

E(ψ) =

{
x ∈ [0, 1] : lim inf

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= 1

}
.

Their Hausdorff dimensions are called upper and lower fast Khintchine spec-
tra.

Remark that we only consider the level α = 1 here, since for other levels
the Hausdorff dimension will not change, as in Theorem 1.1.

Theorem 1.2. Assume that ψ : N → N satisfy ψ(n)/n → ∞ as n → ∞.
Write

lim inf
n→∞

logψ(n)

n
= log b and lim sup

n→∞

logψ(n)

n
= logB.

Assume b, B ∈ (1,∞]. Then

dimH E(ψ) =
1

1 + b
and dimH E(ψ) =

1

1 +B
.

We remark that the three values β, b and B are in general different even
though we always have the relation b ≤ B ≤ β. We also remark that the set
E(ψ) and E(ψ) are always nonempty.
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2. Preliminary

For any n ≥ 1 and (a1, a2, · · · , an) ∈ Nn, define

In(a1, a2, · · · , an) =
{
x ∈ [0, 1) : a1(x) = a1, · · · , an(x) = an

}
,

which is the set of numbers starting with (a1, · · · , an) in their continued
fraction expansions, and is called a basic interval of order n. The length of
a basic interval will be denoted by |In|.

Proposition 2.1 ([5]). For any n ≥ 1 and (a1, · · · , an) ∈ Nn,

(2.1)

(
2n

n∏
k=1

ak

)−2

≤ |In(a1, · · · , an)| ≤

(
n∏
k=1

ak

)−2

.

The following lemma is used to calculate the lower bound of the Hausdorff
dimension of E(ψ).

Let {sn}n≥1 be a sequence of integers and ` ≥ 2 be some fixed integer.
Set

F ({sn}∞n=1; `) :=
{
x ∈ [0, 1) : sn ≤ an(x) < `sn, for all n ≥ 1

}
.

Lemma 2.2 ([2]). Under the assumption that sn →∞ as n→∞, one has

dimH F ({sn}∞n=1; `) =

(
2 + lim sup

n→∞

log sn+1

log s1s2 · · · sn

)−1

.

In fact, Lemma 2.2 has a more general form. Let s := {sn}n≥1 and
t := {tn}n≥1 be two sequences of real numbers such that sn > 1, tn > 1 for
all n ≥ 1. Consider the following set

F (s, t) :=
{
x ∈ [0, 1) : sn ≤ an(x) < sntn, for all n ≥ 1

}
.

Lemma 2.3. Assume that sn →∞ as n→∞, and

lim
n→∞

log(tn − 1)

log sn
= 0.

Then

dimH F (s, t) =

(
2 + lim sup

n→∞

log sn+1

log s1s2 · · · sn

)−1

.

The proof of Lemma 2.3 is essentially contained in the proof of the lower
bound of the dimension of E(ψ) in Subsection 3.2. So the details are left
for the reader. A special case of Lemma 2.3 can be found in [6].

The next lemma is useful for the upper bound of the Hausdorff dimensions
of E(ψ) and E(ψ).

Lemma 2.4 ([7]). For any a > 1, b > 1,

dimH{x : an(x) ≥ abn ,∀n ≥ 1} = dimH{x : an(x) ≥ abn , i.o.} =
1

b+ 1
.
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3. Proofs

3.1. Dimension of E(ψ). We first calculate the Hausdorff dimension of
E(ψ). Recall that

E(ψ) =
{
x ∈ [0, 1) : lim sup

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= 1
}
.

We will only give the proof for 1 < b <∞. The case b =∞ can be obtained
by a standard limit procedure.

Upper bound: For x ∈ E(ψ), let Sn(x) := log a1(x)+· · ·+log an(x). Then
for any δ > 0, there are infinitely many n’s such that Sn(x) ≥ ψ(n)(1− δ).
This implies that there exist infinitely many i ≤ n such that

log ai(x) ≥ ψ(n)

n
(1− δ).

By the definition of b, for any ε > 0, ψ(n) > (b − ε)n for all n ≥ 1. Thus,
we have infinitely many i’s, such that

log ai(x) >
(b− ε)n

n
(1− δ) > (b− 2ε)i.

By Lemma 2.4, the Hausdorff dimension of E(ψ) is bounded by 1/(1 + (b−
2ε)) from above. Letting ε→ 0, we obtain the upper bound.

Lower bound: We define a real sequence {c̃n}∞n=1 as follows. Let c̃1 = eψ(1)

and

c̃2 = min

{
eψ(2)

c̃1
, c̃b−1+ε

1

}
.

Assume that c̃n has been already well defined, then set

c̃n+1 = min

{
eψ(n+1)∏n
k=1 c̃k

,

n∏
k=1

c̃b−1+ε
k

}
.

Now for all n ≥ 1, take cn = bc̃nc+ 2, where b·c stands for the integer part.
Then we can check that

(3.1) lim sup
n→∞

log cn+1

log c1 + · · ·+ log cn
≤ b− 1 + ε.

By the definition of b, we can further check that there exist infinitely many

n, such that c̃n+1 = eψ(n+1)∏n
k=1 c̃k

. Thus we have

(3.2) lim sup
n→∞

log c1 + · · ·+ log cn
ψ(n)

= 1.

Define

E({cn}) := {x ∈ [0, 1) : cn ≤ an(x) < 2cn, for all n ≥ 1}.
By (3.2), E({cn}) ⊂ E(ψ).

To apply Lemma 2.2, we need the condition cn →∞ as n→∞ which is
not necessarily satisfied. So, some modifications on the subset E({cn}) are
needed. By the condition that ψ(n)/n → ∞ as n → ∞, we can choose a
sequence {nk}∞k=1 such that for each k ≥ 1,

ψ(n)

n
≥ k2, when n ≥ nk.
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Take αn = 2 if 1 ≤ n < n1 and

αn = k + 1, when nk ≤ n < nk+1.

Then it is easy to see

lim
n→∞

logα1 + · · ·+ logαn
ψ(n)

= 0 and lim
n→∞

logαn+1

logα1 + · · ·+ logαn
= 0.

Since cn ≥ 2 and αn ≥ 2 for all n ≥ 1, we have

log cn ≤ log(cn + αn) ≤ log cn + logαn ∀n ≥ 1.

So, by taking sn = cn + αn for each n ≥ 1, we get

lim sup
n→∞

log s1 + · · ·+ log sn
ψ(n)

= 1.

Define

E({sn}) := {x ∈ [0, 1) : sn ≤ an(x) < 2sn, for all n ≥ 1}.
Then E({sn}) ⊂ E(ψ). As sn →∞ as n→∞, by Lemma 2.2, we have

dimH E({sn}) =

(
2 + lim sup

n→∞

log sn+1

log s1 + · · ·+ log sn

)−1

.

Note that

lim sup
n→∞

log sn+1

log s1 + · · ·+ log sn

= lim sup
n→∞

log(cn+1 + αn+1)

log(c1 + α1) + · · ·+ log(cn + αn)

≤ lim sup
n→∞

log cn+1 + logαn+1

log(c1 + α1) + · · ·+ log(cn + αn)

≤ lim sup
n→∞

log cn+1

log c1 + · · ·+ log cn
+ lim sup

n→∞

logαn+1

logα1 + · · ·+ logαn
≤ b− 1 + ε.

Hence,

dimH E(ψ) ≥ dimH E({sn}) ≥
1

b+ 1 + ε
.

3.2. Dimension of E(ψ). Recall that

E(ψ) =
{
x ∈ [0, 1) : lim inf

n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)
= 1
}
.

As in the calculation of the Hausdorff dimension of E(ψ), we will only give
the proof for 1 < B <∞ and the easy case B =∞ is left for the reader.

Upper bound: By the definition of B, for any ε > 0, there is a sequence
{ni} such that

ψ(ni) > (B − ε)ni .
Denoting Sn(x) = log a1(x)+ · · ·+log an(x), for all x ∈ E(ψ), for any δ > 0,
we have

Sn(x) ≥ ψ(n)(1− δ), ∀n ≥ 1.

Thus
Sni(x) ≥ (B − ε)ni(1− δ).
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Then there exists j ≤ ni such that

log aj(x) ≥ (B − ε)ni(1− δ)/ni > (B − 2ε)j .

As ni goes to infinity, we will have infinitely many such j’s. Thus by Lemma
2.4, the Hausdorff dimension of E(ψ) is bounded by 1/(1 + (B − 2ε)) from
above. The upper bound then follows.

Lower bound: We will construct a nonempty subset of E(ψ). Thus the
following proof also shows that the set E(ψ) is always nonempty.

For any ε > 0, define

Ai = sup
n≥i

exp{ψ(n)(B + ε)i−n}.

This is the smallest function satisfying

(3.3) Ai+1 ≤ AB+ε
i and Ai ≥ eψ(i).

Let

Z := lim inf

∑n
i=1 logAi
ψ(n)

.

Since for all i ∈ N, Ai ≥ exp{ψ(i)(B + ε)i−i} = eψ(i), we have

Z ≥ logAn
ψ(n)

≥ 1.

We start by showing the following proposition.

Proposition 3.1. We have Z <∞.

Since lim supn→∞
logψ(n)

n = logB, we have for n large enough,

ψ(n) ≤ (B + ε/2)n.

Thus
Ai ≤ exp{(B + ε/2)n(B + ε)i−n}.

Since (B + ε/2)n/(B + ε)n goes to 0 as n → ∞, we have the supremum
in the definition of Ai can be obtained for the first time by some ti ≥ i.
Remark that for many consecutive i’s the ti will be the same. More precisely,
ti = ti+1 = · · · = tti . Let us write ni = tti . Then ni < ni+1. Notice that for
these ni, we have

logAni = ψ(ni),

and for k ∈ (ni−1, ni],

logAk = ψ(ni)(B + ε)k−ni .

Thus
ni∑

k=ni−1+1

logAk =

ni∑
k=ni−1+1

ψ(ni)(B + ε)k−ni ≤ C · ψ(ni).

Suppose {ni} are defined as above. Denote Snψ :=
∑n

k=1 ψ(k). Proposi-
tion 3.1 follows directly from the following two lemmas.

Lemma 3.2. The following liminf is finite:

lim inf
n→∞

Snψ

ψ(n)
<∞.



FAST KHINTCHINE SPECTRA 7

Proof. For ε > 0, we will show that there exist infinitely many i, such that
ψ(i) > εSi−1ψ. If not, we will have

Snψ = Sn−1ψ + ψ(n) ≤ (1 + ε)Sn−1ψ.

Thus

lim sup
logSnψ

n
≤ log(1 + ε),

which is impossible since we have

lim sup
logψ(n)

n
= B > log(1 + ε).

Write li the sequence such that ψ(li) > εSli−1ψ. Then

Sliψ

ψ(li)
=
Sli−1ψ + ψ(li)

ψ(li)
≤ 1 +

1

ε
<∞,

and the conclusion follows. �

Lemma 3.3. If

L := lim inf
n→∞

Snψ

ψ(n)
<∞,

then

lim inf
i→∞

Sniψ

ψ(ni)
<∞.

Proof. Let mk be the sequence such that

lim
k→∞

Smkψ

ψ(mk)
= L.

Then each mk is in some (ni−1, ni]. Thus

Sniψ = Smkψ +

ni∑
j=mk+1

ψ(j) ≤ (L+ ε)ψ(mi) +

ni∑
j=mk+1

ψ(j)

≤ (L+ ε)

ni∑
j=mk

ψ(j).

Since for j ∈ [mk, ni] ⊂ (ni−1, ni],

ψ(j) ≤ 1

(B + ε)ni−j
ψ(ni),

we have
Sniψ ≤ C · (L+ ε)ψ(ni).

Then the result follows. �

We continue the estimation of the lower bound. Let εi be a sequence
decreasing to 0. (We will see εi = 1/i are OK.) Construct x by choosing
ai(x) in the interval

[A
1/Z
i (1− εi), A1/Z

i (1 + εi)].

Choose εi such that

lim
n→∞

∑n
j=1 log(1± εj)

ψ(n)
= 0.
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Then

lim inf
n→∞

∑n
j=1 log aj(x)

ψ(n)
= lim inf

n→∞

1
Z

∑n
j=1 logAj

ψ(n)
= 1.

So such constructed x’s are indeed in the set E(ψ). Denote by E the set of
those x’s.

To estimate the Hausdorff dimension, we define a probability measure µ
on E. For each position, we distribute the probability evenly. That is for
each possible ai, we give the probability

1

|[A1/Z
i (1− εi), A1/Z

i (1 + εi)]|
=

1

2εiA
1/Z
i

.

Thus for each basic interval In = In(a1, . . . an), we have

µ(In) =
∏

(2εiA
1/Z
i )−1.

By (2.1)

|In| ≈
∏

(A
1/Z
i )−2.

To calculate the local dimension of x ∈ E, we will use a smaller interval Dn

included in In:

Dn = ∪
an+1≥A1/Z

n+1(1−εn+1)
In+1(a1, · · · , anan+1).

Since ai ∈ [A
1/Z
i (1−εi), A1/Z

i (1+εi)], and Ai grows super-exponentially, the
Hausdorff dimension will be determined by calculating the local dimension

lim inf
logµ(Dn)

log |Dn|
.

(See Section 4 of Jordan and Rams [4].)
The length of this interval is

|Dn| ≈ |In| ·A−1/Z
n+1 .

We have

− logµ(Dn) = − logµ(In) =

n∑
i=1

log(2εi) +
1

Z

n∑
i=1

logAi.

Let us choose εi such that |
∑n

i=1 log(2εi)| � logAn+1. By the property

that Ai+1 ≤ AB+ε
i , we deduce that for big n,

− logµ(Dn) ≥
n∑
i=1

log(2εi)+
1

Z

n∑
i=1

1

(B + ε)i
logAn+1 ≈

1

Z(B + ε− 1)
logAn+1.

Now we calculate − log |Dn|:

− log |Dn| ≈ − log |In|+
1

Z
logAn+1 ≈ −2 logµ(Dn) +

1

Z
logAn+1.

Thus

− logµ(Dn)

− log |Dn|
≈ − logµ(Dn)

−2 logµ(Dn) + 1
Z logAn+1

=
1

2 +
1
Z

logAn+1

− logµ(Dn)

≥ 1

2 +B + ε− 1
=

1

B + 1 + ε
.



FAST KHINTCHINE SPECTRA 9

Then the lower bound follows from the Frostman Lemma (see [1]).
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