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Abstract

In this paper we consider the packing spectra for local dimen-
sion of Bernoulli measures supported on Bedford-McMullen carpets.
We show that typically the packing dimension of the regular set is
smaller than the packing dimension of the attractor. We also con-
sider a specific class of measures for which we are able to calculate
the packing spectrum exactly and we show that the packing spectrum
is discontinuous as a function on the space of Bernoulli measures.

1 Introduction

The aim of this paper is to develop the theory of multifractal analysis for
a special class of self-affine measures. These measures are the Bernoulli
measures supported on Bedford-McMullen carpets, [McM], [B] and their
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multifractal properties have been studied in several papers: [K], [O], [N],
[BM], [GL], [JR], [R] and [BF]. However most of these papers focus on
the Hausdorff spectra and very little is known about the packing spectra.
For self-similar measures satisfying the open set condition the packing and
Hausdorff spectra are the same [CM, AP] but are in general different for
subsets of the irregular set where the liminf and limsup are specified, [BOS].
For Bernoulli measures on Bedford-McMullen carpets in [O] an upper bound
is given in terms of the Legendre transform of a certain function, this is
typically greater than the Hausdorff spectra. However in [R] it is shown
that this upper bound may not be sharp and that there are cases when
the Hausdorff spectra and packing spectra are the same even when the
Hausdorff and packing dimensions of the attractor are different. Moreover
Reeve, [R] calculated the packing spectra for a specific class of self-affine
measures.

We extend this theory in two ways, firstly by showing that for a generic
class of self-affine measures the packing dimension of the attractor is strictly
greater than the maximum of the packing spectra, i.e. the packing dimen-
sion of the regular set. Secondly we consider a specific family of Bedford-
McMullen carpets and Bernoulli measures supported on these carpets. We
explicitly calculate the packing spectra for this family and show that it is
not a continuous function of the parameters for the measures. This is in
contrast to the case for the Hausdorff and packing spectra for self-similar
measures, [CM], [AP] and for the Hausdorff spectra of self-affine measures
on Bedford-McMullen carpets, [BM], [K], [O] and [JR].

The setting we consider is that for a given Bernoulli measure µ supported
on a Bedford-McMullen carpet, we look at the set of points where the local
dimension of µ equals α (to be denoted by Xα) and the set of points where
the symbolic local dimension of µ (i.e. the local dimension obtained by using
approximate squares instead of geometric balls) equals α, to be denoted by
Xsymb
α . Then the Hausdorff dimensions of Xα and Xsymb

α coincide, they also
coincide with the Hausdorff dimension of certain Bernoulli measure µα, for
which a typical point belongs to Xsymb

α . The function dimH Xα is concave,
it is a Legendre transform of some well-defined multifractal function. The
maximum value achieved by dimH Xα equals the Hausdorff dimension of the
whole Bedford-McMullen carpet. Moreover, dimH Xα is real analytic both
as a function of α and as a function of µ.

Seeing this, Olsen in [O] conjectured that (most of) the same prop-
erties hold for the packing spectrum. In particular, he conjectured that
dimP X

symb
α is a Legendre spectrum of another multifractal function, and

then wrote down some properties of such a function. However in [R] it was
shown that for a certain family of examples the packing spectra is the same
as the Hausdorff spectra even when the packing dimension and Hausdorff
dimension of the attractors is different. In particular this shows that the
conjecture in [O] cannot hold in general. This is related to work by Nielsen,
[N] where the dimension of sets determined by the frequencies of occurrence
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of each map in the iterated function system. Again in this case Nielsen
shows that the packing and Hausdorff spectra are the same even when the
Hausdorff and packing dimension of the attractor are different.

In this note we go on to show that under a condition which holds for
typical carpets the conjecture in [O] cannot hold and then by considering a
specific class of examples that the situation is much more complicated than
the situation with the Hausdorff spectra. We prove two theorems. The first
one, Theorem 2.3, states that it is unlikely that the maximum of (symbolic)
packing spectrum equals the packing dimension of the Bedford-McMullen
carpet. More precisely, there is a codimension one condition necessary and
codimension two condition sufficient for this to happen. Both conditions are
on coefficients of the Bernoulli measure µ.

Our Theorem 2.4 is more interesting. We consider a very special family
of Bernoulli measures, but the same phenomenon holds in much greater
generality. Assume the Bedford-McMullen carpet has exactly two rows. We
also assume that the Bernoulli measure µ is equally distributed in each row.
For a given carpet such measures form a one parameter family, they are
uniquely determined by the measure of the first row. For such measures
we have dimP Xα = dimP X

symb
α for all α. Then, for all parameter values

except one, dimH Xα = dimP Xα for all α. However, there is one exceptional
measure µ in our family for which dimH Xα < dimP Xα for all α in the
interior of the spectrum interval. The function dimP Xα is still well behaved
as a function of α, but as a function of µ it is not even continuous.

Note here that this phenomenon is not an artifact created by the fact that
the packing dimension is in some way not adequate to study the local di-
mension spectrum. On the contrary, while for all non-exceptional measures
µ the set Xα is equal to the set of µα-typical points, for the exceptional
measure it is strictly greater. The Hausdorff dimension of those additional
points is equal to dimH µα (which is why this set does not cause the Haus-
dorff dimension to grow), but the packing dimension is strictly greater than
dimH Xα for all α in the interior of the spectrum.

We are not able to present any conjectures, as to what the packing
spectrum really is in general. But it certainly seems to be an object worthy
of further study.

2 Notation and results

We start this section by defining packing dimension and stating some basic
results we use to calculate the packing dimension of sets. For a set A ⊆ Rd

and s ≥ 0 let

P̃(A) = lim
ε→0

sup

{∑
i

B(xi, ri) : xi ∈ A, ri < ε and |xi − xj| > ri + rj for i 6= j

}
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and define the outer packing measure by

P(A) = inf
{∑

P̃(Ai) : ∪iAi ⊇ A
}
.

P gives a measure when restricted to measurable sets and we can define the
packing dimension analogously to Hausdorff dimension by

dimP (A) = inf{s : P(A) = 0} = sup{s : P(A) =∞}.

While the main focus of this paper is on packing dimension we will at time
use Hausdorff dimension, denoted by dimH , and upper box counting di-
mension denoted dimB, for the definitions of these dimension we refer the
reader to . We will use the following standard results on packing dimen-
sion throughout the paper: the first result relates packing dimension to the
Hausdorff dimension and the upper box dimension.

Lemma 2.1. For any A ⊆ Rd we have that

dimH(A) ≤ dimP (A) ≤ dimB(A).

Proof. See [Ma][page 82].

The second is a version of Frostman’s lemma for packing dimension.

Lemma 2.2. For a Borel set A ⊆ Rd if there exists a Borel probability
measure µ such that µ(A) = 1 and

lim sup
r→0

log µ(B(x, r))

log r
≥ s

for all x ∈ A then dimP A ≥ s.

Proof. See [Ma][Theorem 6.11, page 97].

We now formally introduce Bedford-McMullen carpets. Let m,n ∈ N
with 2 ≤ m < n and

D ⊆ {0, . . . ,m− 1} × {0, . . . , n− 1}

where |D| ≥ 2 and we define σ := logm
logn

. For (i, j) ∈ D let Ti,j : R2 → R2 be
defined by

Ti,j((x, y)) =

(
x+ i

n
,
y + j

m

)
and Λ be the unique non-empty compact set satisfying

Λ = ∪(i,j)∈DTi,j(Λ).

Sets of the form Λ were first studied in [B] and [McM] and are usually known
as Bedford-McMullen carpets. We will let L0 = |D|, and for 0 ≤ i ≤ m− 1
we let

ni = |{(i, j) ∈ D : 0 ≤ j ≤ n− 1}|.
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Finally let L1 = |{i : ni 6= 0}|.
The geometry of affine sets is different than the geometry of conformal

fractals because the cylinders are not approximate balls anymore. Hence,
in order to work with the geometric properties of the fractal, we need to
use not single cylinders but some unions of cylinders. Given two positive
integers n1 ≤ n2 and a point x ∈ Λ we define the rectangle

Rn1,n2(x) = {y ∈ Λ; ik(y) = ik(x) ∀k ≤ n2andjk(y) = jk(x) ∀k ≤ n1}.

Note that RN,N(x) is just the N -th level cylinder containing x. The rectangle
Rn1,n2(x) is an intersection of Λ with a geometrical rectangle with horizontal
side n−n1 and vertical side m−n2 . The N -th level approximate square is
defined as CN(x) = RdσNe,N(x). It is a set of diameter approximately m−N .
It will sometimes be convenient to define CN(x) for non-integer values of
N > 0, we will denote CN(x) = CdNe(x).

We now introduce the class of measures we will be considering which
are projections of Bernoulli measures to Bedford-McMullen carpets. We let
{pi,j}(i,j)∈D be a probability vector and µ be the unique Borel probability
measure for which for all Borel sets B ⊆ R2 we have

µ(B) =
∑

(i,j)∈D

pi,jµ(T−1
i,j (B)).

An alternative way of defining this measure is as the natural projection of
{pi,j} Bernoulli measure from the shift space DN to Λ.

In this paper we deal with local dimensions. The geometric local di-
mension (or simply local dimension; we use the name geometric local di-
mension to distinguish it from the symbolic local dimension) of a Borel
measure µ supported in R2 at a point x is defined as

dµ(x) = lim
r→0

log µ(Br(x))

log r
,

provided the limit exists. However it is often easier to work with approximate
squares rather then geometric balls. Thus we define the symbolic local
dimension as

δµ(x) = lim
N→∞

log µ(CN(x))

−N logm
,

provided the limit exists. For any α ∈ R we will denote

Xα = {x ∈ Λ : dµ(x) = α} and Xsymb
α {x ∈ Λ : δµ(x) = α}.

The functions α → dimP Xα and α → dimP X
symb
α are called geometric

and symbolic packing local dimension spectra of µ.
In several cases it is possible to show that δµ(x) = dµ(x) however this is

not always true. We will let

αm = min
(i,j)∈D

−σ log pij + (σ − 1) log qi
logm



6 T. Jordan and M. Rams

and

αM = max
(i,j)∈D

−σ log pij + (σ − 1) log qi
logm

,

where
qi =

∑
j

pi,j.

Note that α /∈ [αm, αM ] is equivalent to Xα = Xsymb
α = ∅.

Clearly, the relation between geometric and symbolic local dimension
at any given point is given by the geometric interplay between balls and
approximate squares. On the one hand, we have for all x ∈ Λ:

(2.1) CN(x) ⊆ Bm−N (x).

On the other hand, the point x can be very close to the boundary of
an approximate square it lies in, and then the ball Bcm−N (x) will only be
contained in CN(x) for very small c. We can describe the distance from x
to the boundary of CN(x) using the symbolic expansion of x. Denote

IN(x) =
1

N
sup{k ∈ N; iN+1(x) = . . . = iN+k(x) ∈ {0,m− 1}}

and

JN(x) =
1

dσNe
sup{k ∈ N; jdσNe+1(x) = . . . = jdσNe+k(x) ∈ {0, n− 1}}.

If some positive δ is greater than IN(x) and JN(x) then the distance
from x to the boundary of CN(x) is at least m−N(1+δ), and hence

(2.2) Bm−N(1+δ)(x) ⊆ CN(x).

An easy consequence of (2.1), (2.2) is that if both IN(x) and JN(x)
converge to 0 as N goes to infinity (in particular, almost all points for
any Bernoulli measure with nontrivial horizontal and vertical projections
have this property) then the symbolic and local dimensions of any Bernoulli
measure coincide at x.

The symbolic local dimension can thus be used to calculate the geometric
local dimension at many points. At the same time, for any Bernoulli measure
µ its symbolic local dimension at a point x is easy to calculate from symbolic
expansion of x. We have

(2.3) µ(CN(x)) =

dσNe∏
k=1

pik(x),jk(x) ·
N∏

k=dσNe+1

qik(x)
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and we can calculate δµ(x) directly. Note also another important conse-
quence of (2.3): there exists a constant K > 0 such that for any x ∈ Λ and
N > 0 we have

(2.4) K <
µ(CN+1(x))

µ(CN(x))
≤ 1.

Our results are as follows. We remind that the Bernoulli measure living
on a Bedford-McMullen carpet is defined by the first iteration image: n×m
rectangular grid in the unit square with probabilities corresponding to the
rectangles, and that: L0 is the number of rectangles with nonzero proba-
bilities, ni is the number of rectangles in the ith horizontal row, L1 is the
number of nonempty rows, pi,j is the probability of the rectangle (i, j) and
qi is the probability of the ith horizontal row.

Theorem 2.3. The symbolic and geometric packing local dimension spectra
are both strictly smaller than dimP Λ for systems not satisfying

(2.5)
∑
i

1

L1

log qi =
∑
i

ni
L0

log qi = A.

For systems satisfying both (2.5) and

(2.6)
∑

(i,j)∈D

1

L0

log pij =
∑

(i,j)∈D

1

niL1

log pij = B

both the geometric and symbolic packing spectra are equal to dimP Λ at

α0 = − 1

logm
(σB + (1− σ)A).

Consider now a special class of systems. Assume that the Bedford-McMullen
carpet has only two rows with n0 and n1 rectangles in each. Let M be the
class of Bernoulli measures with probabilities equidistributed in each row.
Denote by p0 the probability of each rectangle in the first row and by p1 the
probability of each rectangle in the second row; the condition n0p0+n1p1 = 1
must hold with q0 = n0p0 and q1 = n1p1.

Theorem 2.4. For µ ∈M, we have that for α ∈ [αm, αM ]

1. If µ ∈M and log(q0/q1)
σ log(n0/n1)

6= −1 then

dimP Xα = dimP X
symb
α = dimH Xα

2. If µ ∈ M is the unique measure for which log(q0/q1)
σ log(n0/n1)

= −1 then for

α ∈ (αm, αM) we have that

dimH Xα < dimP Xα = dimP X
symb
α

and for α ∈ {αm, αM}
dimH Xα = dimP Xα = dimP X

symb
α .
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3 Proof of Theorem 2.3

The main part of the proof is to show that (2.5) is necessary for the geomet-
ric and symbolic packing spectra to achieve dimP (Λ). To prove this for a
fixed Bernoulli measure we construct two sets of dimension strictly smaller
than dimP (Λ) and then prove that the first set contains all symbolically
regular points and that the second set contains all regular points. The sec-
ond part of the Theorem, that satisfying both conditions (2.5) and (2.6) is
sufficient for the maximum of the geometric and symbolic packing spectra
to achieve dimP (Λ), is easy to show.

Let µ be the Bernoulli measure defined by the probability vector {pij}
defined on the digit set D ⊆ {0, . . . ,m − 1} × {0, . . . , n − 1}, m < n. We
assume that D contains at least two different i’s and at least two different
j’s, otherwise the system would be a self-similar IFS on the line. We have

dimB Λ = dimP Λ = s :=
1

logm
(σ logL0 + (1− σ) logL1),

where σ = logm/ log n.
Let us start with a simple geometric lemma. For k1, k2 ∈ N with K1 < k2

we denote by F k2
k1

(i, j)(x) the frequency of symbol (a, b) in the sequence
(i, j)k1+1(x), . . . , (i, j)k2(x). More precisely

F k2
k1

(i, j)(x) :=
#{(il(x), jl(x)) = (i, j) : k2 < l ≤ k1}

k2 − k1

.

We will extend this notation to the case when k1 and k2 are not integers
and k2 − k1 ≥ 1 in which case F k2

k1
(i, j)(x) will denote the frequency of the

symbol (i, j) in the sequence (i, j)dk1e+1(x), . . . , (i, j)dk2e(x). For a > 0 we
let Z(N, a) be the set of points x ∈ Λ such that for any M > N one of the
following seven nongenericity conditions holds:

i) FM
0 (i, j)(x) /∈ [1/L0 − a, 1/L0 + a] for some (i, j) ∈ D,

ii) F
dMσ−1e
M (i, j)(x) /∈ [1/L0 − a, 1/L0 + a] for some (i, j) ∈ D,

iii)
∑

j F
dMσ−2e
dMσ−1e (x) /∈ [1/ni − a, 1/niL1 + a] for some i,

iv) all the symbols jM+1(x), . . . , jdM(1+a)e(x) are equal,

v) all the symbols idMσ−1e+1(x), . . . , idMσ−1(1+a)e(x) are equal.

vi) all the symbols jdMσ−1e+1(x), . . . , jdMσ−1(1+a)e(x) are equal,

vii) all the symbols idMσ−2e+1(x), . . . , idMσ−2(1+a)e(x) are equal.

Let Z̃(N, a) be the subset of Z(N, a) consisting of points x ∈ Λ such
that for any M > N one of the first three nongenericity conditions i), ii) or
iii) holds.
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Lemma 3.1. For any a > 0

sup
N

dimBZ(N, a) < s.

Proof. Let us begin by calculating the upper box counting dimension of
Z̃(N, a). The general idea of the proof is that we have approximately zM =

LMσ−1

0 L
M(σ−2−σ−1)
1 approximate squares of level dMσ−2e but for N < M

Z̃(N, a) intersects at most zMe
−cMa2

of them.

There are three types of points x ∈ Z̃(N, a). If FM
0 (i, j)(x) /∈ [1/4L0 −

a, 1/L0+a] for some (i, j) ∈ D then there are only L
M(1−c1a2)
0 possible values

of the initial M symbols (i, j)k(x). Indeed, the entropy of Bernoulli measure
with probabilities p1, . . . , pL0 is logL0, achieved when all those probabili-
ties are equal to 1/L0, and this maximum is nonflat. Hence, all points of

this type can be covered by at most L
M(1−c1a2)
0 L

dMσ−1e−M
0 L

dMσ−2e−dMσ−1e
1 ≈

zML
−c1Ma2

0 approximate squares of level dMσ−2e.
If F

dMσ−1e
M (i, j)(x) /∈ [1/L0 − a, 1/L0 + a] for some (i, j) ∈ D then there

are only L
(dMσ−1e−M)(1−c2a2)
0 possible values of the symbols (i, j)k(x) for k =

M + 1, . . . , dMσ−1e. Hence, by a reasoning similar to the previous one, all

points of this type can be covered by at most zML
−c2a2M(σ−1−1)
0 approximate

squares of level dMσ−2e.
If
∑

j F
dMσ−2

dMσ−1 (i, j)(x) /∈ [1/niL1 − a, 1/niL1 + a] for some i then there

are only l
(dMσ−2e−dMσ−1e)(1−c3a2)
1 possible values of the symbols ik for k =

dMσ−1e + 1, . . . , dMσ−2e. Hence, all points of this type can be covered by

at most zML
−c3a2M(σ−2−σ−1)
1 approximate squares of level dMσ−2e.

The points in Z̃(N, a) might satisfy different nongenericity conditions

for different M . However, for each M > N all the points in Z̃(N, a) can be
covered by at most zMe

−cMa2
approximate squares of level dMσ−2e. Hence,

dimBZ̃(N, a) ≤ s− c̃a2.

Consider now the set Z(N, a). Instead of using approximate squares of
level dMσ−2e, we will use squares of level dMσ−2(1 +a/4)e. Note first, that
if x ∈ Λ satisfies one of nongenericity conditions i), ii), iii) for M and a, it
will also satisfy them for dM(1 + a/4)e and a/2.

Indeed, if x satisfies nongenericity condition i) then the symbols ((i, j)k(x))
dM(1+a/4)e
k=0

are the same symbols as ((i, j)k(x))Mk=0 (where frequencies differ from (1/L0, . . . , 1/L0)

by at least a) plus approximately Ma/4 new symbols ((i, j)k(x))
dM(1+a/4)e
k=M+1

which can change the frequencies at most by a/4. If x satisfies either non-
genericity ii) or iii) then passing from M to dM(1 + a/4)e changes the con-
sidered ranges of k on both ends: some symbols in the beginning drop out,
some symbols at the end are added. Altogether the change of frequencies
cannot top a(2 + σ)/4(1 + σ) < a/2.
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Hence, all the points x ∈ Λ satisfying nongenericity conditions i), ii) or
iii) for givenM and a can be covered with at most zM(1+a/4)m

−c̃Mσ−2(1+a/4)a2/4

sets of diameter m−dMσ−2(1+a/4)e, like in the first part of proof.
If x ∈ Λ satisfies nongenericity condition iv) then the sequence ((i, j)k(x))

dM(1+a/4)e
k=M+1

can take only (L0 − 1)daMe/4 possible values. Hence, the points of this type
can be covered by at most zM(1+a/4)((L0− 1)/L0)

Ma/4 approximate squares
of level dMσ−2(1 + a/4)e.

The cases of nongenericity conditions v) or vi) are almost identical, the

sequence ((i, j)k(x))
dMσ−1(1+a/4)e
dMσ−1+1e can take only (L0−1)daσ

−1M/4e possible val-

ues and we can cover those points with at most zM(1+a/4)((L0−1)/L0)
Mσ−1a/4

approximate squares of level dMσ−2(1 + a/4)e.
Finally, if x ∈ Λ satisfies nongenericity condition vii) then the sequence

{ik(x)}dMσ−2(1+a/4)e
k=dMσ−2e+1 can take only (L1 − 1)daMσ−2/4e possible values. Hence,

the points of this type can be covered by at most zM(1+a/4)((L1−1)/L1)
Mσ−2a/4

approximate squares of level dMσ−2(1 + a/4)e.
As a is small, a2 is small in comparison to a. Hence, again we get a

quadratic bound (independent from N) for the upper box counting dimen-
sion of Z(N, a):

dimBZ(N, a) ≤ s− ca2.

We now proceed with the proof of the theorem. Let us consider the
symbolic local dimensions first. Assume that (2.5) does not hold and let

δ =

∣∣∣∣∣ 1− σ
3 logm

·
∑
i

(
1

L1

− ni
L0

)
log qi

∣∣∣∣∣ .
Let

Xα,N,δ = {x ∈ Λ;α− δ < log µ(CN0(x))

−N0 logm
< α + δ ∀N0 > N}.

We have

Xregsymb ⊆
⋃
α

⋃
N

Xα,N,δ.

Let x ∈ Xα,N,δ. Let a0 ≥ 0 be the smallest number for which the following
are true:

i) 1/L0 − a0 ≤ FM
0 (i, j)(x) ≤ 1/L0 + a0 for all (i, j) ∈ D,

ii) 1/L0 − a0 ≤ FMσ−1

M (i, j)(x) ≤ 1/L0 + a0 for all (i, j) ∈ D,

iii) 1/niL1 − a0 ≤
∑

j F
Mσ−2

Mσ−1 (i, j)(x) ≤ 1/niL1 + a0 for all i.
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By (2.3), we have
(3.1)

− logm

Mσ−1
log µ(CMσ−1(x)) = σ

∑
(i,j)∈D

1

L0

log pi,j + (1− σ)
∑
i

ni
L0

log qi + Z1

and
(3.2)

− logm

Mσ−2
log µ(CMσ−2(x)) = σ

∑
(i,j)∈D

1

L0

log pi,j + (1− σ)
∑
i

1

L1

log qi + Z2,

where

|Z1|, |Z2| < a0 ·max(max
i,j
| log pi,j|, nmax

i
| log qi|) +O(1/M).

Denoting T = max(maxi,j | log pi,j|, nmaxi | log qi|), we see that, as the
left hand sides of (3.1) and (3.2) can differ at most by 2δ logm and the right
hand sides differ at least by 3δ logm− |Z1| − |Z2|, we must have

a0 > a =
logm

2T
· δ.

Hence,

Xregsymb ⊆
⋃
N

Z̃(N, a)

and the symbolic part of the assertion follows by Lemma 3.1.
Now consider the regular points for geometric local dimension. Let x ∈

Xreg. There exist α (which can be chosen from a finite set) and N > 0 such
that for all M > N

log µ(Bm−M (x))

−M logm
∈ [α− δ/2, α + δ/2].

There are two cases: either the inequality

log µ(CM̃(x))

−M̃ logm
∈ [α− δ, α + δ]

holds for both M̃ = dMσ−1e and M̃ = dMσ−2e or it does not hold for at
least one of those. If it holds then, like above, x must satisfy nongenericity
condition i), ii) or iii) for M and a. If it does not hold for one of possible
values of M̃ then, necessarily, the measures of CM̃(x) and Bm−M̃ (x) must

differ at least by factor mM̃δ/2. However, by (2.1), (2.2) and (2.4) it is only
possible if either IM̃(x) or JM̃(x) are greater than ã = δ| logK|/2 logm.
Hence, in this case x must satisfy nongenericity condition iv), v), vi) or vii)
for M and ã. We came to conclusion that
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Xreg ⊆
⋃
N

Z(N,min(a, ã))

and we are done by Lemma 3.1.
For the second statement of the theorem, if both (2.5) and (2.6) hold, all

points x ∈ Λ which symbolic expansions can be divided into parts in which
symbols (i, j) ∈ D appear with frequencies {1/L0, . . . , 1/L0} and parts with
frequencies {1/niL1} belong to Xsymb

α0
. If in addition we demand that they

do not have long stretches of identical i’s or j’s then the geometric local
dimension at those points is also α0. It is easy to check that those points
have full packing dimension.

4 Proof of Theorem 2.4

The proof is divided into four parts. In the first part we relate the symbolic
and geometric local dimensions at any point. We continue by looking at
how the local dimensions can be determined by observing the frequency of
digits in initial parts of symbolic expansions. This now naturally splits the
argument into two cases which are the final two parts of the proof. The first
case corresponds to part 1 of the Theorem and the second case corresponds
to part 2 of the Theorem. In fact part 2 of the Theorem is about only one
measure but it will turn out this is the only case when the Hausdorff and
packing spectra are different and it is by far the most difficult case.

4.1 Geometric and symbolic local dimensions

We start by studying the relationship between the symbolic and geometric
local dimensions.

Lemma 4.1. If α ∈ [αmin, αmax] and dµ(x) = α but dsymb
µ (x) 6= α then the

symbolic expansion, (ik, jk) for x satisfies that there must exist η > 0 and
infinitely many integers nj such that inj = inj+k for all 0 ≤ k ≤ [ηnj].

Proof. To start the proof fix a positive integer N and let k(N) = inf{z :
iN 6= iN+z}. Recall that the ball Bcm−N (x) contains CN(x) for c = n + 1
and if c = m−(k+1), it is contained in CN(x) ∪ CN(x′) for some x′ for which
ik(x

′) = ik(x)∀k. Note that either µ(CN(x′)) = 0 or µ(CN(x′)) = µ(CN(x)).
Hence

µ(B(n+1)m−N (x) ≤ µ(CN(x)) ≤ 2µ(B(m−k+1m−N (x))

and if the symbolic and geometric local dimensions are not equal then we
cannot have that K(N) = o(N) and the result follows.

Lemma 4.2.

Xα ⊆ Xsymb
α
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Proof. Let x ∈ Xα. For any ε > 0 there must exist N0 such that

x ∈ {x ∈ Λ : µ(B(x,m−N)) ∈ (m−N(α−ε),m−N(α−ε)) for all N ≥ N0}.

We will denote this set by Yα,N0,ε. By Lemma 4.1 there must exist δ > 0
and infinitely many N ≥ N0 such that K(N)/N ≥ δ. We will fix such an
N > something and assume without loss of generality that iN = 1. For
c > n and M ∈ [N,N(1 + δ)] the ball Bcm−M (x) will contain both the
approximate square CM(x) and approximate square CM(yN), where yN is
the point with the same symbolic expansion as x except ik(y) = 1 − ik(x)
for k ∈ [N,N(1 + δ)]. Similarly, for c small the ball Bcm−M (x) will be
contained in CM(x)∪CM(yN)∪CM(x′)∪CM(y′N). Hence, as x ∈ Yα,N0,ε for
all M ∈ [N,N(1 + δ)] we must have

1/4m−M(α+2ε) ≤ max(µ(CM(x)), µ(CM(yN))) ≤ m−M(α−2ε).

We can also assume that for at least some N and M this maximum is
not µ(CM(x)), otherwise the symbolic and geometric local dimensions at x
would be equal. There are now several cases to consider:

Case I: q0 = q1, δ ≤ σ−1. In this situation µ(CM(x)) = µ(CM(yN)) for
all M ∈ [N,N(1+δ)], because the measure of an approximate square of level
M only depends on the initial Mσ symbols from the symbolic expansion,
which are the same for x and for yN .

Case II: q0 = q1, δ > σ−1. In this situation we have µ(CM(x)) =
µ(CM(yN)) for allM ∈ [N,Nσ−1] like in case I, but forM ∈ [Nσ−1, N(1+δ)]
we have

µ(CM(yN))

µ(CM(x))
=

(
p1

p0

)σM−N−1

.

As µ(CM(yN)) is greater for at least some M , we must have p1 >
p0. Hence, −1/M log(µ(CM(yN))/µ(CM(x))) is a monotonically increasing
function. By our assumptions about x we may assume that for all M ∈
[N,N(1 + δ)] ,

µ(CM(yN)) ∈ (1/4m−M(α+2ε),m−M(α−2ε))

and there exists M ∈ [N,N(1 + δ)] such that

µ(CM(x)) < 1/4m−M(α+2ε).

Since −1/M log(µ(CM(yN))/µ(CM(x))) is monotonically increasing in M
we have that

µ(CN(1+δ)(x)) < m−N(1+δ)(α+2ε)

At the same time, our assumptions give us

µ(CN(1+δ)(x)) ≥ m−N(1+δ)(α+2ε)
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which is a contradiction.
Case III: q0 6= q1, δ ≤ σ−1. We have for all M ∈ [N,N(1 + δ)]

µ(CM(yN))

µ(CM(x))
=

(
q1
q0

)M−N−1

.

Like in case II, −1/M log(µ(CM(yN))/µ(CM(x))) is a monotonically in-
creasing function, we must have for all M ∈ [N,N(1 + δ)]

µ(CM(yN)) ∈ (1/4m−M(α+2ε),m−M(α−2ε))

but we also have

µ(CN(1+δ)(x)) ≈ m−N(1+δ)α,

which leads to a similar contradiction.
Case IV: q0 6= q1, δ > σ−1. This time, −1/M log(µ(CM(yN))/µ(CM(x)))

is a monotonically increasing function for M ∈ [N,Nσ−1] but might be
monotonically decreasing for M ∈ [Nσ−1, N(1 + δ)]. Hence, if δ satisfies

(4.1) m−2N(1+δ)ε ≤
(
q1
q0

)N(1+δ)(1−σ)(
p1

p0

)N((δ+1)σ−1)

≤ m2N(1+δ)ε

then it is possible that

1

N(1 + δ) logm

∣∣log µ(CN(1+δ)(x))− log µ(CN(1+δ)(yN))
∣∣ < 2ε

and the contradiction like in cases II, III does not happen. However, note
that

µ(CN(1+δ)(yN)) = µ(CNσ−1(yN)) · qN(1+δ−σ−1)
1 p

N((1+δ)σ−1)
1 .

As

1

N(1 + δ)
log µ(CN(1+δ)(yN)) ∈ ((−α− 2ε) logm, (−α + 2ε) logm)

and

1

Nσ−1
log µ(CNσ−1(yN)) ∈ ((−α− 2ε) logm, (−α + 2ε) logm)

we must have that

−α logm = σ log p1 + (1− σ) log q1,

which implies α = αmin.
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Consider now M = N(1 + δ)σ−1. In the symbolic expansion of x there
are at least Nδ zeros on the first N(1 + δ) places. Hence, the measure
of any approximate square of level N(1 + δ)σ−1 that can intersect the ball
Bm−Nδσ−1 (x) (the symbolic descriptions of those squares share the firstN(1+
δ) symbols with x) is at most

pN1 p
Nδ
0 q

N(1+δ)(σ−1−1)
0 = m−αN(1+δ)σ−1 ·

(
p0

p1

)Nδ
·
(
q0
q1

)N(1+δ)(σ−1−1)

(remember that q1 < q0 and p1 > p0 by (4.1)). By (4.1),(
p0

p1

)Nδ
·
(
q0
q1

)N(1+δ)(σ−1−1)

≤ m2N(1+δ)σ−1ε ·
(
p0

p1

)N(σ−1−1)

< m−N(1+δ)σ−1ε.

Hence, x cannot belong to Yα,N0,ε.

4.2 Local dimensions and frequencies

We now look at the relationship between frequencies of digits and local
dimensions. To do this we need to introduce some notation adapted to this
setting. Recall that in this case we have two rows and the measure µ is a
Bernoulli measure giving weight q0/n0 to each rectangle in the first row and
q1/n1 to each rectangle in the second row. Using this for P ∈ (0, 1) we will
define the following quantities:

1. H(P ) = −P logP − (1− P ) log(1− P ),

2. Hq(P ) = −P log q0 − (1− P ) log q1,

3. CH(P ) = P log(n−1
0 P )− (1− P ) log(n−1

1 P ),

4. CHq(P ) = P log(n−1
0 q0)− P log(n−1

1 q1).

It will also be convenient to let Gk =
∑n−1

j=0 F
k−1
0 (0, j)(x)

Let µ ∈M, α ∈ [αm, αM ] and x ∈ Xsymb
α . For any positive ε we have

(4.2) Xsymb
α ⊆

⋃
N0

⋂
N>N0

Xα,N,ε.

We fix some small positive ε (in the future we will determine, how small it
should be). We assume that x ∈

⋂
N>N0

Xα,N,ε for some fixed N0. Let

β(x) = lim
k→∞

Gk(x).

be the frequency of appearance of the 0 row in the symbolic expansion of x
(if it exists). We will also use the finite approximations

Pk = GMσ2−k−1(x)
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and

P ′k =
n−1∑
j=0

FMσ1−k−1
Mσ2−k (0, j)(x),

where M > N0 is fixed, to be defined later.
Our first step is the standard calculation:

Lemma 4.3. If β(x) = β then

dsymb
µ (x) = α(β) :=

1

logm
· (σCHq(β) + (1− σ)(Hq(β)))).

Our approach is to relate the local dimension at a point x to β(x) and
use the following lemma.

Lemma 4.4 (Gui-Li). For all β ∈ [0, 1] we have that

dimP{x : β(x) = β} = dimH{x : β(x) = β} =
1

logm
·(σHq(β) + (1− σ)(Hq(β))) .

Proof. For β ∈ (0, 1) this follows from Theorem 1.1 in [GL]. For the case
when β = 0 or 1 it is a simple exercise.

Under certain special cases it is straightforward to show that {x : β(x) =
β} = Xsymb

αβ
.

Lemma 4.5. 1. If n0 = n1 and q0 6= q1 then {x; β(x) = β} = Xsymb
α(β) .

2. If q0 = q1 and n0 6= n1 then {x; β(x) = β} = Xsymb
α(β) .

3. If q0 = q1 and n0 = n1 then αm = αM and Xsymb
αm = Λ

Proof. For the first part fix x ∈ Λ and k ∈ N, we can calculate

− log µ(Ck(x)) = kHq(Gk(x)) + σk log n0 + o(k)

and we can see that dsymb
µ = α(β) if and only if limk→∞Gk(x) = β. For the

second part we have that if q0 = q1 = 1/2

− log(µ(Ck(x))) = k log 2 + kσ(Gσk log n0 + (1−Gσk) log n1) + o(k).

Again we clearly have that dsymb
µ (x) = α(β) if and only if limk→∞Gk(x) = β.

Finally for the 3rd part if n0 = n+ 1 then

− log(µ(Ck(x)) = k log 2 + kσ log n0 + o(k)

and

dsymb
µ (x) =

log 2 + σ log n0

logm
= dim Λ = αm = αM .
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Thus in the rest of the proof we assume that n0 6= n1 and q0 6= q1 and
define

A =
log(q0/q1)

σ log(n0/n1)
.

In the case that |A| 6= 1 we will again be able to show that x ∈ Xsymb
α

uniquely determines β(x). If A = 1 then the set Xsymb
α contains not only

points with a fixed (nonunique) β(x) but also some additional points for
which β(x) does not exist. However, we will prove that this does not lead
to an increase of either Hausdorff or packing dimension. Finally, if A = −1
then the set Xsymb

α also contains some additional points with no β(x). In
this case, which is covered in part 2 of Theorem 2.4, this leads to an increase
of the packing dimension, though not the Hausdorff dimension.

Lemma 4.6. If n0 6= n1 and q0 6= q1 then

(4.3) Pk+1 = F (Pk) +O(ε) +O(σk/M),

where
F (Pk) = A−1Pk +B

and

B = − 1

log(q0/q1)
(α logm+ σ log p1 + (1− σ) log q1).

Proof. Given x ∈ Λ and M ∈ N, the measure µ(Cσ1−kM(x)) is precisely

determined by {ik(x)}bσ
1−kMc−1

k=0 .
We have

(4.4) − 1

σ1−kM
log µ(Cσ1−kM(x)) = σ(CHq(Pk)) + (1− σ)(Hq(P

′
k)) + o(1).

For x ∈ Xα,Mσ1−k,ε we have

1

σ1−kM
log µ(Cσ1−kM(x)) ∈ [−(α + ε) logm,−(α− ε) logm],

hence (4.4) lets us obtain a relation between Pk and P ′k. Applying the obvi-
ous relation

Pk+1 = σPk + (1− σ)P ′k +O(σk/M)

we get

(4.5)

log
q0
q1
Pk+1 = log

n0

n1

Pk−α logm−σ log p1− (1−σ) log q1 +O(ε)+O(σk/M)

and the assertion follows.
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We will denote by P the fixed point of F and by µP the Bernoulli measure
given by the probability vector p̃0j = P/n0, p̃1j = (1− P )/n1. We note that
µP is the Bernoulli measure constructed by King in [K] and that

dimH Xα = dimH X
symb
α = dimH µP .

The map F is very simple, we only need to consider several cases de-
pending on the value of A. Note that A does only depend on µ and α, not
on M , N or ε. Hence, we can make our choice of ε only at this moment
(this will matter in the proof of the following lemma).

4.3 Proof of part 1 of Theorem 2.4

Part 1 of Theorem 2.4 corresponds to the case when A 6= −1. We will start
with the simple case |A| 6= 1.

Lemma 4.7. If |A| 6= 1 then

Xsymb
α = {x; β(x) = P}.

Proof. It follows from Lemma 4.3 that Xsymb
α ⊇ {x; β(x) = P}. To obtain

the other direction, we will consider two cases.
Case I: |A| > 1. In this situation we choose ε > 0 to be small relative

to |A−1| and note that the map F is contracting to the fixed point P .
This also means that the real frequencies Pk will converge to the region
[P − cε, P + cε] and then stay there. As ε can be chosen arbitrarily small,
the assertion follows.

Case II: |A| < 1. In this situation we choose a small ε and the map
Pk → Pk+1 is diverging (except in some cε-neighbourhood of P , where the
error term can dominate the divergence of F ). If Pk does not belong to
[P − cε, P + cε] then Pk+1 will be even further from P and so on. However,
for any point x all the frequencies Pk must belong to [0, 1], hence they must
indeed be in some cε-neighborhood of P for all k > 0. Like in the first case,
ε can be chosen arbitrarily small and the assertion follows.

We now have that by Lemma 4.4 and Lemma 4.2

dimH Xα ≤ dimP Xα ≤ dimP X
symb
α = dimH X

symb
α .

The assertion of the Theorem when |A| 6= 1 now follows since by [JR] we
know dimH Xα = dimH X

symb
α .

We are left with the case when A = 1. In this case and in the case in the
following subsection, when A = −1, the symbolic local dimension of x does
not determine β(x). However when A = 1 we have the following statement:

Lemma 4.8. If A = 1 then αm = αM and

(4.6) dimP X
symb
αm = dimH X

symb
αm = dimH Λ.
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Proof. It is clear that αm = αM and that µ is the measure of maximal
dimension. We let α = αm. We have for all x ∈ Xα,N,ε

|Pk+1 − Pk| ≤ O(ε) +O(σk/M).

Hence, a drift is possible: for any M̃ > N we might not know the fre-

quency Q =
∑

j F
M̃σ−1−1
0 (0, j)(x). Still, the set Xα,N,ε can be covered by

sup
Q∈[0,1]

exp(M̃CH(Q)) exp((σ−1 − 1)M̃H(Q)) exp(M̃O(ε))

approximate squares of level M̃σ−1 and hence

dimBXα,N,ε ≤ sup
Q∈[0,1]

1

logm
(σCH(Q) + (1− σ)H(Q))+O(ε) = dimH Λ+O(ε).

As dimH X
symb
α = dimH Λ, (4.6) follows.

The proof of part 1 of Theorem 2.4 can now be completed since by
Lemma 4.2 we have

dimH Xαm ≤ dimP Xαm = dimH Xαm = dimH Λ

and we know dimH Xαm = dimH Λ.

4.4 Proof of part 2 of Theorem 2.4

Finally, the most interesting case when A = −1 which corresponds to part
2 of Theorem 2.4. Our goal is to prove the following theorem from which
part 2 of Theorem 2.4 follows.

Theorem 4.9. Assume A = −1. If α ∈ (αm, αM) then

dimH X
symb
α < dimP X

symb
α = dimP Xα.

If α ∈ {αm, αM} then

dimH X
symb
α = dimP X

symb
α ≤ dimH Xα.

The proof of this theorem will be split into several smaller parts. The
map F has only one fixed point P , but F 2 ≡ id. Like in the case when
A = 1, drift is possible so we do not know the frequencies Q1 = GM̃(x) or
Q2 = GM̃σ−1(x), but we know that Q1 + Q2 = 2P + O(ε). Once again one
can calculate

(4.7) dimBXα,N,ε ≤ sup
ρ

1

logm
(σCH(P + ρ) + (1− σ)H(P − ρ)) +O(ε),
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where δ = ρ(1 + σ)/(1 − σ) and the supremum is taken over ρ such that
P ± δ ∈ [0, 1].

The first thing to note is that if P ∈ {0, 1} (which corresponds to local
dimensions αmin and αmax) then ρ = 0 is the only admissible choice. In these
cases we have equality in (4.7) and we have the following simple result.

Lemma 4.10. For A = −1 and α ∈ {αm, αM} we have that

dimP X
symb
α = dimH X

symb
α ≤ dimH Xα.

Proof. Let α ∈ {αm, αM} and thus P ∈ {0, 1}. Thus in inequality (4.7) the
only choice of ρ = 0 and so

dimBXα,N,ε ≤ sup
ρ

σCH(P )

logm
+O(ε)

which means that

dimP Xαsymb ≤ σCH(P )

logm
.

To complete the proof we need to show that dimH Xαsymb ≥ σCH(P )
logm

and

dimH Xα ≥ σCH(P )
logm

. To do this we observe that either Λ∩{(0, y) : y ∈ R} ⊆
Xαsymb ∪ Xα or Λ ∩ {(1, y) : y ∈ R} ⊆ Xαsymb ∪ Xα. We can then easily
calculate

dimH Λ ∩ {(0, y) : y ∈ R} =
log n0

log n
=
σCH(1)

logm

and

dimH Λ ∩ {(1, y) : y ∈ R} =
log n1

log n
=
σCH(0)

logm
.

However, in the interior of the spectrum the packing and Hausdorff sym-
bolic spectra are different.

Definition 4.11. Given δ,K0 > 0 let Wα,δ,K0 be the set of points with
following properties:

• for K even for any a, b ∈ [σ−K , σ−K+1 − 1] we have∣∣∣∣∣
n−1∑
j=0

F b−1
a (0, j)(x)− P − δ

∣∣∣∣∣ < K0

b− a
,

• for K odd for any a, b ∈ [σ−K , σ−K+1 − 1] we have∣∣∣∣∣
n−1∑
j=0

F b−1
a (0, j)(x)− P + δ

∣∣∣∣∣ < K0

b− a
.
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If x ∈ Wα,δ,K0 then whenever for some large M

GM−1(x) = P + δ′,

there exists δ′′ = δ′ +O(1/M) such that for all K ∈ N

GMσ−K−1(x) = P + (−1)Kδ′′ +O(σK/M).

Obviously, |δ′′| ≤ δ/(1 + σ). It follows that each of the sets Wα,δ,K0 is
contained in Xsymb

α .
Our nearest goal is to calculate the upper box counting dimension of

Wα,δ,K0 . We will need the following simple lemma.

Lemma 4.12. Let M be large. Let W ⊆ {0, 1}M be the set of words ω for
which for all subwords (ωa, . . . , ωb−1)∣∣F b−1

a (0)− P
∣∣ < K0

b− a
.

Then
1

M
log |W | ≥ H(P )−O

(
logK0

K0

)
−O

(
K0

M

)
.

Proof. Consider the set of sequences for which for all 0 ≤ i < 2M/K0∣∣∣F (i+1)K0/2−1
iK0/2

(0)− PK0/2
∣∣∣ ≤ 1.

Moreover, if PK0/2 is not an integer, we choose the blocks for which

F
(i+1)K0/2−1
iK0/2

(0)− PK0/2 < 0

and blocks for which

F
(i+1)K0/2−1
iK0/2

(0)− PK0/2 > 0

in such a way that for any i, j∣∣∣F jK0/2−1
iK0/2

(0)− PK0/2
∣∣∣ ≤ 1

(the blocks for which the frequency was greater than the target and blocks
for which it was smaller than the target form a Rauzy sequence).

Let W̃ ⊆ {0, 1}M be the set we defined. Clearly, W̃ ⊆ W . We can
estimate by Stirling’s formula

log |W̃ | ≥
⌊

2M

K0

⌋
· log

(
K0/2

PK0/2

)
= 2MH(P ) +O

(
M logK0

K0

)
+O(K0).
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Let Y (δ) = sup0≤γ≤2 Ỹ (γ, δ), where

Ỹ (γ, δ) = H(P ) + σ(P log n0 + (1− P ) log n1)

+
(
1− σγ−bγc

)
∆((−1)bγc)

+
1

1 + σ

(
σ−2bγ/2c∆(−1) + σ−2b(γ−1)/2c+1∆(+1)

)
+ (−1)bγc

(
2σγ−bγc

1 + σ
− 1

)
δ log

n0

n1

(4.8)

and
∆(s) := H(P + sδ)−H(P ).

Note that the first line of (4.8) has an important geometric meaning:

H(P ) + σ(P log n0 + (1− P ) log n1) = logm · dimH Xα.

Lemma 4.13.

lim
K0→∞

dimBWα,δ,K0 =
Y (δ)

logm
.

Proof. We will estimate the number Zr of approximate squares of level σ−r

necessary to cover Wα,δ,K0 . Here r is not necessarily an integer.
Let

Q(r) :=
n−1∑
j=0

F σ−r+1−1
0 (0, j)

We can calculate

Q(r) = (σ1−r−σ1−brc)(P+(−1)brc−1δ)+

brc−1∑
`=1

(σ−`−σ1−`)(P+(−1)1−`δ)+O(K0r).

The geometric series is easy to sum, we get

(4.9) σr−1Q(r) = P + (−1)brc
(

2σr−brc

1 + σ
− 1

)
δ +O(σrK0).

We can now write a formula for Zr, using Lemma 4.12:

logZr = (σ−r − σ−brc)H(P + (−1)brcδ) +

brc∑
`=1

(σ−` − σ1−`)H(P + (−1)1−`δ)

+ Q(r) log n0 + (σ1−r −Q(r)) log n1 +O

(
r logK0

K0

)
+O (K0) .

(4.10)

We can sum the geometric series and substitute (4.9), obtaining the
simple formula
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logZr = σ−rH(P ) + σ1−r(P log n0 + (1− P ) log n1)

+
(
σ−r − σ−brc

)
∆((−1)brc)

+
1

1 + σ

(
σ−2br/2c∆(−1) + σ−2b(r−1)/2c+1∆(+1)

)
+ (−1)brc

(
2σr−brc

1 + σ
− 1

)
δ log

n0

n1

+O

(
r logK0

K0

)
+O(K0).

We want to calculate the upper limit

dimBWα,δ,K0 = lim sup σr
logZr
logm

.

Note that over any subsequence r = γ, γ+2, γ+4, . . . the sequence limk→∞ σ
γ+2k logZγ+2k

converges:

lim
k→∞

σγ+2k logZγ+2k = H(P ) + σ(P log n0 + (1− P ) log n1)

+
(
1− σγ−bγc

)
∆((−1)bγc)

+
1

1 + σ

(
σ−2bγ/2c∆(−1) + σ−2b(γ−1)/2c+1∆(+1)

)
+ (−1)bγc

(
2σγ−bγc

1 + σ
− 1

)
δ log

n0

n1

(4.11)

As the right hand side of (4.11) is exactly the function we denoted as
Ỹ (γ, δ), the assertion follows.

We do not need the exact formulation of the Lemma 4.13. We only need
the following corollary:

Corollary 4.14. For α /∈ {αm, αM} and sufficiently small δ > 0,

1

logm
Y (δ) > dimH Xα.

Proof. Define
Z̃(γ, δ) = Ỹ (γ, δ)− logm · dimH Xα.

We can write the approximate form for ∂/∂δZ̃(γ, δ):

(4.12)
∂

∂δ
Z̃(γ, δ) = O(δ)+

(−1)bγc
(
H ′(P )− log

n0

n1

+ σγ−bγc(−H ′(P ) +
2

1 + σ
log

n0

n1

) + σbγc−γ
1− σ
1 + σ

H ′(P )

)
.
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As Z̃(γ, 0) ≡ 0 and

∂

∂δ
Z̃(γ, δ) +

∂

∂δ
Z̃(γ + 1, δ) = O(δ),

the only possibility for supγ Z̃(γ, δ) to stay nonpositive for small δ is that
the function

H ′(P )− log
n0

n1

+ σγ
(
−H ′(P ) +

2

1 + σ
log

n0

n1

)
+ σ−γ

1− σ
1 + σ

H ′(P )

is equal to 0 for all γ ∈ [0, 1]. However, this function is a linear combination
of functions 1, σγ, and σ−γ, which are linearly independent. Hence, all the
coefficients must be equal to zero. In particular, H ′(P ) = 0 and H ′(P ) −
log(n0/n1) = 0. However, this implies n0 = n1, which is a contradiction.

The last part in proving Theorem 4.9 is to combine the following propo-
sition with Lemma 4.2.

Proposition 4.15.

dimP X
symb
α ≤ max

δ≤min(P,1−P )

Y (δ)

logm

dimP Xα ≥ max
δ≤min(P,1−P )

Y (δ)

logm

Proof. Let us start with the lower bound.
Consider any δ < min(P, 1− P ). Let γ0(δ) be such that

Y (δ) = Ỹ (γ0, δ).

Consider the measure νδ on DN defined as follows. For any even K,
for all ` ∈ [σ−K , σ−K−1) we choose i` = 0 with probability P + δ and
i` = 1 with probability 1 − P − δ0, independently. For any odd K, for all
` ∈ [σ−K , σ−K−1) we choose i` = 0 with probability P − δ0 and i` = 1
with probability 1 − P + δ0. Whichever the choice of i`, all the possible
j`; (i`, j`) ∈ D we choose with the same probability 1/ni` .

We will use also the projection of νδ onto Λ, which we will also denote
by νδ.

Let us begin from the observation, that for every ε > 0 and for νδ-
almost every x there are only finitely many N such that all i`; ` = N,N +
1, . . . , N(1 + ε) are equal. Hence,

(4.13) dνδ(x) = lim sup
`→∞

log νδ(C`(x))

−` logm
= δνδ(x)

νδ-almost everywhere.
To obtain the lower bound, we need the following two lemmas.



Packing spectra for self-affine measures 25

Lemma 4.16.
νδ(Xα) = 1.

Proof. By (4.13), νδ-typical point is in Xα if and only if it is in Xsymb
α . Recall

that a sufficient condition for x ∈ Xsymb
α is that there exists a function

εN → 0 such that for all except finitely many N we have

(4.14)

∣∣∣∣∣ 1

σN

n−1∑
j=0

F σN−1
0 (0, j)(x) +

1

N

n−1∑
j=0

FN−1
0 (0, j)(x)− 2P

∣∣∣∣∣ < εN .

Standard large deviation estimates show that for νδ-typical x (4.14) is
satisfied for all except finitely many N if we choose εN = N−1/3. We skip
the details.

Lemma 4.17. For νδ-almost every x

dνδ(x) ≥ 1

logm
Y (δ).

Proof. To prove the assertion, we just need to find a sequence ` → ∞ for
which the limit in (4.13) would be not smaller than Y (δ)/ logm. The right
sequence is

`K = σaK ,

where
aK = 2K + γ0(δ).

For νδ-typical x, for K large enough we have

log νδ(C`K (x)) = −(σ−aK − σ−baKc)H(P + (−1)baKcδ)

−
baKc∑
k=1

(σ−k − σ1−k)H(P + (−1)1−kδ)

−
(
(σ1−aK − σ1−baKc)(P + (−1)baKc−1δ)

)
log n0

−

baKc−1∑
k=1

(σ−k − σ1−k)(P + (−1)1−kδ)

 log n0

−
(
σ1−aK − (σ1−aK − σ1−baKc)(P + (−1)baKc−1δ)

)
log n1

+

baKc−1∑
k=1

(σ−k − σ1−k)(P + (−1)1−`δ)

 log n1 +O(`
1/2
K ).

Comparing with (4.10), we get

log νδ(C`K (x)) = −Z`K + o(`K).
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and

lim
K→∞

1

`K
log νδ(C`K (x)) = − lim

K0→∞
lim
K→∞

1

`K
Z`K .

The calculations of this limit were done in the course of proof of Lemma
4.13:

lim
K0→∞

lim
K→∞

1

`K
Z`K = Y (δ).

The assertion follows.

To finish the proof of the lower bound in Proposition 4.15 we need only
to observe that Y is a continuous function of δ, hence

max{Y (δ), δ ≤ min(P, 1− P )} = sup{Y (δ), δ < min(P, 1− P )},

and apply Frostman’s lemma.
To prove the upper bound, let us fix some small ε1 and some much

smaller ε2 < ε1/2U . Let us consider a finite family of intervals {Ik}Vk=1 of
size ε1, covering [0, 1]. Let Jk = 3Ik, that is, an interval with the same center
as Ik but three times longer.

For every point x ∈ Xsymb
α there is some minimal N(x) such that for all

N > N(x)

(4.15) |GσN−1(x) +GN−1(x)− 2P | < ε2.

We divide Xsymb
α into subsets

Xα,N = {x ∈ Xsymb
α ;N(x) = N}.

Our goal is to prove

Lemma 4.18. For each N ,

dimBXα,N ≤
1

logm
max

δ≤min(P,1−P )
Y (δ).

Proof. Let x ∈ XN,α. Let k be such that

GN−1(x) ∈ Ik.

By (4.15), it means that for all ` ≤ U we have

Gσ−2`N−1(x) ∈ Jk and Gσ−2`+1N−1(x) ∈ 2P − Jk

We can estimate the numberA(k,N) of possible sequences (iN(x), . . . , ibσ−2UNc).
Like in the lower bound, the estimation will be almost the same as in the
proof of Lemma 4.13:

1

(σ−2U − 1)N
logA(k,N) ≤ sup

δ;{P+δ,P−δ}∩Jk 6=∅
Y (δ) +O(ε1).
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There are only V possible k’s, hence the number B(N) of possible se-
quences (iN(x), . . . , ibσ−2UNc) for all x ∈ Xα,N satisfies

1

(σ−2U − 1)N
logB(N) ≤ sup

δ≤min(P,1−P )

Y (δ) +O(ε1) +O

(
1

σ−2UN

)
.

Repeating the argument for B(σ−2UN) and so on and passing to the
limit, we get

dimBXα,N ≤
1

logm
min(P, 1− P )Y (δ) +O(ε1)

and the assertion follows.

As the packing dimension is not greater than the upper box counting
dimension, this gives the upper bound for Proposition 4.15 and so the proof
of Proposition 4.15 is complete.

Theorem 4.9 now follows by combining Proposition 4.15, Lemma 4.2
Lemma 4.10 and Corollary 4.14. This completes the proof of Theorem 2.4.
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