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Abstract. In this paper we consider the packing spectra for local
dimension of Bernoulli measures supported on Bedford-McMullen
carpets. We show that typically the packing dimension of the
regular set is smaller than the packing dimension of the attractor.
We also consider a specific class of measures for which we are able
to calculate the packing spectrum exactly and we show that the
packing spectrum is discontinuous as a function on the space of
Bernoulli measures.

1. Introduction

The aim of this paper is to develop the theory of multifractal anal-
ysis for a special class of self-affine measures. These measures are the
Bernoulli measures supported on Bedford-McMullen carpets, [McM],
[B] and their multifractal properties have been studied in several pa-
pers: [K], [O], [N], [BM], [GL], [JR], [R] and [BF]. However most of
these papers focus on the Hausdorff spectra and very little is known
about the packing spectra. For self-similar measures satisfying the
open set condition the packing and Hausdorff spectra are the same
[CM, AP] but are in general different for subsets of the irregular set
where the liminf and limsup are specified, [BOS]. For Bernoulli mea-
sures on Bedford-McMullen carpets in [O] an upper bound is given in
terms of the Legendre transform of a certain function, this is typically
greater than the Hausdorff spectra. However in [R] it is shown that
this upper bound may not be sharp and that there are cases when
the Hausdorff spectra and packing spectra are the same even when the
Hausdorff and packing dimensions of the attractor are different. More-
over Reeve, [R] calculated the packing spectra for a specific class of
self-affine measures.

We extend this theory in two ways, firstly by showing that for a
generic class of self-affine measures the packing dimension of the at-
tractor is strictly greater than the maximum of the packing spectra,
i.e. the packing dimension of the regular set. Secondly we consider
a specific family of Bedford-McMullen carpets and Bernoulli measures
supported on these carpets. We explicitly calculate the packing spec-
tra for this family and show that it is not a continuous function of
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the parameters for the measures. This is in contrast to the case for the
Hausdorff and packing spectra for self-similar measures, [CM], [AP] and
for the Hausdorff spectra of self-affine measures on Bedford-McMullen
carpets, [BM], [K], [O] and [JR].

The setting we consider is that for a given Bernoulli measure µ sup-
ported on a Bedford-McMullen carpet, we look at the set of points
where the local dimension of µ equals α (to be denoted by Xα) and
the set of points where the symbolic local dimension of µ (i.e. the local
dimension obtained by using approximate squares instead of geometric
balls) equals α, to be denoted by Xsymb

α . Then the Hausdorff dimen-
sions of Xα and Xsymb

α coincide, they also coincide with the Hausdorff
dimension of certain Bernoulli measure µα, for which a typical point
belongs to Xsymb

α . The function dimH Xα is concave, it is a Legendre
transform of some well-defined multifractal function. The maximum
value achieved by dimH Xα equals the Hausdorff dimension of the whole
Bedford-McMullen carpet. Moreover, dimH Xα is real analytic both as
a function of α and as a function of µ.

Seeing this, Olsen in [O] conjectured that (most of) the same prop-
erties hold for the packing spectrum. In particular, he conjectured that
dimP X

symb
α is a Legendre spectrum of another multifractal function,

and then wrote down some properties of such a function. However
in [R] it was shown that for a certain family of examples the packing
spectra is the same as the Hausdorff spectra even when the packing
dimension and Hausdorff dimension of the attractors is different. In
particular this shows that the conjecture in [O] cannot hold in general.
This is related to work by Nielsen, [N] where the dimension of sets de-
termined by the frequencies of occurrence of each map in the iterated
function system. Again in this case Nielsen shows that the packing and
Hausdorff spectra are the same even when the Hausdorff and packing
dimension of the attractor are different.

In this note we go on to show that under a condition which holds
for typical carpets the conjecture in [O] cannot hold and then by con-
sidering a specific class of examples that the situation is much more
complicated than the situation with the Hausdorff spectra. We prove
two theorems. The first one, Theorem 2.3, states that it is unlikely
that the maximum of (symbolic) packing spectrum equals the packing
dimension of the Bedford-McMullen carpet. More precisely, there is
a codimension one condition necessary and codimension two condition
sufficient for this to happen. Both conditions are on coefficients of the
Bernoulli measure µ.

Our Theorem 2.4 is more interesting. We consider a very special
family of Bernoulli measures, but the same phenomenon holds in much
greater generality. Assume the Bedford-McMullen carpet has exactly
two rows. We also assume that the Bernoulli measure µ is equally
distributed in each row. For a given carpet such measures form a one
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parameter family, they are uniquely determined by the measure of the
first row. For such measures we have dimP Xα = dimP X

symb
α for all α.

Then, for all parameter values except one, dimH Xα = dimP Xα for all
α. However, there is one exceptional measure µ in our family for which
dimH Xα < dimP Xα for all α in the interior of the spectrum interval.
The function dimP Xα is still well behaved as a function of α, but as a
function of µ it is not even continuous.

Note here that this phenomenon is not an artifact created by the
fact that the packing dimension is in some way not adequate to study
the local dimension spectrum. On the contrary, while for all non-
exceptional measures µ the set Xα is equal to the set of µα-typical
points, for the exceptional measure it is strictly greater. The Hausdorff
dimension of those additional points is equal to dimH µα (which is
why this set does not cause the Hausdorff dimension to grow), but
the packing dimension is strictly greater than dimH Xα for all α in the
interior of the spectrum.

We are not able to present any conjectures, as to what the packing
spectrum really is in general. But it certainly seems to be an object
worthy of further study.

2. Notation and results

We start this section by defining packing dimension and stating some
basic results we use to calculate the packing dimension of sets. For a
set A ⊆ Rd and s ≥ 0 let

P̃(A) = lim
ε→0

sup

{∑
i

B(xi, ri) : xi ∈ A, ri < ε and |xi − xj| > ri + rj for i 6= j

}
and define the outer packing measure by

P(A) = inf
{∑

P̃(Ai) : ∪iAi ⊇ A
}
.

P gives a measure when restricted to measurable sets and we can define
the packing dimension analogously to Hausdorff dimension by

dimP (A) = inf{s : P(A) = 0} = sup{s : P(A) =∞}.
While the main focus of this paper is on packing dimension we will at
time use Hausdorff dimension, denoted by dimH , and upper box count-
ing dimension denoted dimB, for the definitions of these dimension we
refer the reader to . We will use the following standard results on pack-
ing dimension throughout the paper: the first result relates packing
dimension to the Hausdorff dimension and the upper box dimension.

Lemma 2.1. For any A ⊆ Rd we have that

dimH(A) ≤ dimP (A) ≤ dimB(A).

Proof. See [Ma][page 82]. �
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The second is a version of Frostman’s lemma for packing dimension.

Lemma 2.2. For a Borel set A ⊆ Rd if there exists a Borel probability
measure µ such that µ(A) = 1 and

lim sup
r→0

log µ(B(x, r))

log r
≥ s

for all x ∈ A then dimP A ≥ s.

Proof. See [Ma][Theorem 6.11, page 97]. �

We now formally introduce Bedford-McMullen carpets. Letm,n ∈ N
with 2 ≤ m < n and

D ⊆ {0, . . . ,m− 1} × {0, . . . , n− 1}
where |D| ≥ 2 and we define σ := logm

logn
. For (i, j) ∈ D let Ti,j : R2 → R2

be defined by

Ti,j((x, y)) =

(
x+ i

n
,
y + j

m

)
and Λ be the unique non-empty compact set satisfying

Λ = ∪(i,j)∈DTi,j(Λ).

Sets of the form Λ were first studied in [B] and [McM] and are usually
known as Bedford-McMullen carpets. We will let L0 = |D|, and for
0 ≤ i ≤ m− 1 we let

ni = |{(i, j) ∈ D : 0 ≤ j ≤ n− 1}|.
Finally let L1 = |{i : ni 6= 0}|.

The geometry of affine sets is different than the geometry of confor-
mal fractals because the cylinders are not approximate balls anymore.
Hence, in order to work with the geometric properties of the fractal, we
need to use not single cylinders but some unions of cylinders. Given two
positive integers n1 ≤ n2 and a point x ∈ Λ we define the rectangle

Rn1,n2(x) = {y ∈ Λ; ik(y) = ik(x) ∀k ≤ n2andjk(y) = jk(x) ∀k ≤ n1}.
Note that RN,N(x) is just the N -th level cylinder containing x. The
rectangle Rn1,n2(x) is an intersection of Λ with a geometrical rec-
tangle with horizontal side n−n1 and vertical side m−n2 . The N -th
level approximate square is defined as CN(x) = RdσNe,N(x). It is
a set of diameter approximately m−N . It will sometimes be conve-
nient to define CN(x) for non-integer values of N > 0, we will denote
CN(x) = CdNe(x).

We now introduce the class of measures we will be considering which
are projections of Bernoulli measures to Bedford-McMullen carpets.
We let {pi,j}(i,j)∈D be a probability vector and µ be the unique Borel
probability measure for which for all Borel sets B ⊆ R2 we have

µ(B) =
∑

(i,j)∈D

pi,jµ(T−1i,j (B)).
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An alternative way of defining this measure is as the natural projection
of {pi,j} Bernoulli measure from the shift space DN to Λ.

In this paper we deal with local dimensions. The real local dimen-
sion (or simply local dimension; we use the name real local dimension
to distinguish it from the symbolic local dimension) of a Borel measure
µ supported in R2 at a point x is defined as

dµ(x) = lim
r→0

log µ(Br(x))

log r
,

provided the limit exists. However it is often easier to work with ap-
proximate squares rather then geometric balls. Thus we define the
symbolic local dimension as

δµ(x) = lim
N→∞

log µ(CN(x))

−N logm
,

provided the limit exists. For any α ∈ R we will denote

Xα = {x ∈ Λ : dµ(x) = α} and Xsymb
α {x ∈ Λ : δµ(x) = α}.

In several cases it is possible to show that δµ(x) = dµ(x) however this
is not always true. We will let

αm = min
(i,j)∈D

−σ log pij + (σ − 1) log qi
logm

and

αM = max
(i,j)∈D

−σ log pij + (σ − 1) log qi
logm

.

Note that α /∈ [αm, αM ] is equivalent to Xα = Xsymb
α = ∅.

Clearly, the relation between symbolic and real local dimension at
any given point is given by the geometric interplay between balls and
approximate squares. On the one hand, we have for all x ∈ Λ:

(2.1) CN(x) ⊆ Bm−N (x).

On the other hand, the point x can be very close to the boundary of
an approximate square it lies in, and then the ball Bcm−N (x) will only
be contained in CN(x) for very small c. We can describe the distance
from x to the boundary of CN(x) using the symbolic expansion of x.
Denote

IN(x) =
1

N
sup{k ∈ N; iN+1(x) = . . . = iN+k(x) ∈ {0,m− 1}}

and

JN(x) =
1

dσNe
sup{k ∈ N; jdσNe+1(x) = . . . = jdσNe+k(x) ∈ {0, n−1}}.

If some positive δ is greater than IN(x) and JN(x) then the distance
from x to the boundary of CN(x) is at least m−N(1+δ), and hence
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(2.2) Bm−N(1+δ)(x) ⊆ CN(x).

An easy consequence of (2.1), (2.2) is that if both IN(x) and JN(x)
converge to 0 as N goes to infinity (in particular, almost all points for
any Bernoulli measure with nontrivial horizontal and vertical projec-
tions have this property) then the symbolic and local dimensions of
any Bernoulli measure coincide at x.

The symbolic local dimension can thus be used to calculate the real
local dimension at many points. At the same time, for any Bernoulli
measure µ its symbolic local dimension at a point x is easy to calculate
from symbolic expansion of x. Denote

qi =
∑
j

pi,j.

We then have

(2.3) µ(CN(x)) =

dσNe∏
k=1

pik(x),jk(x) ·
N∏

k=dσNe+1

qik(x)

and we can calculate δµ(x) directly. Note also another important
consequence of (2.3): there exist a constant K > 0 such that for any
x ∈ Λ and N > 0 we have

(2.4) K <
µ(CN+1(x))

µ(CN(x))
≤ 1.

Our results are as follows.

Theorem 2.3. The symbolic and real packing local dimension spectra
are both strictly smaller than dimP Λ for systems not satisfying

(2.5)
∑
i

1

L1

log qi =
∑
i

ni
L0

log qi = A.

For systems satisfying both (2.5) and

(2.6)
∑

(i,j)∈D

1

L0

log pij =
∑

(i,j)∈D

1

niL1

log pij = B

both the real and symbolic packing spectra are equal to dimP Λ at

α0 = − 1

logm
(σB + (1− σ)A).
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Consider now a special class of systems. Assume that the Bedford-
McMullen carpet has only two rows with n0 and n1 rectangles in each.
Let M be the class of Bernoulli measures with probabilities equidis-
tributed in each row. Denote by p0 the probability of each rectangle
in the first row and by p1 the probability of each rectangle in the sec-
ond row; the condition n0p0 + n1p1 = 1 must hold with q0 = n0p0 and
q1 = n1p1.

Theorem 2.4. For µ ∈M, we have that for α ∈ [αm, αM ]

(1) If µ ∈M and log(q0/q1)
σ log(n0/n1)

6= −1 then

dimP Xα = dimP X
symb
α = dimH Xα

(2) If µ ∈M is the unique measure for which log(q0/q1)
σ log(n0/n1)

= −1 then

for α ∈ (αm, αM) we have that

dimH Xα < dimP Xα = dimP X
symb
α

and for α ∈ {αm, αM}
dimH Xα = dimP Xα = dimP X

symb
α .

3. Proof of Theorem 2.3

The main part of the proof is to show that (2.5) is necessary for the
real and symbolic packing spectra to achieve dimP (Λ). To prove this for
a fixed Bernoulli measure we construct two sets of dimension strictly
smaller than dimP (Λ) and then prove that the first set contains all
symbolically regular points and that the second set contains all regular
points. The second part of the Theorem, that satisfying both conditions
(2.5) and (2.6) is sufficient for the maximum of the real and symbolic
packing spectra to achieve dimP (Λ), is easy to show.

Let µ be the Bernoulli measure defined by the probability vector
{pij} defined on the digit set D ⊆ {0, . . . ,m − 1} × {0, . . . , n − 1},
m < n. We assume that D contains at least two different i’s and at
least two different j’s, otherwise the system would be a self-similar IFS
on the line. We have

dimB Λ = dimP Λ = s :=
1

logm
(σ logL0 + (1− σ) logL1),

where σ = logm/ log n.
Let us start with a simple geometric lemma. For k1, k2 ∈ N with

K1 < k2 we denote by F k2
k1

(i, j)(x) the frequency of symbol (a, b) in the
sequence (i, j)k1+1(x), . . . , (i, j)k2(x). More precisely

F k2
k1

(i, j)(x) :=
#{(il(x), jl(x)) = (i, j) : k2 < l ≤ k1}

k2 − k1
.

We will extend this notation to the case when k1 and k2 are not integers
and k2 − k1 ≥ 1 in which case F k2

k1
(i, j)(x) will denote the frequency
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of the symbol (i, j) in the sequence (i, j)dk1e+1(x), . . . , (i, j)dk2e(x). For
a > 0 we let Z(N, a) be the set of points x ∈ Λ such that for any
M > N one of the following seven nongenericity conditions holds:

i) FM
0 (i, j)(x) /∈ [1/L0 − a, 1/L0 + a] for some (i, j) ∈ D,

ii) F
dMσ−1e
M (i, j)(x) /∈ [1/L0 − a, 1/L0 + a] for some (i, j) ∈ D,

iii)
∑

j F
dMσ−2e
dMσ−1e (x) /∈ [1/ni − a, 1/niL1 + a] for some i,

iv) all the symbols jM+1(x), . . . , jdM(1+a)e(x) are equal,
v) all the symbols idMσ−1e+1(x), . . . , idMσ−1(1+a)e(x) are equal.

vi) all the symbols jdMσ−1e+1(x), . . . , jdMσ−1(1+a)e(x) are equal,
vii) all the symbols idMσ−2e+1(x), . . . , idMσ−2(1+a)e(x) are equal.

Let Z̃(N, a) be the subset of Z(N, a) consisting of points x ∈ Λ such
that for any M > N one of the first three nongenericity conditions i),
ii) or iii) holds.

Lemma 3.1. For any a > 0

sup
N

dimBZ(N, a) < s.

Proof. Let us begin by calculating the upper box counting dimension of

Z̃(N, a). The general idea of the proof is that we have approximately

zM = LMσ−1

0 L
M(σ−2−σ−1)
1 approximate squares of level dMσ−2e but for

N < M Z̃(N, a) intersects at most zMe
−cMa2 of them.

There are three types of points x ∈ Z̃(N, a). If FM
0 (i, j)(x) /∈

[1/4L0− a, 1/L0 + a] for some (i, j) ∈ D then there are only L
M(1−c1a2)
0

possible values of the initial M symbols (i, j)k(x). Indeed, the entropy
of Bernoulli measure with probabilities p1, . . . , pL0 is logL0, achieved
when all those probabilities are equal to 1/L0, and this maximum is
nonflat. Hence, all points of this type can be covered by at most

L
M(1−c1a2)
0 L

dMσ−1e−M
0 L

dMσ−2e−dMσ−1e
1 ≈ zML

−c1Ma2

0 approximate squares
of level dMσ−2e.

If F
dMσ−1e
M (i, j)(x) /∈ [1/L0 − a, 1/L0 + a] for some (i, j) ∈ D then

there are only L
(dMσ−1e−M)(1−c2a2)
0 possible values of the symbols (i, j)k(x)

for k = M+1, . . . , dMσ−1e. Hence, by a reasoning similar to the previ-

ous one, all points of this type can be covered by at most zML
−c2a2M(σ−1−1)
0

approximate squares of level dMσ−2e.
If
∑

j F
dMσ−2

dMσ−1 (i, j)(x) /∈ [1/niL1 − a, 1/niL1 + a] for some i then

there are only l
(dMσ−2e−dMσ−1e)(1−c3a2)
1 possible values of the symbols ik

for k = dMσ−1e + 1, . . . , dMσ−2e. Hence, all points of this type can

be covered by at most zML
−c3a2M(σ−2−σ−1)
1 approximate squares of level

dMσ−2e.
The points in Z̃(N, a) might satisfy different nongenericity conditions

for different M . However, for each M > N all the points in Z̃(N, a) can
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be covered by at most zMe
−cMa2 approximate squares of level dMσ−2e.

Hence,

dimBZ̃(N, a) ≤ s− c̃a2.
Consider now the set Z(N, a). Instead of using approximate squares

of level dMσ−2e, we will use squares of level dMσ−2(1 + a/4)e. Note
first, that if x ∈ Λ satisfies one of nongenericity conditions i), ii), iii)
for M and a, it will also satisfy them for dM(1 + a/4)e and a/2.

Indeed, if x satisfies nongenericity condition i) then the symbols

((i, j)k(x))
dM(1+a/4)e
k=0 are the same symbols as ((i, j)k(x))Mk=0 (where fre-

quencies differ from (1/L0, . . . , 1/L0) by at least a) plus approximately

Ma/4 new symbols ((i, j)k(x))
dM(1+a/4)e
k=M+1 which can change the frequen-

cies at most by a/4. If x satisfies either nongenericity ii) or iii) then
passing from M to dM(1 + a/4)e changes the considered ranges of k
on both ends: some symbols in the beginning drop out, some symbols
at the end are added. Altogether the change of frequencies cannot top
a(2 + σ)/4(1 + σ) < a/2.

Hence, all the points x ∈ Λ satisfying nongenericity conditions i), ii)

or iii) for givenM and a can be covered with at most zM(1+a/4)m
−c̃Mσ−2(1+a/4)a2/4

sets of diameter m−dMσ−2(1+a/4)e, like in the first part of proof.
If x ∈ Λ satisfies nongenericity condition iv) then the sequence

((i, j)k(x))
dM(1+a/4)e
k=M+1 can take only (L0−1)daMe/4 possible values. Hence,

the points of this type can be covered by at most zM(1+a/4)((L0 −
1)/L0)

Ma/4 approximate squares of level dMσ−2(1 + a/4)e.
The cases of nongenericity conditions v) or vi) are almost identical,

the sequence ((i, j)k(x))
dMσ−1(1+a/4)e
dMσ−1+1e can take only (L0 − 1)daσ

−1M/4e

possible values and we can cover those points with at most zM(1+a/4)((L0−
1)/L0)

Mσ−1a/4 approximate squares of level dMσ−2(1 + a/4)e.
Finally, if x ∈ Λ satisfies nongenericity condition vii) then the se-

quence {ik(x)}dMσ−2(1+a/4)e
k=dMσ−2e+1 can take only (L1 − 1)daMσ−2/4e possible

values. Hence, the points of this type can be covered by at most
zM(1+a/4)((L1−1)/L1)

Mσ−2a/4 approximate squares of level dMσ−2(1 +
a/4)e.

As a is small, a2 is small in comparison to a. Hence, again we get
a quadratic bound (independent from N) for the upper box counting
dimension of Z(N, a):

dimBZ(N, a) ≤ s− ca2.
�

We now proceed with the proof of the theorem. Let us consider the
symbolic local dimensions first. Assume that (2.5) does not hold and
let
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δ =

∣∣∣∣∣ 1− σ
3 logm

·
∑
i

(
1

L1

− ni
L0

)
log qi

∣∣∣∣∣ .
Let

Xα,N,δ = {x ∈ Λ;α− δ < log µ(CN0(x))

−N0 logm
< α + δ ∀N0 > N}.

We have

Xregsymb ⊆
⋃
α

⋃
N

Xα,N,δ.

Let x ∈ Xα,N,δ. Let a0 ≥ 0 be the smallest number for which the
following are true:

i) 1/L0 − a0 ≤ FM
0 (i, j)(x) ≤ 1/L0 + a0 for all (i, j) ∈ D,

ii) 1/L0 − a0 ≤ FMσ−1

M (i, j)(x) ≤ 1/L0 + a0 for all (i, j) ∈ D,

iii) 1/niL1 − a0 ≤
∑

j F
Mσ−2

Mσ−1 (i, j)(x) ≤ 1/niL1 + a0 for all i.

By (2.3), we have
(3.1)

− logm

Mσ−1
log µ(CMσ−1(x)) = σ

∑
(i,j)∈D

1

L0

log pi,j+(1−σ)
∑
i

ni
L0

log qi+Z1

and
(3.2)

− logm

Mσ−2
log µ(CMσ−2(x)) = σ

∑
(i,j)∈D

1

L0

log pi,j+(1−σ)
∑
i

1

L1

log qi+Z2,

where

|Z1|, |Z2| < a0 ·max(max
i,j
| log pi,j|, nmax

i
| log qi|) +O(1/M).

Denoting T = max(maxi,j | log pi,j|, nmaxi | log qi|), we see that, as
the left hand sides of (3.1) and (3.2) can differ at most by 2δ logm and
the right hand sides differ at least by 3δ logm − |Z1| − |Z2|, we must
have

a0 > a =
logm

2T
· δ.

Hence,

Xregsymb ⊆
⋃
N

Z̃(N, a)

and the symbolic part of the assertion follows by Lemma 3.1.
Now consider the regular points for real local dimension. Let x ∈

Xreg. There exist α (which can be chosen from a finite set) and N > 0
such that for all M > N
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log µ(Bm−M (x))

−M logm
∈ [α− δ/2, α + δ/2].

There are two cases: either the inequality

log µ(CM̃(x))

−M̃ logm
∈ [α− δ, α + δ]

holds for both M̃ = dMσ−1e and M̃ = dMσ−2e or it does not hold for
at least one of those. If it holds then, like above, x must satisfy non-
genericity condition i), ii) or iii) for M and a. If it does not hold for one
of possible values of M̃ then, necessarily, the measures of CM̃(x) and

Bm−M̃ (x) must differ at least by factor mM̃δ/2. However, by (2.1), (2.2)
and (2.4) it is only possible if either IM̃(x) or JM̃(x) are greater than
ã = δ| logK|/2 logm. Hence, in this case x must satisfy nongenericity
condition iv), v), vi) or vii) for M and ã. We came to conclusion that

Xreg ⊆
⋃
N

Z(N,min(a, ã))

and we are done by Lemma 3.1.
For the second statement of the theorem, if both (2.5) and (2.6) hold,

all points x ∈ Λ which symbolic expansions can be divided into parts
in which symbols (i, j) ∈ D appear with frequencies {1/L0, . . . , 1/L0}
and parts with frequencies {1/niL1} belong to Xsymb

α0
. If in addition

we demand that they do not have long stretches of identical i’s or j’s
then the real local dimension at those points is also α0. It is easy to
check that those points have full packing dimension.

4. Proof of Theorem 2.4

The proof is divided into four parts. In the first part we relate
the symbolic and real local dimensions at any point. We continue by
looking at how the local dimensions can be determined by observing
the frequency of digits in initial parts of symbolic expansions. This
now naturally splits the argument into two cases which are the final
two parts of the proof. The first case corresponds to part 1 of the
Theorem and the second case corresponds to part 2 of the Theorem.
In fact part 2 of the Theorem is about only one measure but it will
turn out this is the only case when the Hausdorff and packing spectra
are different and it is by far the most difficult case.

4.1. Real and symbolic local dimensions. We start by studying
the relationship between the symbolic and real local dimensions.

Lemma 4.1. If α ∈ [αmin, αmax] and dµ(x) = α but dsymb
µ (x) 6= α

then the symbolic expansion, (ik, jk) for x satisfies that there must exist
η > 0 and infinitely many integers nj such that inj = inj+k for all
0 ≤ k ≤ [ηnj].
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Proof. To start the proof fix a positive integer N and let k(N) = inf{z :
iN 6= iN+z}. Recall that the ball Bcm−N (x) contains CN(x) for c = n+1
and if c = m−(k+1), it is contained in CN(x) ∪ CN(x′) for some x′ for
which ik(x

′) = ik(x)∀k. Note that either µ(CN(x′)) = 0 or µ(CN(x′)) =
µ(CN(x)). Hence

µ(B(n+1)m−N (x) ≤ µ(CN(x)) ≤ 2µ(B(m−k+1m−N (x))

and if the symbolic and real local dimensions are not equal then we
cannot have that K(N) = o(N) and the result follows. �

Lemma 4.2.

Xα ⊆ Xsymb
α

Proof. Let x ∈ Xα. For any ε > 0 there must exist N0 such that

x ∈ {x ∈ Λ : µ(B(x,m−N)) ∈ (m−N(α−ε),m−N(α−ε)) for all N ≥ N0}.

We will denote this set by Yα,N0,ε. By Lemma 4.1 there must exist
δ > 0 and infinitely many N ≥ N0 such that K(N)/N ≥ δ. We will
fix such an N > something and assume without loss of generality that
iN = 1. For c > n and M ∈ [N,N(1 + δ)] the ball Bcm−M (x) will
contain both the approximate square CM(x) and approximate square
CM(yN), where yN is the point with the same symbolic expansion as x
except ik(y) = 1− ik(x) for k ∈ [N,N(1+ δ)]. Similarly, for c small the
ball Bcm−M (x) will be contained in CM(x)∪CM(yN)∪CM(x′)∪CM(y′N).
Hence, as x ∈ Yα,N0,ε for all M ∈ [N,N(1 + δ)] we must have

1/4m−M(α+2ε) ≤ max(µ(CM(x)), µ(CM(yN))) ≤ m−M(α−2ε).

We can also assume that for at least some N and M this maximum is
not µ(CM(x)), otherwise the symbolic and real local dimensions at x
would be equal. There are now several cases to consider:

Case I: q0 = q1, δ ≤ σ−1. In this situation µ(CM(x)) = µ(CM(yN))
for all M ∈ [N,N(1 + δ)], because the measure of an approximate
square of level M only depends on the initial Mσ symbols from the
symbolic expansion, which are the same for x and for yN .

Case II: q0 = q1, δ > σ−1. In this situation we have µ(CM(x)) =
µ(CM(yN)) for allM ∈ [N,Nσ−1] like in case I, but forM ∈ [Nσ−1, N(1+
δ)] we have

µ(CM(yN))

µ(CM(x))
=

(
p1
p0

)σM−N−1
.

As µ(CM(yN)) is greater for at least some M , we must have p1 > p0.
Hence, −1/M log(µ(CM(yN))/µ(CM(x))) is a monotonically increasing
function. By our assumptions about x we may assume that for all
M ∈ [N,N(1 + δ)] ,

µ(CM(yN)) ∈ (1/4m−M(α+2ε),m−M(α−2ε))
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and there exists M ∈ [N,N(1 + δ)] such that

µ(CM(x)) < 1/4m−M(α+2ε).

Since −1/M log(µ(CM(yN))/µ(CM(x))) is monotonically increasing in
M we have that

µ(CN(1+δ)(x)) < m−N(1+δ)(α+2ε)

At the same time, our assumptions give us

µ(CN(1+δ)(x)) ≥ m−N(1+δ)(α+2ε)

which is a contradiction.
Case III: q0 6= q1, δ ≤ σ−1. We have for all M ∈ [N,N(1 + δ)]

µ(CM(yN))

µ(CM(x))
=

(
q1
q0

)M−N−1
.

Like in case II, −1/M log(µ(CM(yN))/µ(CM(x))) is a monotonically
increasing function, we must have for all M ∈ [N,N(1 + δ)]

µ(CM(yN)) ∈ (1/4m−M(α+2ε),m−M(α−2ε))

but we also have

µ(CN(1+δ)(x)) ≈ m−N(1+δ)α,

which leads to a similar contradiction.
Case IV: q0 6= q1, δ > σ−1. This time, −1/M log(µ(CM(yN))/µ(CM(x)))

is a monotonically increasing function for M ∈ [N,Nσ−1] but might
be monotonically decreasing for M ∈ [Nσ−1, N(1 + δ)]. Hence, if δ
satisfies

(4.1) m−2N(1+δ)ε ≤
(
q1
q0

)N(1+δ)(1−σ)(
p1
p0

)N((δ+1)σ−1)

≤ m2N(1+δ)ε

then it is possible that

1

N(1 + δ) logm

∣∣log µ(CN(1+δ)(x))− log µ(CN(1+δ)(yN))
∣∣ < 2ε

and the contradiction like in cases II, III does not happen. However,
note that

µ(CN(1+δ)(yN)) = µ(CNσ−1(yN)) · qN(1+δ−σ−1)
1 p

N((1+δ)σ−1)
1 .

As

1

N(1 + δ)
log µ(CN(1+δ)(yN)) ∈ ((−α− 2ε) logm, (−α + 2ε) logm)
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and

1

Nσ−1
log µ(CNσ−1(yN)) ∈ ((−α− 2ε) logm, (−α + 2ε) logm)

we must have that

−α logm = σ log p1 + (1− σ) log q1,

which implies α = αmin.
Consider nowM = N(1+δ)σ−1. In the symbolic expansion of x there

are at least Nδ zeros on the first N(1 + δ) places. Hence, the measure
of any approximate square of level N(1 + δ)σ−1 that can intersect the
ball Bm−Nδσ−1 (x) (the symbolic descriptions of those squares share the
first N(1 + δ) symbols with x) is at most

pN1 p
Nδ
0 q

N(1+δ)(σ−1−1)
0 = m−αN(1+δ)σ−1 ·

(
p0
p1

)Nδ
·
(
q0
q1

)N(1+δ)(σ−1−1)

(remember that q1 < q0 and p1 > p0 by (4.1)). By (4.1),(
p0
p1

)Nδ
·
(
q0
q1

)N(1+δ)(σ−1−1)

≤ m2N(1+δ)σ−1ε·
(
p0
p1

)N(σ−1−1)

< m−N(1+δ)σ−1ε.

Hence, x cannot belong to Yα,N0,ε. �

4.2. Local dimensions and frequencies. We now look at the rela-
tionship between frequencies of digits and local dimensions. To do this
we need to introduce some notation adapted to this setting. Recall that
in this case we have two rows and the measure µ is a Bernoulli measure
giving weight q0/n0 to each rectangle in the first row and q1/n1 to each
rectangle in the second row. Using this for P ∈ (0, 1) we will define
the following quantities:

(1) H(P ) = −P logP − (1− P ) log(1− P ),
(2) Hq(P ) = −P log q0 − (1− P ) log q1,
(3) CH(P ) = P log(n−10 P )− (1− P ) log(n−11 P ),
(4) CHq(P ) = P log(n−10 q0)− P log(n−11 q1).

It will also be convenient to let Gk =
∑n−1

j=0 F
k−1
0 (0, j)(x)

Let µ ∈ M, α ∈ [αm, αM ] and x ∈ Xsymb
α . For any positive ε we

have

(4.2) Xsymb
α ⊆

⋃
N0

⋂
N>N0

Xα,N,ε.

We fix some small positive ε (in the future we will determine, how small
it should be). We assume that x ∈

⋂
N>N0

Xα,N,ε for some fixed N0.
Let

β(x) = lim
k→∞

Gk(x).
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be the frequency of appearance of the 0 row in the symbolic expansion
of x (if it exists). We will also use the finite approximations

Pk = GMσ2−k−1(x)

and

P ′k =
n−1∑
j=0

FMσ1−k−1
Mσ2−k (0, j)(x),

where M > N0 is fixed, to be defined later.
Our first step is the standard calculation:

Lemma 4.3. If β(x) = β then

dsymb
µ (x) = α(β) :=

1

logm
· (σCHq(β) + (1− σ)(Hq(β)))).

Our approach is to relate the local dimension at a point x to β(x)
and use the following lemma.

Lemma 4.4 (Gui-Li). For all β ∈ [0, 1] we have that

dimP{x : β(x) = β} = dimH{x : β(x) = β} =
1

logm
·(σHq(β) + (1− σ)(Hq(β))) .

Proof. For β ∈ (0, 1) this follows from Theorem 1.1 in [GL]. For the
case when β = 0 or 1 it is a simple exercise. �

Under certain special cases it is straightforward to show that {x :
β(x) = β} = Xsymb

αβ
.

Lemma 4.5. (1) If n0 = n1 and q0 6= q1 then {x; β(x) = β} =

Xsymb
α(β) .

(2) If q0 = q1 and n0 6= n1 then {x; β(x) = β} = Xsymb
α(β) .

(3) If q0 = q1 and n0 = n1 then αm = αM and Xsymb
αm = Λ

Proof. For the first part fix x ∈ Λ and k ∈ N, we can calculate

− log µ(Ck(x)) = kHq(Gk(x)) + σk log n0 + o(k)

and we can see that dsymb
µ = α(β) if and only if limk→∞Gk(x) = β. For

the second part we have that if q0 = q1 = 1/2

− log(µ(Ck(x))) = k log 2 + kσ(Gσk log n0 + (1−Gσk) log n1) + o(k).

Again we clearly have that dsymb
µ (x) = α(β) if and only if limk→∞Gk(x) =

β.
Finally for the 3rd part if n0 = n+ 1 then

− log(µ(Ck(x)) = k log 2 + kσ log n0 + o(k)

and

dsymb
µ (x) =

log 2 + σ log n0

logm
= dim Λ = αm = αM .

�
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Thus in the rest of the proof we assume that n0 6= n1 and q0 6= q1
and define

A =
log(q0/q1)

σ log(n0/n1)
.

In the case that |A| 6= 1 we will again be able to show that x ∈ Xsymb
α

uniquely determines β(x). If A = 1 then the set Xsymb
α contains not

only points with a fixed (nonunique) β(x) but also some additional
points for which β(x) does not exist. However, we will prove that this
does not lead to an increase of either Hausdorff or packing dimension.
Finally, if A = −1 then the set Xsymb

α also contains some additional
points with no β(x). In this case, which is covered in part 2 of Theorem
2.4, this leads to an increase of the packing dimension, though not the
Hausdorff dimension.

Lemma 4.6. If n0 6= n1 and q0 6= q1 then

(4.3) Pk+1 = F (Pk) +O(ε) +O(σk/M),

where

F (Pk) = A−1Pk +B

and

B = − 1

log(q0/q1)
(α logm+ σ log p1 + (1− σ) log q1).

Proof. Given x ∈ Λ and M ∈ N, the measure µ(Cσ1−kM(x)) is precisely

determined by {ik(x)}bσ
1−kMc−1

k=0 .
We have

(4.4)

− 1

σ1−kM
log µ(Cσ1−kM(x)) = σ(CHq(Pk)) + (1− σ)(Hq(P

′
k)) + o(1).

For x ∈ Xα,Mσ1−k,ε we have

1

σ1−kM
log µ(Cσ1−kM(x)) ∈ [−(α + ε) logm,−(α− ε) logm],

hence (4.4) lets us obtain a relation between Pk and P ′k. Applying the
obvious relation

Pk+1 = σPk + (1− σ)P ′k +O(σk/M)

we get

(4.5)

log
q0
q1
Pk+1 = log

n0

n1

Pk−α logm−σ log p1−(1−σ) log q1+O(ε)+O(σk/M)

and the assertion follows. �



PACKING SPECTRA FOR SELF-AFFINE MEASURES 17

We will denote by P the fixed point of F and by µP the Bernoulli
measure given by the probability vector p̃0j = P/n0, p̃1j = (1− P )/n1.
We note that µP is the Bernoulli measure constructed by King in [K]
and that

dimH Xα = dimH X
symb
α = dimH µP .

The map F is very simple, we only need to consider several cases
depending on the value of A. Note that A does only depend on µ and
α, not on M , N or ε. Hence, we can make our choice of ε only at this
moment (this will matter in the proof of the following lemma).

4.3. Proof of part 1 of Theorem 2.4. Part 1 of Theorem 2.4 cor-
responds to the case when A 6= −1. We will start with the simple case
|A| 6= 1.

Lemma 4.7. If |A| 6= 1 then

Xsymb
α = {x; β(x) = P}.

Proof. It follows from Lemma 4.3 that Xsymb
α ⊇ {x; β(x) = P}. To

obtain the other direction, we will consider two cases.
Case I: |A| > 1. In this situation we choose ε > 0 to be small relative

to |A−1| and note that the map F is contracting to the fixed point P .
This also means that the real frequencies Pk will converge to the region
[P − cε, P + cε] and then stay there. As ε can be chosen arbitrarily
small, the assertion follows.

Case II: |A| < 1. In this situation we choose a small ε and the
map Pk → Pk+1 is diverging (except in some cε-neighbourhood of P ,
where the error term can dominate the divergence of F ). If Pk does
not belong to [P − cε, P + cε] then Pk+1 will be even further from P
and so on. However, for any point x all the frequencies Pk must belong
to [0, 1], hence they must indeed be in some cε-neighborhood of P for
all k > 0. Like in the first case, ε can be chosen arbitrarily small and
the assertion follows. �

We now have that by Lemma 4.4 and Lemma 4.2

dimH Xα ≤ dimP Xα ≤ dimP X
symb
α = dimH X

symb
α .

The assertion of the Theorem when |A| 6= 1 now follows since by [JR]
we know dimH Xα = dimH X

symb
α .

We are left with the case when A = 1. In this case and in the case in
the following subsection, when A = −1, the symbolic local dimension of
x does not determine β(x). However when A = 1 we have the following
statement:

Lemma 4.8. If A = 1 then αm = αM and

(4.6) dimP X
symb
αm = dimH X

symb
αm = dimH Λ.
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Proof. It is clear that αm = αM and that µ is the measure of maximal
dimension. We let α = αm. We have for all x ∈ Xα,N,ε

|Pk+1 − Pk| ≤ O(ε) +O(σk/M).

Hence, a drift is possible: for any M̃ > N we might not know the fre-

quency Q =
∑

j F
M̃σ−1−1
0 (0, j)(x). Still, the set Xα,N,ε can be covered

by

sup
Q∈[0,1]

exp(M̃CH(Q)) exp((σ−1 − 1)M̃H(Q)) exp(M̃O(ε))

approximate squares of level M̃σ−1 and hence

dimBXα,N,ε ≤ sup
Q∈[0,1]

1

logm
(σCH(Q) + (1− σ)H(Q))+O(ε) = dimH Λ+O(ε).

As dimH X
symb
α = dimH Λ, (4.6) follows. �

The proof of part 1 of Theorem 2.4 can now be completed since by
Lemma 4.2 we have

dimH Xαm ≤ dimP Xαm = dimH Xαm = dimH Λ

and we know dimH Xαm = dimH Λ.

4.4. Proof of part 2 of Theorem 2.4. Finally, the most interesting
case when A = −1 which corresponds to part 2 of Theorem 2.4. Our
goal is to prove the following theorem from which part 2 of Theorem
2.4 follows.

Theorem 4.9. Assume A = −1. If α ∈ (αm, αM) then

dimH X
symb
α < dimP X

symb
α = dimP Xα.

If α ∈ {αm, αM} then

dimH X
symb
α = dimP X

symb
α ≤ dimH Xα.

The proof of this theorem will be split into several smaller parts. The
map F has only one fixed point P , but F 2 ≡ id. Like in the case when
A = 1, drift is possible so we do not know the frequencies Q1 = GM̃(x)
or Q2 = GM̃σ−1(x), but we know that Q1 + Q2 = 2P + O(ε). Once
again one can calculate

(4.7)

dimBXα,N,ε ≤ sup
ρ

1

logm
(σCH(P + ρ) + (1− σ)H(P − ρ)) +O(ε),

where δ = ρ(1 + σ)/(1 − σ) and the supremum is taken over ρ such
that P ± δ ∈ [0, 1].

The first thing to note is that if P ∈ {0, 1} (which corresponds to lo-
cal dimensions αmin and αmax) then ρ = 0 is the only admissible choice.
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In these cases we have equality in (4.7) and we have the following simple
result.

Lemma 4.10. For A = −1 and α ∈ {αm, αM} we have that

dimP X
symb
α = dimH X

symb
α ≤ dimH Xα.

Proof. Let α ∈ {αm, αM} and thus P ∈ {0, 1}. Thus in inequality (4.7)
the only choice of ρ = 0 and so

dimBXα,N,ε ≤ sup
ρ

σCH(P )

logm
+O(ε)

which means that

dimP Xαsymb ≤ σCH(P )

logm
.

To complete the proof we need to show that dimH Xαsymb ≥ σCH(P )
logm

and

dimH Xα ≥ σCH(P )
logm

. To do this we observe that either Λ ∩ {(0, y) : y ∈
R} ⊆ Xαsymb ∪Xα or Λ ∩ {(1, y) : y ∈ R} ⊆ Xαsymb ∪Xα. We can then
easily calculate

dimH Λ ∩ {(0, y) : y ∈ R} =
log n0

log n
=
σCH(1)

logm

and

dimH Λ ∩ {(1, y) : y ∈ R} =
log n1

log n
=
σCH(0)

logm
.

�

However, in the interior of the spectrum the packing and Hausdorff
symbolic spectra are different.

Definition 4.11. Given δ,K0 > 0 let Wα,δ,K0 be the set of points with
following properties:

• for K even for any a, b ∈ [σ−K , σ−K+1 − 1] we have∣∣∣∣∣
n−1∑
j=0

F b−1
a (0, j)(x)− P − δ

∣∣∣∣∣ < K0

b− a
,

• for K odd for any a, b ∈ [σ−K , σ−K+1 − 1] we have∣∣∣∣∣
n−1∑
j=0

F b−1
a (0, j)(x)− P + δ

∣∣∣∣∣ < K0

b− a
.

If x ∈ Wα,δ,K0 then whenever for some large M

GM−1(x) = P + δ′,

there exists δ′′ = δ′ +O(1/M) such that for all K ∈ N

GMσ−K−1(x) = P + (−1)Kδ′′ +O(σK/M).
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Obviously, |δ′′| ≤ δ/(1 + σ). It follows that each of the sets Wα,δ,K0

is contained in Xsymb
α .

Our nearest goal is to calculate the upper box counting dimension
of Wα,δ,K0 . We will need the following simple lemma.

Lemma 4.12. Let M be large. Let W ⊆ {0, 1}M be the set of words ω
for which for all subwords (ωa, . . . , ωb−1)∣∣F b−1

a (0)− P
∣∣ < K0

b− a
.

Then
1

M
log |W | ≥ H(P )−O

(
logK0

K0

)
−O

(
K0

M

)
.

Proof. Consider the set of sequences for which for all 0 ≤ i < 2M/K0∣∣∣F (i+1)K0/2−1
iK0/2

(0)− PK0/2
∣∣∣ ≤ 1.

Moreover, if PK0/2 is not an integer, we choose the blocks for which

F
(i+1)K0/2−1
iK0/2

(0)− PK0/2 < 0

and blocks for which

F
(i+1)K0/2−1
iK0/2

(0)− PK0/2 > 0

in such a way that for any i, j∣∣∣F jK0/2−1
iK0/2

(0)− PK0/2
∣∣∣ ≤ 1

(the blocks for which the frequency was greater than the target and
blocks for which it was smaller than the target form a Rauzy sequence).

Let W̃ ⊆ {0, 1}M be the set we defined. Clearly, W̃ ⊆ W . We can
estimate by Stirling’s formula

log |W̃ | ≥
⌊

2M

K0

⌋
·log

(
K0/2

PK0/2

)
= 2MH(P )+O

(
M logK0

K0

)
+O(K0).

�

Let Y (δ) = sup0≤γ≤2 Ỹ (γ, δ), where

Ỹ (γ, δ) = H(P ) + σ(P log n0 + (1− P ) log n1)

+
(
1− σγ−bγc

)
∆((−1)bγc)

+
1

1 + σ

(
σ−2bγ/2c∆(−1) + σ−2b(γ−1)/2c+1∆(+1)

)
+ (−1)bγc

(
2σγ−bγc

1 + σ
− 1

)
δ log

n0

n1

(4.8)
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and
∆(s) := H(P + sδ)−H(P ).

Note that the first line of (4.8) has an important geometric meaning:

H(P ) + σ(P log n0 + (1− P ) log n1) = logm · dimH Xα.

Lemma 4.13.

lim
K0→∞

dimBWα,δ,K0 =
Y (δ)

logm
.

Proof. We will estimate the number Zr of approximate squares of level
σ−r necessary to cover Wα,δ,K0 . Here r is not necessarily an integer.

Let

Q(r) :=
n−1∑
j=0

F σ−r+1−1
0 (0, j)

We can calculate

Q(r) = (σ1−r−σ1−brc)(P+(−1)brc−1δ)+

brc−1∑
`=1

(σ−`−σ1−`)(P+(−1)1−`δ)+O(K0r).

The geometric series is easy to sum, we get

(4.9) σr−1Q(r) = P + (−1)brc
(

2σr−brc

1 + σ
− 1

)
δ +O(σrK0).

We can now write a formula for Zr, using Lemma 4.12:

logZr = (σ−r − σ−brc)H(P + (−1)brcδ) +

brc∑
`=1

(σ−` − σ1−`)H(P + (−1)1−`δ)

+ Q(r) log n0 + (σ1−r −Q(r)) log n1 +O

(
r logK0

K0

)
+O (K0) .

(4.10)

We can sum the geometric series and substitute (4.9), obtaining the
simple formula

logZr = σ−rH(P ) + σ1−r(P log n0 + (1− P ) log n1)

+
(
σ−r − σ−brc

)
∆((−1)brc)

+
1

1 + σ

(
σ−2br/2c∆(−1) + σ−2b(r−1)/2c+1∆(+1)

)
+ (−1)brc

(
2σr−brc

1 + σ
− 1

)
δ log

n0

n1

+O

(
r logK0

K0

)
+O(K0).

We want to calculate the upper limit

dimBWα,δ,K0 = lim sup σr
logZr
logm

.
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Note that over any subsequence r = γ, γ + 2, γ + 4, . . . the sequence
limk→∞ σ

γ+2k logZγ+2k converges:

lim
k→∞

σγ+2k logZγ+2k = H(P ) + σ(P log n0 + (1− P ) log n1)

+
(
1− σγ−bγc

)
∆((−1)bγc)

+
1

1 + σ

(
σ−2bγ/2c∆(−1) + σ−2b(γ−1)/2c+1∆(+1)

)
+ (−1)bγc

(
2σγ−bγc

1 + σ
− 1

)
δ log

n0

n1

(4.11)

As the right hand side of (4.11) is exactly the function we denoted
as Ỹ (γ, δ), the assertion follows.

�

We do not need the exact formulation of the Lemma 4.13. We only
need the following corollary:

Corollary 4.14. For α /∈ {αm, αM} and sufficiently small δ > 0,

1

logm
Y (δ) > dimH Xα.

Proof. Define

Z̃(γ, δ) = Ỹ (γ, δ)− logm · dimH Xα.

We can write the approximate form for ∂/∂δZ̃(γ, δ):

(4.12)
∂

∂δ
Z̃(γ, δ) = O(δ)+

(−1)bγc
(
H ′(P )− log

n0

n1

+ σγ−bγc(−H ′(P ) +
2

1 + σ
log

n0

n1

) + σbγc−γ
1− σ
1 + σ

H ′(P )

)
.

As Z̃(γ, 0) ≡ 0 and

∂

∂δ
Z̃(γ, δ) +

∂

∂δ
Z̃(γ + 1, δ) = O(δ),

the only possibility for supγ Z̃(γ, δ) to stay nonpositive for small δ is
that the function

H ′(P )− log
n0

n1

+ σγ
(
−H ′(P ) +

2

1 + σ
log

n0

n1

)
+ σ−γ

1− σ
1 + σ

H ′(P )

is equal to 0 for all γ ∈ [0, 1]. However, this function is a linear combina-
tion of functions 1, σγ, and σ−γ, which are linearly independent. Hence,
all the coefficients must be equal to zero. In particular, H ′(P ) = 0 and
H ′(P ) − log(n0/n1) = 0. However, this implies n0 = n1, which is a
contradiction. �
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The last part in proving Theorem 4.9 is to combine the following
proposition with Lemma 4.2.

Proposition 4.15.

dimP X
symb
α ≤ max

δ≤min(P,1−P )

Y (δ)

logm

dimP Xα ≥ max
δ≤min(P,1−P )

Y (δ)

logm

Proof. Let us start with the lower bound.
Consider any δ < min(P, 1− P ). Let γ0(δ) be such that

Y (δ) = Ỹ (γ0, δ).

Consider the measure νδ on DN defined as follows. For any even K,
for all ` ∈ [σ−K , σ−K−1) we choose i` = 0 with probability P + δ and
i` = 1 with probability 1 − P − δ0, independently. For any odd K,
for all ` ∈ [σ−K , σ−K−1) we choose i` = 0 with probability P − δ0 and
i` = 1 with probability 1− P + δ0. Whichever the choice of i`, all the
possible j`; (i`, j`) ∈ D we choose with the same probability 1/ni` .

We will use also the projection of νδ onto Λ, which we will also denote
by νδ.

Let us begin from the observation, that for every ε > 0 and for
νδ-almost every x there are only finitely many N such that all i`; ` =
N,N + 1, . . . , N(1 + ε) are equal. Hence,

(4.13) dνδ(x) = lim sup
`→∞

log νδ(C`(x))

−` logm
= δνδ(x)

νδ-almost everywhere.
To obtain the lower bound, we need the following two lemmas.

Lemma 4.16.
νδ(Xα) = 1.

Proof. By (4.13), νδ-typical point is in Xα if and only if it is in Xsymb
α .

Recall that a sufficient condition for x ∈ Xsymb
α is that there exists a

function εN → 0 such that for all except finitely many N we have

(4.14)

∣∣∣∣∣ 1

σN

n−1∑
j=0

F σN−1
0 (0, j)(x) +

1

N

n−1∑
j=0

FN−1
0 (0, j)(x)− 2P

∣∣∣∣∣ < εN .

Standard large deviation estimates show that for νδ-typical x (4.14)
is satisfied for all except finitely many N if we choose εN = N−1/3. We
skip the details. �

Lemma 4.17. For νδ-almost every x

dνδ(x) ≥ 1

logm
Y (δ).
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Proof. To prove the assertion, we just need to find a sequence ` → ∞
for which the limit in (4.13) would be not smaller than Y (δ)/ logm.
The right sequence is

`K = σaK ,

where

aK = 2K + γ0(δ).

For νδ-typical x, for K large enough we have

log νδ(C`K (x)) = −(σ−aK − σ−baKc)H(P + (−1)baKcδ)

−
baKc∑
k=1

(σ−k − σ1−k)H(P + (−1)1−kδ)

−
(
(σ1−aK − σ1−baKc)(P + (−1)baKc−1δ)

)
log n0

−

baKc−1∑
k=1

(σ−k − σ1−k)(P + (−1)1−kδ)

 log n0

−
(
σ1−aK − (σ1−aK − σ1−baKc)(P + (−1)baKc−1δ)

)
log n1

+

baKc−1∑
k=1

(σ−k − σ1−k)(P + (−1)1−`δ)

 log n1 +O(`
1/2
K ).

Comparing with (4.10), we get

log νδ(C`K (x)) = −Z`K + o(`K).

and

lim
K→∞

1

`K
log νδ(C`K (x)) = − lim

K0→∞
lim
K→∞

1

`K
Z`K .

The calculations of this limit were done in the course of proof of
Lemma 4.13:

lim
K0→∞

lim
K→∞

1

`K
Z`K = Y (δ).

The assertion follows. �

To finish the proof of the lower bound in Proposition 4.15 we need
only to observe that Y is a continuous function of δ, hence

max{Y (δ), δ ≤ min(P, 1− P )} = sup{Y (δ), δ < min(P, 1− P )},

and apply Frostman’s lemma.
To prove the upper bound, let us fix some small ε1 and some much

smaller ε2 < ε1/2U . Let us consider a finite family of intervals {Ik}Vk=1

of size ε1, covering [0, 1]. Let Jk = 3Ik, that is, an interval with the
same center as Ik but three times longer.
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For every point x ∈ Xsymb
α there is some minimal N(x) such that for

all N > N(x)

(4.15) |GσN−1(x) +GN−1(x)− 2P | < ε2.

We divide Xsymb
α into subsets

Xα,N = {x ∈ Xsymb
α ;N(x) = N}.

Our goal is to prove

Lemma 4.18. For each N ,

dimBXα,N ≤
1

logm
max

δ≤min(P,1−P )
Y (δ).

Proof. Let x ∈ XN,α. Let k be such that

GN−1(x) ∈ Ik.

By (4.15), it means that for all ` ≤ U we have

Gσ−2`N−1(x) ∈ Jk and Gσ−2`+1N−1(x) ∈ 2P − Jk
We can estimate the numberA(k,N) of possible sequences (iN(x), . . . , ibσ−2UNc).
Like in the lower bound, the estimation will be almost the same as in
the proof of Lemma 4.13:

1

(σ−2U − 1)N
logA(k,N) ≤ sup

δ;{P+δ,P−δ}∩Jk 6=∅
Y (δ) +O(ε1).

There are only V possible k’s, hence the number B(N) of possible
sequences (iN(x), . . . , ibσ−2UNc) for all x ∈ Xα,N satisfies

1

(σ−2U − 1)N
logB(N) ≤ sup

δ≤min(P,1−P )

Y (δ) +O(ε1) +O

(
1

σ−2UN

)
.

Repeating the argument for B(σ−2UN) and so on and passing to the
limit, we get

dimBXα,N ≤
1

logm
min(P, 1− P )Y (δ) +O(ε1)

and the assertion follows. �

As the packing dimension is not greater than the upper box counting
dimension, this gives the upper bound for Proposition 4.15 and so the
proof of Proposition 4.15 is complete. �

Theorem 4.9 now follows by combining Proposition 4.15, Lemma 4.2
Lemma 4.10 and Corollary 4.14. This completes the proof of Theorem
2.4.
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ul. Śniadeckich 8, 00-956 Warszawa, Poland

E-mail address: rams@impan.pl


