
LYAPUNOV SPECTRUM FOR MULTIMODAL MAPS

KATRIN GELFERT, FELIKS PRZYTYCKI†, AND MICHA L RAMS†

Abstract. We study the dimension spectrum of Lyapunov exponents
for multimodal maps of the interval and their generalizations. We also
present related results for rational maps on the Riemann sphere.
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1. Introduction

This paper is an interval multimodal mapping counterpart of the authors’
earlier paper on complex rational maps on the Riemann sphere, [14]. Some
new ideas yield also a progress in the complex setting (see Appendix A).

We consider a C3 (or C2 with bounded distortion) multimodal map f on a

finite union Î of pairwise disjoint closed intervals in R and the iteration of f
on the maximal forward invariant subset K (in other words: K is f -forward
invariant and f |K satisfies the Darboux property1). We assume that f |K is
topologically transitive and has positive topological entropy. Given α ∈ R,
we consider the level sets of Lyapunov exponents of f

L(α) :=
{
x ∈ K : χ(x) := lim

n→∞

1

n
log |(fn)′(x)| = α

}
and study the function α 7→ dimH L(α), which is called Hausdorff dimen-
sion spectrum of level sets L(α) for Lyapunov exponents, or shortly, the
Lyapunov spectrum. We prove that this spectrum can be expressed in terms
of the Legendre transform of the geometric pressure function, that is, of the
function t 7→ P (f |K ,−t log |f ′|). We only allow non-flat critical points in K.

This is a classical result in the uniformly hyperbolic case, see e.g. [28, 45,
34] and earlier papers by mathematical physicists, see e.g. [12, 6, 41]. But
our system is just ‘chaotic’ in the sense that it is topologically transitive and
has positive topological entropy. Observe that our system has a uniformly
hyperbolic factor obtained in the following way: Identifying end points of
gaps (intervals complementary to K in case that K is a Cantor set; it can

be a priori a finite union of closed intervals Î ), by a continuous change of
coordinates we get a piecewise continuous piecewise monotone map of the
interval with constant slope htop(f |K). In particular, this map is piecewise
uniformly hyperbolic, see [36, Appendix A]. Unfortunately, the geometric
potential x 7→ −t log |f ′(x)| does not survive this coordinate change. Hence
this approach would not help studying the geometric properties of the orig-
inal map.

We are also studying the irregular part of the spectrum, that is, the level
sets of irregular points

L(α, β) :=
{
x ∈ K : χ(x) = α, χ(x) = β

}
, α < β

1See [36, Appendix A] and references therein.
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for the lower and the upper Lyapunov exponents. In some cases we obtain
a precise formula, conjectured in previous papers in both the real and the
complex cases. Our main tools are: hyperbolic approximation to show lower
bounds and conformal measures and their generalizations to show upper
bounds. The existence of those conformal measures has been proved via an
inducing scheme in [36, Theorem A].

In particular, we show that some of certain level sets are empty. Denoting
by χinf the infimum of exponents of f -invariant probability measures on K,
we obtain that χ(x) ≥ χinf for every x ∈ K for which χ(x) exists and is
different from −∞. This was conjectured before in [20, 21]2.

Moreover, in the case that K = Î, f is non-exceptional, and f has no
indifferent periodic orbits in K, we conclude that χ(x)] ≥ χinf provided

χ(x) > 0. Here χ(x)] denotes a certain non-negative average of χ(x) and
χ(x), see Section 6.

The novelty of this paper, compared to methods used in [14], is that
we investigate not only noncritical pull-backs but also allow pull-backs of
bounded criticality (Topological Collet-Eckmann type feature).

Our setting of multimodal maps has been elaborated recently by FP and
J. Rivera-Letelier [36]. Substantial earlier contributions in this theory have
been done in particular by F. Hofbauer, G. Iommi and M. Todd.

Acknowlegement. The authors thank G. Levin and J. Rivera-Letelier
for inspiring discussions. The authors thank T. Jordan, H. Bruin, and the
anonymous referee for helpful comments.

1.1. Generalized Multimodal Maps. In this paper we work in the mul-
timodal setting elaborated in [36]. We will consider a Cr map f on a certain
open subset of the real line into the real line. We assume r = 2 if not
stated otherwise. A point x is said to be critical if f ′(x) = 0. We denote by
Crit(f) the set of all critical points of f . We denote by CritT (f) ⊂ Crit(f)
the set of all turning critical points and by CritI(f) ⊂ Crit(f) the set of
all inflection critical points. We say that f is non-flat at a critical point
c if f(x) = ±|φ(x)|d + f(c) for some d ≥ 2 and φ a Cr diffeomorphism in
a neighborhood of c with φ(c) = 0, see [25, Chapter IV]. In this paper we
assume that f has only a finite number of critical points and that all of them
are non-flat. We call such a map multimodal.

We denote by deg f the geometric degree of f , that is,

deg f := sup
x∈K

#f−1|K({x}) .

2After this paper was written, J. Rivera-Letelier explained to us that χ(x) ≥ χinf

follows easily from − limn→∞
1
n

log max |Wn| ≥ χinf , where the maximum is taken over all

connected components Wn of preimages f−n(W ) and W ⊂ Î a sufficiently small interval.
The latter inequality was proved in [42] under additional, but not substantial, assumptions
on f . See Appendix B for details.
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Let K ⊂ R be an infinite compact set in the domain of f . We assume that
K is forward invariant under f , that is f(K) = K. We also assume that
f : K → K is topologically transitive, that is, for all V1, V2 ⊂ K nonempty
and open in K there is n ≥ 1 such that fn(V1) ∩ V2 6= ∅.

We usually will assume that f |K has positive topological entropy.
We assume that there exists a covering of K by a finite family of pairwise

disjoint closed intervals Îj in the domain of f , with end points in K, such
that K is the maximal compact forward invariant set in

ÎK :=
⋃
j

Îj .

We assume that ÎK \K does not contain critical points.
Furthermore, we consider a Cr extension of f to some neighborhoods U j

of Îj such that U j are pairwise disjoint and none of U j \K contains a critical
point. Let U =

⋃
j U

j . Sometimes to distinguish U we write UK .

Following [36] we denote the space of the quadruples (f,K, ÎK , U) satis-
fying the above properties by A r

+. We simply write A+ if r = 2. As in [36],
the subscript + indicates that f |K has positive topological entropy. We will
omit it in case this assumption is not necessary. Sometimes we abbreviate

to (f,K, ÎK), (f,K,U), or just (f,K). For such quadruples, triples, couples,
we sometimes use the name generalized A -multimodal maps or systems.

If (f,K) ∈ A , then K is either the union of a finite collection of compact

intervals K = ÎK or a Cantor set, see [36, Lemma 2.1].

1.2. Periodic orbits. We call a point p ∈ U periodic if there exists m ≥ 1
such that fm(p) = p and we call the smallest such number m its period. We
denote by O(p) its periodic orbit and define the basin of attraction of O(p)
by

B(p) := int{x ∈ I : fn(x)→ O(p) as n→∞} .

The orbit O(p) is called attracting if O(p) ⊂ B(O(p)). The orbit is called
repelling if |(fm)′(p)| ≥ 1 and some small neighborhood W of O(p) is for-

ward invariant for g = f |W−1 and satisfies gn(W ) → O(p) as n → ∞. If
|(fm)′(p)| > 1 then p is said to be hyperbolic repelling. In the remaining
cases we call O(p) indifferent. We denote the set of indifferent periodic
points by Indiff(f).

The multimodal systems we study in this paper are natural generalizations
of the class of multimodal maps of the interval f : I → I (extended to a
neighborhood U of I), where K = I \

⋃
p B(p) is called Julia set, see [36,

Example 1.8] or [25, Chapter IV]. A wider class of examples are so-called
basic sets in the spectral decomposition, see again [36, Example 1.9] or [25,
Chapter III.4].

A special case occurs if K = ÎK and, in particular, if K = I. This will
allow us to prove stronger forms of Theorem 2 and Theorem 3.
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For (f,K) ∈ A there are no periodic orbits in ÎK \K. Further, periodic
orbits in K are either hyperbolic repelling (and there are infinitely many
such orbits if (f,K) ∈ A+) or non-hyperbolic repelling or indifferent (and
of those two types there are at most finitely many orbits). By changing f
outside K and shrinking U if necessary, we can also achieve that periodic
orbits outside K are hyperbolic repelling (see [36, Remark 1.6 and Appendix
A]).

Definition 1.1. For (f,K,U) ∈ A we call K weakly isolated, if there exists
an open set U ′ ⊂ U such that every f -periodic orbit O(p) which is contained
in U ′ must be contained in K.

Recall that in the definition of A we required that K is the maximal

invariant set in ÎK , so the weak isolation condition is not automatically
satisfied, a priori there can be hyperbolic repelling periodic orbits close to

K intersecting R \ ÎK , see [36, Example 2.12].
If K is maximal in an open neighborhood of K then it is weakly isolated,

and even isolated, see the definition in Subsection 2.1, but observe that ÎK
does not contain an open neighborhood of K.

In the main theorems of this paper we need to assume that K is weakly
isolated. Notice however that if K is a Julia set (see the definition above),
then the weak isolation condition is automatically satisfied.

1.3. Distortion. Let us introduce some more notation following the termi-
nology in [25]. We denote by

Dist g|Z := sup
x,y∈Z

|g′(x)|
|g′(y)|

the maximal distortion of a differentiable map g on a set Z. Given two
intervals U ⊂ V , we say that V is an ε-scaled neighborhood of U if V \ U
has two components of length ε|U |. In this case we also denote

(1.1) V := (1 + 2ε) � U.
Correspondingly, we write

U = (1 + 2ε)−1 � V.
We say that (f,K) ∈ A satisfies a bounded distortion condition if there
exists δ > 0 such that for every ε > 0 there is C = C(ε) > 0 such that the
following holds: For every pair of intervals I1, I2 ⊂ U such that I1 intersects
K and |I2| ≤ δ and every n > 0 for which fn maps an interval I ′1 containing
I1 diffeomorphically onto an interval I ′2 being the ε-scaled neighborhood of
I2 then

(1.2) Dist fn|I1 ≤ C(ε).

This easily implies that there exists τ(ε) such that I ′1 contains a τ(ε)-
neighbourhood of I1. If (f,K) ∈ A satisfies bounded distortion condition,
we write (f,K) ∈ A BD.
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Remark 1.2. For (f,K) ∈ A BD, the only periodic orbits in K are either
hyperbolic repelling, or indifferent one-side repelling (see [36, Remark 1.11]).

If (f,K) ∈ A 3 and all periodic orbits in K are hyperbolic repelling, then
f can be changed outside K if necessary, so that (f,K) ∈ A BD (see [36,
comments after Theorem A, Remark 2.14, and Lemma A.4]). The A BD

assumption can be therefore considered as the weaker and the appropriate
one if only facts concerning f |K are asserted. Indeed, it assumes only C2

smoothness and allows indifferent periodic orbits in K.

1.4. Exceptional sets. Denote by NO(f,K) the set of points where f |K
is not open. Observe that NO(f,K) ⊂ CritT (f)∪∂ÎK (see also [36, Lemma

2.2]). We call S := Crit(f) ∪ ∂ÎK the singular set and S′ := Crit(f) ∪
NO(f,K) the restricted singular set. In fact, S′ plays a more substantial
role in this paper (and in [36]) than S does.

Given an arbitrary finite set Σ ⊂ K, we call a nonempty set E ⊂ K
weakly Σ-exceptional, if E is non-dense in K and satisfies

(1.3) f |K−1(E) \ Σ ⊂ E.
Condition (1.3) can be read that all backward trajectories for f which start
in E and go outside E are “immediately blocked” by Σ. We say that E is
Σ-exceptional if it is weakly Σ-exceptional and forward invariant.

Observe that the union of (weakly) Σ-exceptional sets is (weakly) Σ-
exceptional. Note that in the case that (f,K) ∈ A+, by [36, Proposition
2.7] all weakly Σ-exceptional sets E are finite and have a uniformly bounded
cardinality. Therefore, there is a finite maximal weakly Σ-exceptional set.
Indeed, the union of all weakly Σ-exceptional sets clearly has the property
(1.3) and is not dense since there is a uniform bound for its cardinality.

Finally we call a point x ∈ K (weakly) Σ-exceptional if x belongs to a
(weakly) Σ-exceptional set.

We shall apply this for Σ = S′. If there does not exist any S′-exceptional
set, we call f non-S′-exceptional or just non-exceptional, otherwise we call
f exceptional.

Example 1.3. Chebyshev maps such as, for example, f(x) = x2 − 2 with

K = ÎK being the interval [−2.2], are S-exceptional, but many other interval
maps are not.

The critical value of a unimodal map (for example, a quadratic polyno-
mial) constitutes a (one-element) weakly S-exceptional set.

1.5. Lyapunov exponents. We are interested in the spectrum of Lya-
punov exponents of the map f : K → K. Given x we denote by χ(x) and
χ(x) the lower and upper Lyapunov exponent at x, respectively, where

χ(x) := lim inf
n→∞

1

n
log |(fn)′(x)|, χ(x) := lim sup

n→∞

1

n
log |(fn)′(x)|.

If both values coincide then we call the common value the Lyapunov exponent
at x and denote it by χ(x). We call such x Lyapunov regular. We allow
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χ(x) = −∞. Given α ∈ R, let

L(α) :=
{
x ∈ K : χ(x) = α

}
,

that is, the set of Lyapunov regular points in K which have exponent α. For
given numbers 0 ≤ α ≤ β we consider also the following level sets

L(α, β) :=
{
x ∈ K : χ(x) = α, χ(x) = β

}
.

If α < β then L(α, β) is contained in the set of so-called irregular points

Lirr :=
{
x ∈ K : χ(x) < χ(x)

}
.

Given a compact f -invariant set X ⊂ K, we denote by M(X) the set of
all f -invariant Borel probability measures supported on X. We denote by
ME(X) the subset of ergodic measures contained in M(X). We simply write
M = M(X) and ME = ME(X) if X = K.

Note that in the following definitions it is irrelevant whether we consider
µ ∈ME or µ ∈M. Given µ ∈M, we denote by hµ(f) the measure theoretic
entropy of µ and by

χ(µ) :=

∫
log |f ′| dµ

the Lyapunov exponent of µ (if µ ∈ME then for µ-a.e. x it is equal to χ(x)
by Birkhoff Ergodic Theorem). Notice that for (f,K) ∈ A we have χ(µ) ≥ 0
for any probability f -invariant µ supported on K (see [31, Theorem B], and
[42, Appendix A] for a simplified proof).

1.6. Pressure and Legendre-like transform. Given t ∈ R, we define the
function ϕt : K → [−∞,+∞] by

(1.4) ϕt(x) := −t log |f ′(x)|.

We define the variational pressure of ϕt (with respect to f |K) by

(1.5) Pvar(ϕt) := max
µ∈M(f)

(
hµ(f) +

∫
Λ
ϕt dµ

)
= max

µ∈M(f)

(
hµ(f)− tχ(µ)

)
.

We shall often denote this pressure (and other pressures being equal to it,
see (2.1)) simply by P (t) and call it the geometric pressure.

The function t 7→ P (t) is convex as the maximum of convex (even affine)
functions

t 7→ hµ(f)− t χ(µ).

It is monotone decreasing, since for all µ ∈ M(f) we have χ ≥ 0 (see the
references above).

Let

(1.6) χinf := inf{χ(µ) : µ ∈M}, χsup := sup{χ(µ) : µ ∈M}.

The definition of the variational pressure (1.5) implies

χinf = lim
t→∞
−1

t
Pvar(ϕt), χsup = lim

t→−∞
−1

t
Pvar(ϕt).
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Observe that χinf and χsup coincide with the inclinations of respectively the
right and the left asymptotes of −Pvar(ϕt), see [14].

Given real α 6= 0, let us denote

(1.7) F (α) :=
1

|α|
inf
t∈R

(P (t) + αt) .

Observe that α 7→ inft(P (t) +αt) is a Legendre-like transform of P (t), more
precisely α 7→ − inft(P (t) − αt) is the Legendre transform of the function
P (t) (see e.g. [40, 34]). Note that while the function α 7→ inft(P (t) + αt)
is always concave, the function α 7→ F (α) is not always concave (see, for
example, [18]). However, on any compact interval it achieves its minimal
value at an endpoint. Some of the possible shapes of the graphs of the
function t 7→ P (t) are shown in Figure 1, the corresponding graphs of α 7→
F (α) are shown in Figure 2. Let also

(1.8) F (0) := lim
α→0+

F (α).

Note that F 6= −∞ precisely on the interval [χinf , χsup], where F is non-
negative.

Denote

t0 := inf
{
t ∈ R : Pvar(ϕt) = 0

}
.

This number is well defined since the latter set is non-empty, see [36, Propo-
sition 1.19]. It coincides with the so-called hyperbolic dimension, that is,
the supremum of the Hausdorff dimension of expanding Cantor repellers (see
Section 3.4 and [40], [36]).

There are two significantly different behaviors of f :

The case χinf > 0, Lyapunov hyperbolic condition (LyapHyp).3 This prop-
erty implies that P (t)→ −∞ as t→∞, with the slope bounded away from
0. Note that for every (f,K) ∈ A BD

+ satisfying the weak isolation condi-
tion, LyapHyp is equivalent to TCE together with the absence of indifferent
periodic points (see Section 2.4 for the definition of TCE and [36, Theorem
C]).

The case χinf = 0. In this case we have P (t) ≡ 0 for all t ≥ t0. Indeed, by
contradiction, assume that P (t) < 0. Since for all µ ∈M by the variational
principle we have A(µ, t) := hµ(f)− tχ(µ) ≤ P (t) and A(µ, 0) = hµ(f) ≥ 0,
we would obtain χ(µ) = (A(µ, 0)−A(µ, t))/t ≥ −P (t) > 0, a contradiction.

This distinction is illustrated on Figure 1. For the definition of t+ see
Subsection 2.2.

Denote by χ∗ the right derivative of P (t) at t = t0. Notice that F (α)
attains its maximum at χ∗ and note that this maximum is equal to t0.

3In [36] this property is called Lyapunov.
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t
t0

P (t)

−χsup

−χ∗

−χinf

t
t0 t+

P (t)

−χsup

−χinf

t
t0 = t+

P (t)

−χsup

−χinf

= −χ∗ = 0

Figure 1. The geometric pressure: LyapHyp with t+ =∞,
LyapHyp with t+ <∞, and non-LyapHyp

F (α)

α

t0

χinf χ∗ χsup

F (α)

α

t0

χinf χ∗ χsup

t0 = t+

F (α)

α
χ∗ = 0 χsup

Figure 2. F (α): LyapHyp with t+ = ∞, LyapHyp with
t+ <∞, and non-LyapHyp

Observe that F (α) is increasing on [χinf , χ
∗] and non-increasing on [χ∗, χsup].

Hence, for every α ≤ β we have

(1.9) min{F (q) : α ≤ q ≤ β} = min{F (α), F (β)} .
In the case χinf = 0, the maximum of F is attained at 0, so we have F (0) =
t0. If P (t) is not differentiable at t0 then we have F (α) ≡ t0 on the whole
interval between the right and the left derivatives of −P (t) at t0.

Let us remark that usually, e.g. for each C3 multimodal map f of the in-
terval with all periodic points being hyperbolic repelling and |(fn)′(f(c))| →
∞ as n → ∞ for all f -critical points c, we have t0 = 1 and there exists
an f -invariant probability measure absolutely continuous with respect to
Lebesgue measure (abbr. pacim), see [4]. However even in the special case
of f being S-unimodal, pacim need not exist, see [1] and references therein.
Furthermore t0 < 1 can happen e.g. for unimodal Fibonacci combinatorics
polynomials z` + c with integer ` large enough, see [3, Theorem 10.5]. For
other examples see [5].

1.7. Main results.

Theorem 1. Let (f,K) ∈ A BD
+ satisfy the weak isolation condition and

be non-exceptional. For any α ≤ β ≤ χsup with β > 0, and additionally
assuming α > 0 if χinf = 0, we have
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(1.10) min{F (α), F (β)} ≤ dimH L(α, β) ≤ max
{

0, max
α≤q≤β

F (q)
}
.

In particular, for any α ∈ [χinf , χsup] \ {0} we have

dimH L(α) = F (α).

We have also

dimH L(0) ≥ F (0).

Moreover,

(1.11) {x ∈ K : −∞ < χ(x) < χinf} = ∅,

(1.12) {x ∈ K : χ(x) > χsup} = ∅,

and

(1.13) dimH {x ∈ K : 0 < χ(x) < χinf} = 0.

The assumption of the above theorem are, for example, satisfied if (f,K) ∈
A 3

+ and there are no indifferent periodic orbits (see Remark 1.2).

Remark 1.4. Theorem 1 has the same assertion as [14, Theorem 2] (except
that we do not assume α > 0 which is in fact needed neither here nor
there). The strategy of the proof is also the same. However, there are
technical differences, and the part which has an entirely new proof, since
the holomorphic one does not work, is to show that {x ∈ K : 0 ≤ χ(x) <
χinf} = ∅ in (1.11). This answers a conjecture in [21, p.4] and [20, Remark
4.1]. In Theorem 3 below, we prove an even a stronger fact under the

additional assumptions that K = ÎK and that K contains no indifferent
periodic orbits.

Remark 1.5. After this paper was written, J. Rivera-Letelier explained to
us that (1.11) in Theorem 1 follows from his paper [42]. See Appendix B
for the discussion.

Let us mention that the above results extend [20] in the following sense:
our results enable us to cover also the boundary points of the spectrum
L(α) for α = χinf and χsup, as well as the irregular points L(α, β) for α < β.
Moreover, additionally we are able to consider maps that have indifferent
periodic orbits.

Hofbauer [16] proves results about the Lyapunov spectrum in a situation
which is in some aspects considerably more general than the one discussed
in the present paper (he considers piecewise monotone piecewise continu-
ous interval maps), however which does not allow singularities ±∞ for the
geometric potential.

Similarly to the complex case we do not know if {x ∈ K : χ(x) = −∞} =⋃
n≥0 f

−n(Crit(f)), unless there is at most one critical point in K. In this
case the proof of the equality is the same as in the complex situation.
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Under additional assumptions we can improve (1.10), the right hand side
inequality, sometimes getting even the equality.

Theorem 2. Let (f,K) ∈ A BD
+ (or A 3

+) satisfy the weak isolation condition
and be non-exceptional and without indifferent periodic orbits. Then given
numbers α ≤ β ≤ χsup with β > 0, we have

(1.14) dimH L(α, β) ≤ max{0, F (β)}.

If we assume K = ÎK (i.e. K is the finite union of intervals), then

(1.15) dimH L(α, β) ≤ max
{

0,min{F (α]), F (β)}
}
,

where

α] :=
β

1 + (β − α)/χsup
.

Note that α] is positive and α < α] < β (except for the case α = β, when
α] = α = β).

Remark 1.6. If F (α) ≥ F (β) then, together with Theorem 1 we obtain the
equality

(1.16) dimH L(α, β) = F (β).

In particular, we obtain the equality (1.16) for non-LyapHyp systems (f,K)
(systems where χinf = 0).

For uniformly hyperbolic systems for all χinf ≤ α ≤ β ≤ χsup the equality

dimH L(α, β) = min{F (α), F (β)}
holds. The question whether this equality holds in general remains open.

The trouble with improving in the right hand estimate (1.10) the maxi-
mum by the minimum, was that the times one can go to large scale avoiding
S′ for a conical point x (see Subsection 3.8) are not related to the times of
an a priori given Lyapunov exponent between α and β. The new idea is to
consider a larger set of (restricted Pliss hyperbolic) times where one can go
to large scale with finite criticality, thus allowing us to control the exponent.

We deduce also the following strong version of a part of the property
(1.11) of Theorem 1.

Theorem 3. Let (f,K) ∈ A BD
+ (or A 3

+) satisfying K = ÎK and being non-
exceptional and without indifferent periodic orbits. Then, given numbers
α ≤ β with α] < χinf and β > 0, the set L(α, β) is empty.

Remark 1.7. The proof of the fact that {x ∈ K : −∞ < χ(x) < χinf} = ∅
(observe that this set concerns Lyapunov regular points only) in Theorem 1,
provided in Section 5, is conceptually simpler: it does not use the existence
of conformal measures, see the end of Subsection 2.3 for this notation.

The existence of true conformal measures is the only reason for which we
have to assume no indifferent periodic orbits in Theorems 2 and 3.
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Theorem 1 is proven in Section 4, except for relation (1.11) which is shown
in Section 5. Theorems 2 and 3 are proven in Section 6.

2. Tools

2.1. Pressure functions. Recall that f is said to be uniformly expanding
or uniformly hyperbolic on a set X ⊂ I if there exists λ > 1 such that for
every n ≥ 1 we have |(fn)′(x)| ≥ λn for every x ∈ X. A compact set X ⊂ R
is said to be isolated if there is an open neighborhood U of X in the domain
of f such that fn(x) ∈ U for all n ≥ 0 implies x ∈ X. A set X ⊂ I is
said to be invariant if f(X) ⊂ X. A compact f -invariant isolated uniformly
expanding set X ⊂ I is called expanding repeller.

Given X ⊂ I invariant and ϕ : X → R continuous, we denote by Pf |X (ϕ)
the standard topological pressure of ϕ with respect to f |X (see, for exam-
ple, [44] or [40]). Sometimes we write P (f |X , ϕ). In the case X = K we
simply write P (ϕ). Furthermore, we denote by Phyp(ϕ) the hyperbolic pres-
sure defined by

Phyp(ϕ) := sup
X⊂K

Pf |X (ϕ),

where the supremum is taken over all expanding repellers X ⊂ K. The
variational hyperbolic pressure of ϕ with respect to f |K is defined by almost
the same formula as the variational pressure:

Pvarhyp(ϕ) := sup
µ∈ME(f)

(
hµ(f) +

∫
Λ
ϕdµ

)
,

where the supremum is taken over ergodic f -invariant measures of positive
Lyapunov exponent.

By [36, Theorem B], for every (f,K) ∈ A BD
+ and t ∈ R we have

(2.1) P (t) = P (ϕt) := Pvar(ϕt) = Pvarhyp(ϕt) = Phyp(ϕt).

The proof of the equality Pvar(ϕt) = Pvarhyp(ϕt) is not easy in the inter-
val case and follows from the equality of various definitions of Topological
Collet-Eckmann maps, see [42] or [36, Lemma 4.6 and Theorem C]. The
inequality Pvarhyp(ϕt) ≥ Phyp(ϕt) follows immediately from the variational
principle. The proof of Pvarhyp(ϕt) ≤ Phyp(ϕt) will be outlined in Section 3
for completeness, and to introduce another variant of Phyp(ϕt) (on Cantor
sets).

2.2. Phase transitions. Let (f,K) ∈ A BD
+ . Let

t+ := sup
{
t ∈ R : P (ϕt) + t χinf > 0

}
.

Observe that since P (ϕ0) = htop(f |K) > 0, we have t+ > 0. Note that
both cases t+ = ∞ as well as t+ < ∞ are possible. The latter case occurs
for example in the non-LyapHyp case, that is, if χinf = 0. see Section 2.4
and references therein. Observe that the case t+ < ∞ can happen even if
χinf > 0 (and P can be differentiable or nondifferentiable at t+), see [7] and
[8].
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Let also
t− := inf

{
t ∈ R : P (ϕt) + t χsup > 0

}
.

Observe that t− < 0. There are examples in which t− > −∞ (for example,
f(x) = x2−2), but this can happen only for f exceptional. This was proved
in the interval setting under some restrictions, see [19, Theorem B].

That in our situation t− = −∞ for non-exceptional f can be seen from
the following argument. Suppose to the contrary that P (ϕt) = −tχsup for
some t < 0. Then this holds for every t′ < t by the definition of P . By the
definition of P there exists a sequence µn ∈M weakly* convergent to some
µt′ ∈ M such that −t′χ(µn) + hµn(f) → P (ϕt′), hence −t′χ(µn) → P (ϕt′),
as the entropies must be equal to 0. Then by the upper semi-continuity
of the function µ 7→ χ(µ) on M(f) we get −t′χ(µt′) = P (t′) and hence
χ(µt′) = χsup (in particular µt′ is an equilibrium state). Now by the Key
Lemma in [17]4 adapted to (f,K) ∈ A BD

+ , since we assume (f,K) non-
exceptional, we get P (ϕt′) > −t′χ(µt′), contradiction.

Figure 1 illustrates various cases. In all three cases the asymptotes −χsup

are depicted. In the first case (LyapHyp with t+ =∞) the asymptote −χinf

does not always pass through 0, it could intersect the vertical axis at a
positive number. The simplest example is provided by a piecewise linear
expanding map with two branches with slope exp(χinf) and two branches
with slope exp(χsup). This corresponds to the case when F (χsup) and F (χinf)
are positive. See also [43] for uniformly hyperbolic examples with general
Hölder potentials.

2.3. Conformal measures. Given a function φ : K → R, we say that a
finite Borel measure µ supported on K is a φ-conformal measure if it is
forward quasi-invariant for f , that is, sets of measure zero are sent by f to
sets of measure zero, and if it satisfies

(2.2) µ(f(A)) =

∫
A
φdµ

for every A ⊂ K on which f is injective. Conformal measures do not always
exist for t < 0, in particular in the presence of critical points in K. It is at
the moment unclear whether conformal measures exist for t > 0 or t < 0 in
the exceptional case. However the following weaker version will be sufficient
for our setting.

We call µ conformal away from the restricted singular set S′ or a CaS
measure if (2.2) is satisfied under the additional assumption thatA is disjoint
from S′ and µ is forward quasi-invariant for f on K \ S′. As usual we call
φ the Jacobian of f for µ.

Proposition 2.1. If f is non-exceptional, then for every t ∈ R there exists
a CaS measure with Jacobian λ(t)|f ′|t for log λ(t) = P (t) which is positive
on open sets. We will denote this measure by µ∗t .

4t > 0 is assumed there, but J.Rivera-Letelier has informed us that under small modi-
fications the proof works also for t < 0
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Proof. We construct µ∗t by Patterson-Sullivan’s method, as in [40, pages
333–334] (see also [38] for the t < 0 complex case).

For t > 0 Patterson-Sullivan’s construction gives a conformal measure
in the complex case, but (2.2) can fail at points in S′ in the interval case,
see [36, Appendix C] for a more precise description. So we get only a CaS
measure.

The measure µ∗t is positive on open sets. Indeed, it is proved in [36,
Lemma C.3] that for each t ∈ R if µ∗t vanishes on an open set, then it is
supported on a weakly S′- exceptional set E (which is finite, as mentioned
in Subsection 1.4).

In the case that f is non-exceptional this leads to contradiction. Below
is an explanation (repeated for completeness after [36, Lemma C.3]).

By Patterson-Sullivan’s construction for every x ∈ K and every z ∈
f−1(x) ∩K we get (see [36, (C.2), (C.3)])

(2.3) µ∗t (z)|f ′(z)|t ≤ µ∗t (x) ≤
∑

y∈f−1(x)∩K

µ∗t (y)|f ′(y)|t,

provided no expression of the form 0 · ∞ is involved.
We consider three cases:

Case t < 0. If µ∗t (x) > 0 at x ∈ E then we have atoms of µ∗t at all points
fn(x) for n ≥ 0 due to the left hand side inequality (2.3). In particular,
since f is non-exceptional, µ∗t has an atom at some w = fn(x) not weakly
S′-exceptional (this will be proved in Lemma 3.6, item 2 below). This con-
tradicts the condition that µ∗t is supported on E.

Case t > 0. If µ∗t has an atom at x then it has an atom at a point y ∈
f−1(x) by the right hand side inequality (2.3). Therefore it has atoms at
all fk-preimages of x which constitute an infinite set, which is therefore not
contained in E. We have a contradiction again.

Case t = 0. We can consider a measure with maximal entropy as µ∗0. �

In the proof of Theorem 2, in Section 6 we rely on a part of [36, Theorem
A], asserting that for (f,K) ∈ A BD

+ without indifferent periodic orbits there
exists a probability measure µt which is truly conformal for the function
ϕ = eP (t)|f ′|t for every t < t+, non-atomic, positive on open sets, and
supported on the set of conical points in K, see Subsection 3.8.

2.4. Topological Collet-Eckmann and related notions. In this section
we will discuss some (partially equivalent) conditions for (f,K) ∈ A .

Given y = fn(x), denote by Compx f
−n(B) the component of the preim-

age of an interval B 3 y which contains x. We sometimes call this component
a pull-back of B by fn. For (f,K) ∈ A we consider only pull-backs inter-
secting K. This component is an interval, to denote its length we use either
|·| or diam (to avoid confusion with other meanings of |·|).

Lyapunov Hyperbolic Condition (LyapHyp): χinf > 0.
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Topological Collet-Eckmann Condition (TCE): There exist numbers M ≥ 0,
P ≥ 1, and r > 0 such that for every x ∈ K there exists a strictly increasing
sequence of positive integers (nj)j≥1 such that for every j ≥ 1 we have
nj ≤ P · j and

(2.4) #
{
k ∈ {0, . . . , nj − 1} :

Compfk(x) f
−(nj−k)B(fnj (x), r) ∩ Crit(f) 6= ∅

}
≤M.

We only consider this condition under the absence of indifferent periodic
orbits; in this situation all components above are well inside UK for r suf-
ficiently small (see BaShrink below). Of course the number r can be taken
arbitrarily small and P can be taken arbitrarily close to 1 (at the cost of
increasing M).

Exponential shrinking of components (ExpShrink): There exist numbers λ >
1 and r > 0 such that for every x ∈ K, every n > 0, and every connected
component W of f−n(B(x, r)) which intersects K we have

|W | ≤ λ−n.

See [36] for the usage of the condition LyapHyp in the multimodal case
and for example [37] in the complex holomorphic setting. In the interval case
the proof of the fact that, assume weak isolation, LyapHyp implies TCE is
different from the holomorphic case and is given in the multimodal case
in [42] and later in [36, Theorem C] (in the more general case of f ∈ A BD

+ ).

By [36, Theorem C], for every (f,K) ∈ A BD
+ satisfying the weak isolation

condition, LyapHyp is equivalent to TCE together with the absence of in-
different periodic points which in turn is equivalent to ExpShrink. For more
conditions and their equivalences in the interval case, see [36, Theorem C]
or [42].

In the sequel, instead of ExpShrink, we will use only the following weaker
condition which is satisfied for every (f,K) ∈ A+ (see [36, Lemma 2.10]).

Backward Shrinking (BaShrink): For every ε > 0 there exists δ > 0 such
that if T is an open interval in R intersecting K, disjoint from Indiff(f), and
satisfying |T | ≤ δ, then for every n ≥ 0 and every component T ′ of f−n(T )
intersecting K we have |T ′| ≤ ε. Moreover, the lengths of all components of
f−n(T ) intersecting K converge to 0 uniformly as n→∞.

In particular for δ sufficiently small, for every ε′ > 0 there exists a positive
integer κ = κ(δ, ε′) such that for every T as above, satisfying |T | ≤ δ, and
for every component T ′ of f−n(T ) intersecting K with n ≥ κ, we have
|T ′| ≤ ε′.

3. Preliminary constructions

3.1. Outside singular set.
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Lemma 3.1. For (f,K) ∈ A there exists δ > 0 such that for every interval
T ⊂ UK intersecting K and disjoint from S′, if |T | < δ, then f : T → f(T )
is a homeomorphism and

(3.1) f(T ) ∩K = f(T ∩K).

In [36] such f on T is called K-homeomorphism. For completeness we
provide the proof of this lemma.

Proof. For x ∈ ∂ÎK (there are only finitely many such points) consider the
point f(x). There are two possibilities: either f(x) is accumulated by points
in K from both sides, or f(x) is a boundary point of K. In the latter case
we denote by gx the length of the component of R\K adjacent to f(x). Let
U ′ be a neighborhood of K with closure in UK . Let L be Lipschitz constant
for f |U ′ . Choose

δ := min
{

dist(∂UK , ∂U
′),

1

L
max
x

gx

}
.

Consider now an open interval T of length shorter than δ which intersects
K and is disjoint from S′. Since K is forward invariant, the only possibility
that (3.1) fails is when f(T )∩K \f(T ∩K) 6= ∅. In such a situation T must

contain a point x ∈ ∂ÎK . Indeed, T intersects ÎK because it intersects K,

and if T ⊂ ÎK then (3.1) holds since f−1(K ∩ f(T )) ⊂ K, by maximality of

K. Let T ′ be the component of T \ {x} which is disjoint from ÎK . If f(x) is
accumulated by points in K∩f(T ′), then x ∈ NO(f,K) and hence x ∈ S′, a
contradiction. Otherwise, f(x) is a boundary point of K and, by our choice

of δ, we have f(T ′) ∩K = ∅. Since T ′′ := T \ T ′ ⊂ ÎK , maximality of K
implies the property (3.1) for T ′′. Hence (3.1) holds for T . �

3.2. More on K-homeomorphisms.

Lemma 3.2. Let (f,K) ∈ A+ be non-exceptional, satisfying weak isolation
condition. Consider any x ∈ K not weakly S′-exceptional. Then for a
constant r > 0 small enough depending on (f,K) and every integer n large
enough the following holds. Assume that B(fn(x), r/2) does not contain any
indifferent periodic point. Let Wn be the pull-back of B(fn(x), r/2) for fn

which contains x. For all j = 0, . . . , n denote W j
n := f j(Wn). Then for all

j = 0, . . . , n− 1 the interior of W j
n is disjoint from NO(f,K) \ CritT (f).

Proof. Let r > 0 be small enough that every T intersectingK, not containing
any indifferent periodic point, with |T | ≤ r, satisfies BaShrink.

Choose an arbitrary periodic point p whose periodic orbit O(p) consists
of points not weakly S′-exceptional. This is possible since the set of weakly
S′-exceptional points is finite, see Subsection 1.4, and the set of all periodic
points in K is infinite, see [36, Proposition 2.5].

Suppose there exists j0 ∈ {0, ..., n−1} and z ∈ intW j0
n not being a critical

turning point, at which f |K is not open. We assume that r, hence |W j0
n |,

is small enough, (smaller than the minimal mutual distance between the
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points in NO(f,K)) that there are no turning critical points in W j0
n . Then

there exists z′ ∈ W j0+1
n arbitrarily close to f(z) whose f -preimage z′′ in

W j0
n is not in K. Let z0 = x, z1, ... be a backward trajectory of x in K,

(i.e. f(zj) = zj−1), converging to O(p) omitting S′ (possible since we have
assumed x is not weakly S′-exceptional) and let p = y0, y1, ... be a backward
trajectory of p in K such that z′ is its accumulation point. Choose n0 such

that yn0 is close enough to z′ to be in W j0+1
n . In fact we want |yn0 − z′| < ε

for an arbitrarily small ε > 0.
Choose δ > 0 small enough that all consecutive pull-backs Vj for f of

B(p, δ) along yj , j = 0, 1, 2, ..., n0 are disjoint from S′ and Vn0 is also close

enough to z′ to be in W j0+1
n and even within an arbitrarily chosen neigh-

bourhood, say in B(z′, ε).
If n is large enough, then |Wn| is so small that all consecutive pull-backs

Zj of Wn for f along zj , j = 0,−1,−2, ... are disjoint from S′. Choose n1

such that Zn1 ⊂ B(p, δ).

Let us summarize: f j0+1(Wn) = W j0+1
n , Vn0 ⊂ W j0+1

n , fn0(Vn0) =
B(p, δ), Zn1 ⊂ B(p, δ), and fn1(Zn1) = Wn.

Hence there exists a periodic orbit Õ of period j0 + 1 +n0 +n1 close to K
and passing arbitrarily close to z′′ for ε small. Hence by the weak isolation

assumption Õ ⊂ K hence z′′ ∈ K, contradiction. �

The considerations on shadowing as above can be found for other aims in
[36, Subsection 7.3, item 1a]. It is also related to the ‘bridges’ technique in
Subsection 3.4.

Corollary 3.3. In the situation of Lemma 3.2, in particular for x not
weakly S′-exceptional, for r small enough and all n large enough, f is a K-

homeomorphism on each intW j
n not containing any turning critical point,

onto intW j+1
n . If there is a turning critical point c ∈ intW j

n, then f is a K-

homeomorphism on both components of intW j
n \ {c}, one of them is mapped

onto intW j+1
n and the other one is mapped into intW j+1

n .

Proof. By Lemma 3.2 if intW j
n contains z ∈ NO(f,K), then z ∈ CritT (f).

So if there is no turning critical point in intW j
n there is no point belonging

to NO(f,K) either. Hence f is a homeomorphism on intW j
n, and also a

K-homeomorphism, since intW j
n contains f j(x) ∈ K, by Lemma 3.1.

If there is a turning critical point c ∈ intW j
n, then there is no other

turning critical point in intW j
n since the interval is short enough, and f(c)

is an end of f(W j
n) and at least one of the ends of W j

n is mapped to the

other end of f(W j
n). Since there are no points belonging to NO(f,K) \ {c}

in W j
n if this interval is short enough, the K-homeomorphism property on

each component of intW j
n \ {c} asserted in the corollary, follows. �



18 K. GELFERT, F. PRZYTYCKI, AND M. RAMS

3.3. More on topological recurrence and exceptional sets. The fact
that f : K → K is topologically transitive and has positive topological en-
tropy implies that it is weakly topologically exact (see [36, Lemma A.7]).
However, we will sometimes need a weaker conclusion, that f |K is strongly
topologically transitive, which immediately follows from weak topological
exactness and, less easily, from the topological transitivity, i.e. it is auto-
matically true for (f,K) ∈ A , see [22] or [36, Proposition 2.4]

We say that f |K is weakly topologically exact (see also [36, Definition
1.15]) if there exists a positive integer N such that for every nonempty open
set V ⊂ K there exists a positive integer n = n(V ) such that fn(V ) ∪ . . . ∪
fn+N−1(V ) = K. Notice that this automatically implies the same for all

n ≥ n(V ), by acting by fn−n(V ) on both sides of the equality.

Definition 3.4. The map f |K is strongly topologically transitive5 if for every
nonempty open V ⊂ K there is a positive integer m = m(V ) such that
V ∪f(V )∪. . .∪fm(V ) = K. Note that f |K is strong topologically transitivity
if, and only if, the union of backward trajectories of every point in K is dense
in K.

Notice that for a given ∆ > 0 one can choose m(V ) which works for all
V = B(x,∆), x ∈ K. We will denote this number by mc(∆).

Later we will need the following notation. For a measure µ and ∆ > 0 let

(3.2) Υ(µ,∆) := inf
x∈K

µ(B(x,∆)).

In our case, for µ being φ-conformal this number is positive, which fol-
lows easily from strong topologically transitivity of (f,K) due to the ex-
istence of m = mc(∆). In the case of µ being CaS measure, this positiv-
ity also holds provided this measure has infinite support. Indeed, denote
S1 =

⋃m−1
j=0 f−j(S′) and S2 =

⋃m
j=0 f

j(S1). If µ(B(x,∆)) is small, then for-

ward quasi-invariance implies that µ(
⋃m
j=0 f

j(B(x,∆)\S1)) is small, smaller

than 1−µ(S2). This contradicts the fact that
⋃m
j=0(f j(B(x,∆)\S1) contains

K \ S2.
In Section 6 we shall need the following very easy general fact. We will

apply it to X = K.

Lemma 3.5. Let (X, ρ) be a compact infinite metric space without isolated
points. Then for every r > 0 and integer m > 0 there exists ε = ε(r,m) > 0
such that for every x ∈ X there exists Z ⊂ X ∩ B(x, r) with #Z ≥ m such
that for all z1, z2 ∈ Z with z1 6= z2 we have ρ(z1, z2) ≥ ε.

Proof. For every point x ∈ X for every r and m there exists ε(x) satisfying
the assertion because x is not isolated, the problem in this lemma is to prove
that one can choose one ε working for all x. Assume that this is not the
case and that there exists a sequence (xn)n such that ε(xn) → 0. Let x be

5This name was used in [22]. See also the references therein. In [36, Definition 2.3] it
is called density of preimages property (dp).
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an accumulation point of sequence (xn), passing to a subsequence we can
assume x = limxn. Then B(x, r/2) ⊂ B(xn, r) for n large enough, hence for
the same m and for r′ = r/2 we would have ε(x) = 0 – contradiction. �

The following lemma provides a justification of the notions of ‘exceptional’
and ‘non-exceptional’. Given x ∈ K let

O−reg(x) :={
y = (f |K)−n(x) : n = 0, 1, . . . , fk(y) /∈ S′ for every k = 0, . . . , n− 1

}
be the union of all backward trajectories (finite or infinite) for f |K starting
at x that do not hit S′. Recall the notion of being weakly S′-exceptional in
Section 1.4.

Lemma 3.6. Let (f,K) ∈ A+. Then

1. For every x ∈ K not weakly S′-exceptional (we do allow x ∈ S′) the
set O−reg(x) is dense in K.

2. For every x ∈ K not S′-exceptional there exists n ≥ 0 such that fn(x)
is not weakly S′-exceptional.

3. For every invariant measure µ which gives measure 0 to all S′-exceptional
sets, the set of points x ∈ K for which the set O−reg(x) is dense in K
has positive measure µ.

Proof. By its definition, the set O−reg(x) satisfies (1.3) for Σ = S′, hence as

x does not belong to any weakly S′-exceptional set, O−reg(x) must be dense
in K which proves the Item 1.

Suppose that each y = fn(x), n ≥ 0 belongs to a weakly S′-exceptional set
Σ(y). Then, by definition, O−reg(y) ⊂ Σ(y), hence it is finite and weakly S′-

exceptional. Then Σ :=
⋃
y∈O+(x)O−reg(y), for O+(x) denoting the forward

orbit of x, is finite, in particular not dense, and forward invariant. Therefore
Σ is S′-exceptional, hence x belongs to an S′-exceptional set. This proves
Item 2.

Item 3 follows immediately from Item 2. �

The weak exactness property has not been used directly in the proof of
Lemma 3.6. However, it is needed to prove finiteness of the union of all
weakly S′-exceptional sets, see [36, Proposition 2.7, Part 2.], used in Proof
of Lemma 3.6.

Have in mind the example of irrational rotation of the circle (though
formally it is not in R) or a ‘solenoid’ K = ω(c) for an infinitely renor-
malizable unimodal map of the interval and c its critical value, where all
finite blocks {c, f(c), . . . , fn(c)} are weakly S′-exceptional sets. These ex-
amples are strongly topologically transitive, but not weakly exact, and the
assertions 2. and 3. of Lemma 3.6 fail.

3.4. Cantor repellers and ‘bridges’. We describe a construction to ‘con-
nect’ two given uniformly expanding repellers by building ‘bridges’ between
them.



20 K. GELFERT, F. PRZYTYCKI, AND M. RAMS

Let f : U → R be a C1+ε map on an open domain U ⊂ R. We call
a set X ⊂ U a f -uniformly expanding Cantor repeller (ECR) if f |X is
a uniformly expanding repeller being a topological Cantor set and being
a limit set of a finite graph directed system (GDS) satisfying the strong
separation condition (SSC) with respect to f . Recall that a GDS satisfying
the SSC with respect to f is a family of domains and maps satisfying the
following conditions (compare [24, pp. 3, 58]):

(i) There exists a finite family U = {Uk} of open intervals with pairwise
disjoint closures.

(ii) There exists a family G = {gk`} of branches of f−1 mapping U` into
Uk with bounded distortion (not all pairs k, ` must appear here).
Note that a general definition of GDS allows many maps g from each
U` to each Uk. Here however there can be at most one, since we
assume that f -critical points are far away from X the intervals Uk
are short and that the maps g are branches of f−1.

(iii) We have

X =

∞⋂
n=1

⋃
k1,...,kn

gk1k2 ◦ gk2k3 ◦ · · · ◦ gkn−1kn(Ukn).

We assume that we have f(X) = X and hence that for each k there
exists ` and for each ` there exists k such that gk` ∈ G.

We can view k’s as vertices and gk` as edges from ` to k of a directed graph
Γ = Γ(U, G).

Notice that the limit set X of any GDS as above is either a Cantor set
or, provided f |X is topologically transitive, a periodic orbit.

Observe that even if X contains points in NO(f,K), the resulting re-
stricted map f |X is open as X is a limit set of a GDS satisfying the SSC.

We import the following result from Pesin-Katok theory (see, for exam-
ple, [40, Theorem 11.6.1], [36, Theorem 4.1] (concerning our interval case)
[13], and also [26] for earlier related results). Recall again the definition of
weakly isolated in Definition 1.1.

Lemma 3.7. Consider f : U → R for an open set U ⊂ R, being a C2 map
with all critical points non-flat. Consider an arbitrary compact f -invariant
X ⊂ U . Let µ ∈ ME be supported on X and have positive Lyapunov expo-
nent. Let ϕ : U → R be a continuous function. Then there exists a sequence
(Xk)k≥1 ⊂ U of topologically transitive ECRs or periodic orbits, such that
for every k

(3.3) lim inf
k→∞

Pf |Xk
(ϕ) ≥ hµ(f) +

∫
ϕdµ,

and that every sequence (µk)k≥1 of measures µk ∈ ME(Xk) converges to µ
in the weak∗-topology. Moreover, we have

(3.4) lim
k→∞

χ(µk)→ χ(µ).
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If X is weakly isolated, then one can choose Xk ⊂ X.

For X = K for (f,K) ∈ A BD
+ satisfying the weak isolation condition,

Lemma 3.7 implies easily Pvarhyp(ϕt) ≤ Phyp(ϕt), see (2.1). Indeed, by
definition we can consider µ so that hµ(f) +

∫
ϕt dµ is arbitrarily close to

Pvarhyp(ϕt) and next find Xk as in Lemma 3.7 applied to ϕ ≡ 0. We get from
(3.3) htop(f |Xk

) at least hµ(f) (up to an arbitrarily small positive number)
and applying (3.4) for µk being measures of maximal entropy on Xk, we
obtain

(3.5) Pvarhyp(ϕt) ≤ PECR(ϕ|X) := sup
X⊂K

Pf |X (ϕ) ≤ Phyp(ϕt),

where the supremum is taken over all ECRs and periodic repelling orbits
X ⊂ K. This uses an inequality in the classical variational principle for the
continuous potentials ϕt|Xk

, namely: hµk(f |Xk
) +

∫
ϕt dµk ≤ Pf |Xk

(ϕt).

Compare also [36, Lemma 4.2].

Definition 3.8. Consider (f,K) ∈ A BD
+ satisfying the weak isolation con-

dition, and set X = K. Consider two ECRs or periodic repelling orbits
X1 and X2 contained in K, resulting from families of domains U1 = {U1,k}
and U2 = {U2,k} respectively. A bridge connecting X1 to X2 is a back-
ward trajectory that starts in X1, goes close to X2, and in-between avoids
the singular set S′. More precisely it is a sequence of points xn ∈ K for
n = 0,−1, . . . ,−N such that f(xn) = xn−1, x = x0 ∈ U1,k for an integer k
and the components Wn of f−n(U1,k) containing xn are disjoint from S′ for
n = 0, . . . , N , disjoint from

⋃
k Ui,k for n = 1, . . . , N − 1 and WN ⊂ U2,k′ for

an index k′.

If (f,K) is non-exceptional then for any two X1, X2 a bridge exists. In
fact by Lemma 3.6 Item 3, in X2, for every invariant measure µ on X2, there
is a positive measure set of points x whose backward trajectories omitting
S′ are dense in K. This allows to prove that for every X1 a bridge from X1

to X2 exists (for appropriate Ui).
Based on this idea of bridges connecting X1 to X2 and X2 to X1, one can

prove the following lemma (compare [14, Lemma 2]).

Lemma 3.9. For any two disjoint ECRs or repelling periodic orbits X1, X2 ⊂
K there exists an ECR set X ⊂ K containing the set X1 ∪X2. If f is topo-
logically transitive on each Xi, i = 1, 2, then f |X is topologically transitive.

In case two different ECRs or repelling periodic orbits intersect, in a
preliminary step we first have to modify one of them by the following lemma.
For that we also have to take into consideration ECRs with respect to fn.

In the following two results we use the standard notation S`φ = φ + φ ◦
f + · · ·+ φ ◦ f `−1 for a function φ : X → R and natural number ` > 0.

Lemma 3.10. Let X be a topologically transitive fn-ECR. Let φi : X →
R be a finite number of Hölder continuous functions. Then for any open
sufficiently small interval D intersecting X and for any ε > 0 one can find
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a set X ′ ⊂ D ∩X and a natural number ` > 0 such that X ′ is an f `-ECR
and for every φi satisfies

1

`
Pf`|X′(S`φi) ≥

1

n
Pfn|X(Snφi)− ε.

Notice that for every repelling periodic orbit X1 ⊂ K there exists an ECR
X ⊂ K containing X. Indeed, take another repelling periodic orbit X2 ⊂ K
existing due to (f,K) ∈ A+ and find X as in Lemma 3.9. Thus, combining
the Lemmas 3.7, 3.9, and 3.10, we obtain the following key result.

Proposition 3.11. For every (f,K) ∈ A BD
+ satisfying the weak isolation

condition and non-exceptional, there exists a sequence (am)m of positive
integers and a sequence Xm ⊂ K of fam-invariant uniformly expanding
topologically transitive ECRs such that for every t ∈ R, we have

(3.6) P (ϕt) = lim
m→∞

1

am
Pfam |Xm

(Samϕt) = sup
m≥1

1

am
Pfam |Xm

(Samϕt).

For every α ∈ (χinf , χsup) we have

(3.7) F (α) = lim
m→∞

Fm(α) = sup
m≥1

Fm(α)

and

(3.8) lim
m→∞

χminf = inf
m≥1

χminf = χinf , lim
m→∞

χmsup = sup
m≥1

χmsup = χsup,

where Fm and χminf/sup are defined as in (1.7) and (1.6) but for the pressure
1
am
Pfam |Xm

(Samφ) instead of P (φ).

The proofs of Lemmas 3.7, 3.9, and 3.10 are almost verbatim as the proofs
of [14, Lemmas 3, 2, and 4]. We would like to remark that to make the proof
of Lemma 3.10 work (and this should have been mentioned also in the proof
of [14, Lemma 4]) we need to choose D of sufficiently small size such that
the considered pull-backs (see Subsection 3.6 below) of D are all univalent.

Finally notice that our sets Xm are in K since periodic points are dense
in them and if they are sufficiently close to K they are in K by the weak
isolation property.

In fact one can assume all am = 1. This follows from the fact that
one can replace Xm by Y :=

⋃am−1
j=0 Xm and find Y ′ containing Y also f -

invariant uniformly expanding topologically transitive and moreover isolated
(the property we might have lost for Y ), see [40, Proposition 4.5.6.].

3.5. Local properties at critical points. Let c be a non-flat critical point
of a C1 map f . There exist constants R0 > 0 and A0 > 1 such that for every
x with |x− c| ≤ R0 there is d(c) ≥ 2 so that

(3.9) A−1
0 ≤ |f ′(x)|

|x− c|d(c)−1
≤ A0.

In our situation there are only finitely many critical points, hence A0 can
be chosen uniformly.
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3.6. Telescope constructions. A number n ∈ N is said to be a Pliss
hyperbolic time for a point x with exponent σ > 0 if

(3.10) |(fk)′(fn−k(x))| ≥ ekσ for every 1 ≤ k ≤ n.
The following is an immediate consequence of the Pliss lemma (see, for
example, [29] or [2, Lemma 3.1]. In Lemma 6.1 below we will provide a
more refined abstract result.

Lemma 3.12 (Pliss lemma). Let f be a C1 map of a closed interval. For
every point x with χ(x) > σ > 0 there exist infinitely many Pliss hyper-
bolic times for x with exponent σ. Moreover, if H ⊂ N denotes the set of
hyperbolic times, then we have

d(H) := lim sup
n→∞

#(H ∩ [0, n])

n
> 0.

We will call d(H) the upper density of H.

Proposition 3.13 (Telescope). Let f : I → I be a C1 multimodal map on
a closed interval I. Given ε > 0 and σ > 0, there exist constants A1 =
A1(ε) > 0 and R1 = R1(ε, σ) > 0 such that the following is true. Given
a point x ∈ I with χ(x) > σ > 0, for every number r ∈ (0, R1), for every
n ≥ 1 which is a Pliss hyperbolic time for x with exponent σ, and for every
k = 1, . . . , n we have

diam Compfn−k(x) f
−k (B(fn(x), r)) ≤ r A1 e

kε |(fk)′(fn−k(x))|−1 ≤

r A1 e
−k(σ−ε).

This proposition was first stated and proved, with various variants, in
the complex setting in [30]. Here we provide a slightly simplified proof
for interval maps. Notice that only C1 regularity is required and that no
advanced distortion properties are needed.

We first prove a preliminary result. Recall the choice of constants A0, R0

in Section 3.5.

Lemma 3.14. Given a point c ∈ Crit(f), let T ⊂ B(c,R0) be an interval
and x ∈ T . Then

diam f(T ) ≥ 1

2d(c)A4
0

|f ′(x)| diamT.

Proof. Denote d = d(c). Let y be the endpoint of T furthest away from c
and z the endpoint closest to c. We can assume that y is to the left of c.

Suppose first that T is on one side of c (i.e. its interior does not contain
c). Hence diamT = |y − z|. By (3.9) we have

|f ′(x)| ≥ A−1
0 |x− c|

d−1 ,

which implies

diam f(T ) ≥
∫ |y−c|
|z−c|

A−1
0 sd−1 ds .
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Combining this inequality with

|f ′(y)| ≤ A0 |y − c|d−1 ,

we obtain

diam f(T ) ≥ 1

A0d

(
|y − c|d − |z − c|d

)
≥ 1

A0d
|y − c|d−1 · |y − z|

≥ 1

A2
0d
|f ′(x)| diamT.

Suppose now that y and z are on the opposite sides of c. Suppose first
that x ∈ [y, c]. Then we apply the above to T replaced by [y, c] and obtain

diam f(T ) ≥ diam f([y, c]) ≥ 1

A2
0d
|f ′(x)| · |y − c| ≥ 1

2A2
0d
|f ′(x)| · diamT .

Suppose now that x ∈ [c, z]. Then we apply (3.9) to the point x̂ =
c− (x− c). Then x̂ ∈ [y, c] and by the previous estimate and applying (3.9)
we obtain

diam f(T ) ≥ 1

2A2
0d
|f ′(x̂)| · diamT ≥ 1

2A4
0d
|f ′(x)| · diamT.

The proof is complete. �

Remark 3.15. If the bounded distortion condition holds, the following
unifying version of Lemma 3.14 holds. There exists C > 0 depending only
on f such that for any interval T short enough and x ∈ T

diam f(T ) ≥ C|f ′(x)| diamT.

Indeed, if T is close to a critical point, this follows from Lemma 3.14. Oth-
erwise if, say, 2 � T ∩ Crit(f) = ∅, this follows from the bounded distortion
condition.

Let λ(r) be the minimum of |f ′| outside the r-neighborhood of Crit. Let
γ(·) be the modulus of continuity of the function |f ′|. We have the following
simple estimation.

Lemma 3.16. Given an interval T of length R′ that is in distance at least
R from Crit(f), we have

sup
x,y∈T

|f ′(x)|
|f ′(y)|

≤ λ(R) + γ(R′)

λ(R)
.

Proof of Proposition 3.13. Fix σ and ε ∈ (0,min{σ, 1}). Let n be a Pliss
hyperbolic time for x with exponent σ. For k = 0, . . . , n and r > 0 consider
the sets

Wk(r) := Compfn−k(x)f
−k(B(fn(x), r)),

Let R1 < R∗ be positive numbers to be defined below. Let

M := # Crit, d := max d(c).
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Let A(N) be the minimum distance ` such that there exists a critical point
c and a point y ∈ B(c, `) such that fk(y) ∈ B(c, `) for some k ≤ N .
For a critical point c we say that a number k ≤ n is a c-critical time if
dist(c,Wk(R1)) < R∗. Let Ccrit be the set of times which are c-critical for
some c ∈ Crit.

The following claim will immediately prove the proposition.

Claim. There exist positive numbers R∗ ∈ (0, R0/2), R1 ∈ (0, R∗), A1, and
a positive integer N such that for all k = 0, . . . , n and r ∈ (0, R1) we have

(a) diamWk(R1) ≤ R∗,
(b) for every i ∈ Ccrit, i ≤ k, we have

diamWi−1(r)

diamWi(r)
≥ 1

2 dA4
0

|f ′(fn−i(x))|

while ∏
i/∈Ccrit,i≤k

DistWi(R1)f ≤
(

1 +
ε

2

)k
.

(c) given c ∈ Crit, any two c-critical times ≤ k differ at least by N ,

(d) diamWk(r) ≤ r A1 e
kε |(fk)′(fn−k(x))|−1.

Proof. Let us first fix some constants. Let

(3.11) A1 > (2 dA0
4)2M .

Choose a positive integer N satisfying

(3.12) A1 < eNε/2.

Choose a positive number R∗ satisfying

(3.13) R∗ < min

{
R0

2
,
A(N)

2

}
.

Choose a positive number R1 satisfying

(3.14) R1 < min

{
λ(R0)

R∗
2
A1,

R∗
d

2
A0A1d

}
and

(3.15) γ(R1) < ε
λ(R∗)

2
.

The proof is by induction on k. Note that all statements (a)-(d) hold for
k = 0. Suppose that the claim holds for k = `.

Observe that we have chosen A1 and N sufficiently large such that we can
conclude (d) from (a)–(c). We have chosen R∗ sufficiently small such that
(a) implies (c). Finally, we have chosen R1 small enough that the previous
lemmas and (a) imply (b). We now are going to conclude the properties
(a)–(d) for `+ 1.
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Property (a). Since (d) holds at time ` and since n is a Pliss hyperbolic
time, by the choice of ε we have

diamW`(R1) ≤ R1A1e
`ε|(f `)′(fn−`(x))|−1 ≤ R1A1e

`(ε−σ) < R1A1.

Thus, together with (3.14), we can conclude

diamW`+1(R1) ≤ R1A1

λ(R0)
+ (A0 dR1A1)1/d ≤ R∗

and therefore, we have (a) at time `+ 1.

Property (b). We will distinguish two cases.
If ` + 1 ∈ Ccrit then dist(c,W`+1(R1)) < R∗ < R0/2 for some c ∈ Crit

and by Lemma 3.14 we have

diamW`(r)

diamW`+1(r)
≥ 1

2 dA4
0

|f ′(fn−(`+1)(x))|

while the estimate of the product remains unaltered. Thus, (b) holds for
`+ 1 in this case.

If ` + 1 /∈ Ccrit, then dist(c,W`+1(R1)) ≥ R∗ for all c ∈ Crit and hence,
by Lemma 3.16 and by (3.15) we obtain

DistW`+1(R1) f = sup
x,y∈W`+1(R1)

|f ′(x)|
|f ′(y)|

≤ λ(R∗) + γ(R1)

λ(R∗)
≤ 1 +

ε

2
.

Thus, we obtain ∏
i/∈Ccrit,i≤`+1

DistWi(R1)f ≤
(

1 +
ε

2

)`+1
.

On the other hand, we have

diamW`(r)

diamW`+1(r)
≥ |f ′(fn−(`+1)(x))| ·

(
DistW`+1(R1) f

)−1

≥ 1

2 dA4
0

|f ′(fn−(`+1)(x))|,

that is, (b) holds for `+ 1 in this case.

Property (c). If (a) holds at times 0, . . . , `, then it follows from (3.13) that
(c) holds at time `+ 1. Indeed, by (a), Wi(R1) ⊂ B(c, 2R∗) holds for all c-
critical times i ≤ `. The definition of A(N) implies that no point y ∈Wi(R1)

has a preimage f−(`+1)(y) ∈ B(c, 2R∗) for `+ 1 < N . Hence, times i+ `+ 1
are not c-critical for `+ 1 < N .

Property (d). It remains to show that (d) is true at time ` + 1. For all
noncritical times i ≤ `+ 1 we have

diamWi−1(r)

diamWi(r)
≥ |f ′(fn−i(x))| ·

(
DistWi(R1)f

)−1
,
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while for all c-critical times i ≤ `+ 1, using (b), we have

diamWi−1(r)

diamWi(r)
≥ |f ′(fn−i(x))| · 1

2 dA4
0

.

Thus, together with (3.11), we obtain

diamW`+1(r) = r
diamW1(r)

diamW0(r)
· · · diamW`+1(r)

diamW`(r)

≤ r |(f `+1)′(fn−(`+1)(x))|−1 ·
∏

i/∈Ccrit,i≤`+1

DistWi(R1) f ·
(
2 dA4

0

)2M
≤ r |(f `+1)′(fn−(`+1)(x))|−1e(`+1)εA1

Here we used also the fact that there are only M critical points and that by
(c) the critical times ≤ `+ 1 for each of them happen at most once every N
iteration. Thus, we obtain (d) for `+ 1. This finishes the proof. �

This completes the proof of the proposition. �

Remark 3.17. The proof is simpler when one assumes bounded distortion
condition. In this case it is not necessary to go step by step, one can take
the whole non-critical stretch of the trajectory of x and use the bounded
distortion there. One proceeds as in the pull-back construction, see Subsec-
tion 3.7.

3.7. Pull-back construction. To formulate our second preliminary tech-
nical result we use the following construction, see [15, 37, 38] and [36, Def-
inition 5.1]. Some complications arise in presence of indifferent periodic
orbits.

Recall that S′ denotes the restricted singular set

S′ = Crit(f) ∪NO(f,K) .

Pull-back construction: Let (f,K,U) ∈ A+. Given n > 0, R > 0, and
y ∈ K, consider a backward trajectory (yi)

n
i=1 of y, that is, y0 = y and

yi+1 ∈ f−1(yi) for every i = 1, . . . , n− 1. Let k1 be the smallest integer for
which Compyk1

f−k1(B(y,R)) contains a point in S′. For every ` ≥ 1 let then

k`+1 > k` be the smallest integer such that Compyk`+1
f−(k`+1−k`)(B(yk` , R))

contains a point in S′ and so on.
In this way, to each backward branch (yi)i considered, we associate a se-

quence (k`)` of numbers 1 ≤ k` ≤ n that has a maximal element that we
denote by k. We consider the set of all pairs (yk, k) built from all the back-
ward branches that start from y and denote by N(y, n,R) the cardinality of
this set.

In order to make this construction work, we need to know that every
considered preimage is well-defined. If there are no indifferent periodic orbits
in K then this is easy to achieve provided that R is small enough so that all
pull-backs of intervals of length at most 2R intersecting K are well inside



28 K. GELFERT, F. PRZYTYCKI, AND M. RAMS

UK (it is sufficient if their closures are in UK), so that they do not become
truncated. This is possible in the absence of indifferent periodic orbits by
[36, Lemma 2.10], compare the definition of BaShrink in Subsection 2.4.6

In presence of indifferent periodic orbits this construction works if we a
priori know or assume the following:

(∗) Let

R′ :=
1

2
dist(S′, Indiff(f))

Assume that all pull-backs Compyi f
−i(B(y,R)) for i = 0, . . . , k1 have

diameters smaller than R′ and are well inside UK .

Additionally we assume that R is small enough such that for every x ∈ S′
the pull-backs Compz f

−k(B(x,R)), for all k = 0, 1, . . . and fk(z) = x have
diameters smaller than R′ (in particular with k = 0 we have 2R < R′). This
is possible since S′ ∩ Indiff(f) = ∅ (S′ has no periodic points) and since S′

is finite (refer again to [36, Lemma 2.10], by BaShrink). We also assume, as
before, that R is small enough that all pull-backs of intervals of length at
most 2R intersecting K and disjoint from Indiff(f) are well inside UK .

Under the above assumptions, the pull-back construction works. Indeed,
the pull-backs Compyi f

−i(B(y,R)) for i = 0, . . . , k1 are short by assump-

tion. Then for c ∈ S′∩Compyk1
f−k1(B(y,R)) we have |c−yk1 | < R′, hence

B(yk1 , R
′) and therefore B(yk1 , R) are disjoint from Indiff(f) and we can

continue the construction.

Remark 3.18. As mentioned before, the condition (∗) holds for R small
enough if B(y,R) does not contain any indifferent periodic point. Notice
that it also holds if k1 is a Pliss hyperbolic time for yk1 , by Proposition 3.13.

In fact due to Proposition 3.13 the backward shrinking as, say, in (∗)
holds for any piece of a trajectory x, f(x), ..., fn(x) if n is a Pliss hyperbolic
time for x ∈ K.

Proposition 3.19 (Pull-back). Given ε > 0, there exist numbers A2 =
A2(ε) > 0 and R2 = R2(ε) > 0 such that for every r ∈ (0, R2) and every
y ∈ K we have

N(y, n, r) < A2 e
nε for all n ≥ 1.

Proof. Let

M1 := #S′, M2 := #S′ +
∑

c∈Crit(f)

(d(c)− 1) .

Given ε > 0, let us choose a positive integer N large enough such

(3.16)
M1 ln((N + 1)M2)

N
≤ ε .

6Notice that this difficulty does not appear for rational mappings on the Riemann
sphere.
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Observe that there are no cycles in S′ that is, fk(x) 6= x for every k ≥ 1
and every x ∈ S′, see [36, Lemma 2.2]. Though, observe that a point in S′

may be mapped to another point in this set. So, given N , there is

δ′(N) := min
x∈S′

min
1≤k≤N

|fk(x)− x| > 0.

Moreover, let δ(N) be sufficiently small that for any interval I of length
δ(N) and for any 1 ≤ k ≤ N the size of each component of f−k(I) is smaller
than δ′(N)/2.

Let us consider an integer n > Nε−1.
Let δ ∈ (0, δ(N)). Given a point y ∈ K and r ∈ (0, δ), consider the ball

B = B(y, r). By definition of the number N(y, n, δ), every backward branch
of y determines a sequence of numbers (k`)`. The definition of δ(N) implies
that if in our construction along some backward trajectory (yi)

n
i=1 of y there

are two ‘singular times’ k`, km, 1 ≤ k` < km ≤ n, corresponding to the same
singular point x ∈ S′ then km − k` > N . As a consequence, given a stretch
of this backward trajectory with times in {j + 1, . . . , j + N}, there are at
most M1 ‘singular times’ k` corresponding to a point in S′.

Finally, given 1 ≤ i ≤ n, considering all possible backward trajectories
starting in y, at most M2 of them have a smallest ‘singular time’ k1 = i,
that is, the corresponding component of f−i(B) will intersect S′ for the first
time exactly after i backward iterates. Observe that any of those components
will be disjoint. This implies, in particular, that at most M2 of them can
intersect S′. The same argument will apply not only for backward branches
starting at y, but also the branches starting at f−ki(y) that we use in the
construction.

Lets summarize the construction in the statement of the lemma. When
we divide the time interval {1, . . . , n} into intervals Ik = {kN + 1, kN +
1, . . . , (k + 1)N}, for any backward trajectory of y at most M1 singular
times can be in Ik. Hence, there are at most (N + 1)M1 possibilities for
{kj} ∩ Ik. Moreover, given the sequence {ki} ∩ {1, . . . , kN} each of possible

subsets {kj} ∩ Ik can be realized for at most MM1
2 subbranches. This lets

us estimate the number of backward branches for which there is a singular
time in Ik by

[(N + 1)M2](k+1)M1

and the number of all singular branches up to a time n

N(y, n, r) ≤
dn/Ne∑
k=0

[(N + 1)M2](k+1)M1 ≤ A2(ε)enε

This proves the proposition. �

3.8. Conical points. After [10], for (f,K,UK) ∈ A , a point x ∈ K is said
to be conical if there exist a number r > 0, a sequence of positive integers
ni ↗∞, and a sequence (Ui)i of neighborhoods Ui ⊂ UK of x, such that fni
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is defined on Ui and fni(Ui) = B(fni(x), r) and that Dist fni |Ui is bounded
uniformly in i. We say that x is S′-conical if additionally for all i and
0 ≤ k < ni we have fk(Ui) ∩ S′ = ∅.

Notice that |Ui| → 0 as ni → ∞, otherwise there would exist a wander-
ing interval or an attracting (or indifferent attracting from the side of K)
periodic orbit in K, which is not possible, see [25, Chapter 4, Theorem A],
compare [36, Subsection 2.3].

Remark 3.20. We observe that the concept of conical points is in fact
very much related to the concept of points that are ‘seen’ by an inducing
scheme (see, for example [20] for an application of this technique to questions
similar to those discussed here). Similarly to Proposition 3.21 below, in [20,
Theorem 3.3 c)] the authors show that the inducing scheme captures all but
a set of points of zero Hausdorff dimension. See also [35] in the holomorphic
case.

Proposition 3.21 (Non-conical hyperbolic points). The set of points x ∈ K
that are not S′-conical and satisfy χ(x) > 0 has Hausdorff dimension zero.

Proof. Let us choose some numbers σ > 0 and ε > 0. Let

r :=
1

2(A1 + 2)
min{R1, R2},

where A1 and R1 are constants given by Proposition 3.13 and where R2 is
given by Proposition 3.19. Let R := 2−1 min{R1, R2}.

We fix a finite family of balls {Bi}Ni=1 of radius 3r such that any ball of
radius 2r which intersects K must be contained in one of the balls in this
family.

Given m ≥ 1 and σ > 0, let G(m,σ) be the set of points x ∈ K with
χ(x) > σ for which for all ` > m being a Pliss hyperbolic time with exponent
σ, the pull-back of B(f `(x), 2r) for f ` containing x meets a point in S′, that
is, we have

(3.17) Compfk(x) f
−(`−k)(B(fn(x), 2r)) ∩ S′ 6= ∅

for some k ∈ {0, . . . , ` − 1}. Since ` is a Pliss hyperbolic time, by Propo-
sition 3.13, all the above pull-backs are small, and in particular well inside
UK . Hence the assumption (∗) enabling the pull-back construction holds.
Compare Remark 3.18.

We claim that dimHG(m,σ) = 0 for any m ≥ 1 and σ > 0. Indeed, given
n > m, let us denote by G(m,σ, n) the set of points in G(m,σ) for which n
is a Pliss hyperbolic time with exponent σ. Recall that χ(x) > σ > 0 implies
that there exist infinitely many Pliss hyperbolic times for x with exponent
σ. Hence, we have

(3.18) G(m,σ) =
⋂
k≥m

⋃
n>k

G(m,σ, n).

Let x ∈ G(m,σ). Then x ∈ G(m,σ, n) for some n > m arbitrarily large. Let
Bj be a ball from the above chosen family which contains B(fn(x), 2r) and
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pick y such that Bj = B(y, 3r). We will apply the pull-back construction of
Proposition 3.19 to the point y, the number n, the radius R, and f−nx . Let
(yk, k) be given by the pull-back construction.

We first note that Proposition 3.13 and |fn(x)− y| ≤ r ≤ R1 imply that

|(fn−k(x))− yk| ≤ r A1e
−k(σ−ε) < rA1.

By our choice of constants we have r A1 + 2r = R, which implies

B(fn−k(x), 2r) ⊂ B(yk, R).

Since x ∈ G(m,σ), the pull-back of B(f `(x), 2r) must meet a point in S′

whenever ` > m. On the other hand k is the maximal element and hence the
pull-back of B(yk, R) does not meet any critical point. Thus, we conclude
m ≥ n − k. Thus, fixed n and Bj , by Proposition 3.19 the point x must
belong to one of at most A2e

nε(deg f)m preimages of Bj .
Also observe that Bj = B(y, 3r) ⊂ B(fn(x), 4r) and 4r < R1. Since n

is a Pliss hyperbolic time for x with exponent σ, by Proposition 3.13 this
pre-image of Bj has diameter not greater than 4r A1e

−n(σ−ε).
Hence we showed that every point in G(m,σ, n) belongs to the nth pre-

image of some ballBj along a backward branch of y and the maximal element
(yk, k) as defined in the pull-back construction satisfies k ≥ m − n. Thus,
by Proposition 3.13, the set G(m,σ, n) is contained in a union of at most

A2e
nε(deg f)m sets of diameter not greater than 4r A1e

−n(σ−ε). We apply
G(m,σ) ⊂

⋃
n>mG(m,σ, n) to obtain

dimHG(m,σ) ≤ ε

σ − ε
,

recall (3.18). As ε can be chosen arbitrarily small, this proves dimHG(m,σ) =
0.

Finally let us consider the set

G :=

∞⋃
m=1

∞⋃
n=1

G
(
m,

1

n

)
.

By the above we have dimHG = 0. Let x ∈ K \G be a point with χ(x) > 0.
Let us now show that x must be S′-conical. By the above, there is a sequence
of Pliss hyperbolic times (ni)i such that Compfk(x) f

−(ni−k)(B(fni(x), 2r))

does not intersect S′ for any k = 0, . . . , ni − 1. Hence, in particular fni

maps Ii1 = Compfk(x) f
−(ni−k)(B(fni(x), 2r)) diffeomorphically onto Ii2 =

B(fni(x), 2r). Note that (1 − ε)Ii2 ⊂ B(fni(x), r). Hence, as f satisfies
bounded distortion near K there exist C(ε) > 1 such that for every i ≥ 1

Dist g|B(fni (x),r) ≤ C(ε), where g = (fni |Ii1)−1.

Thus, x is S′-conical with r, (ni)i, and Ui = Ii1. This finishes the proof. �
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4. Proof of Theorem 1

In this section we shall prove Theorem 1, except for (1.11) which is post-
poned to Section 5.

4.1. No conical points with small exponent. We start with a proposi-
tion, which, together with Proposition 3.21 in the previous section, proves
in particular (1.13) in Theorem 1 (compare also [20, Remark 4.1]). In the
next sections we shall provide improvements, skipping the assumption that
the points are conical, in particular proving (1.11) and its generalizations.

Proposition 4.1. Let (f,K) ∈ A BD
+ be non-exceptional and satisfy the

weak isolation condition. Then the set {x : x is conical, χ(x) < χinf} is
empty.

In particular we can write above S′-conical, which together with Propo-
sition 3.21 is also sufficient to prove (1.13). Moreover, we point out that the
assumption of weak isolation is not needed in this proof.

Let us summarize that we get a decomposition of K into three sets:

• points x being non-S′-conical with χ(x) ≤ 0,
• points x being non-S′-conical with χ(x) > 0, and
• x being S′-conical.

We do not know much about the first set. By Proposition 3.21, the second
one has Hausdorff dimension 0. Any x in the third set satisfies χ(x) ≥ χinf

by Proposition 4.1.

Sketch of Proof of Proposition 4.1. For x conical we find an arbitrarily small
neighborhood U of x and n such that fn maps U onto B(fn(x), r) with
bounded distortion. By strong transitivity f−m(x) is r/2-dense for suffi-
ciently large m. As |U | is small its respective pull-back U ′ is in B(fn(x), r).
Then one finds a shadowing periodic orbit and distributes an invariant mea-
sure µ on it. We obtain χ(µ) ≤ χ(x)+ε with ε arbitrarily close to 0. Observe
that capturing of critical points when going forward from U ′ to U does not
hurt as small derivative of f close to them works to our advantage. �

4.2. Upper bound. The content of this subsection, like Sections 4.1 and 4.3,
is very similar to the complex case in [14]. However, the modified versions
of the proof of Proposition 4.2 will be considered in Sections 5 and 6, so we
include the details.

Thus, the first part of Theorem 1 consists of the following upper bound.

Proposition 4.2. Given numbers α ≤ β ≤ χsup with β > 0, and addition-
ally assuming α > 0 if χinf = 0, we have

dimH L(α, β) ≤ max
{

0, max
α≤q≤β

F (q)
}
.

The possibility to restrict to S′-conical points due to Proposition 3.21
makes the proof easier than the proofs in Sections 5 and 6, where one deals
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with finite criticality (TCE). It turns out that considering ‘non-critical con-
ical times’ is not sufficient and that one has to deal with true conformal
measures.

Proof. Let α and β be as in the assumption and x ∈ L(α, β). By Proposi-
tion 3.21 it is enough to assume that x is S′-conical with a corresponding
number r > 0, a sequence ni ↗ ∞, and a sequence (Ui)i of neighborhoods
of x such that fni(Ui) = B(fni(x), r) (Ui’s are pull-backs in another termi-
nology) and that Dist fni |Ui is bounded uniformly in i by some constant C.
By passing to a subsequence we can assume that 1

ni
log |(fni)′(x)| has a limit

q ∈ [α, β]. If χinf > 0 then as in the proof of Proposition 4.1 we can find a
periodic point x with χ(x) less than q + ε for ε arbitrarily close to 0, for ni
respectively large. Hence q ≥ χinf > 0. If χinf = 0 we use the assumption
α > 0 to assure that q > 0.

Every fk(Ui) and thus fk−ni(B(fni(x), r)), for every k = 0, . . . , ni −
1, are disjoint from S′. So when we consider µ∗t , the measure defined in
Subsection 2.3 with Jacobian λ|f ′|t for λ = eP (t), applying the conformality
relation for f repeated ni times, we have, due to Lemma 3.1,∫

f
−ni
x (B(fni (x),r))

|(fni)′|t dµ∗t = µ∗t
(
B(fni(x), r)

)
λ−ni .

Given r, there is a constant c = c(r, t) > 1 such that c−1 ≤ µ∗t (B(y, r)) ≤ c
for every y ∈ K, see Subsection 3.3 (where the notation Υ was used). This,
together with the distortion results, implies

(4.1) µ∗t (f
−ni
x (B(fni(x), r))) ≥ |(fni)′(x)|−tC−1c−1e−ni(P (t)+ε) .

Now we conclude as in the proof of [14, Proposition 2], see also the end
of Section 6, that the lower local dimension of µ∗t is bounded from above
by t + (P (t)/q) at x. Then, continuing as in this proof, and applying the
Frostman lemma, we obtain

(4.2) dimH L(α, β) ≤ max
{

0, max
α≤q≤β

F (q)
}
.

In the case χinf > 0 we have got a formally better result, with max{α, χinf} ≤
q ≤ β in the above estimate, but this does not make difference since F (α) =
−∞ for α < χinf . This finishes the proof. �

Notice, that in particular for 0 < q ≤ β < χinf for t large enough we
have P (t) < −q t. Hence, for ε small enough the measures in (4.1) diverge.
So such S′-conical points x cannot exist. Observe that this way we have
obtained an alternative proof of the partial result in Proposition 4.1 stating
that the set of S′-conical points is empty (the emptyness of the conical set
does not follow, since to use CaS measure we need to omit S′).

Summarizing, Proposition 4.1 together with Proposition 3.21 prove (1.13).
This approach will be used again in Section 6.
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4.3. Lower bound – interior of the spectrum. The proof of the lower
bound for the regular spectrum in Theorem 1 goes exactly like in [14, Section
5], with the only difference that we use S′ instead of the set of critical
points. The main idea is to construct ECRs and use bridges, as recalled in
Subsection 3.4, and to apply Proposition 3.11.

We use the formula for the Lyapunov spectrum on a uniformly hyperbolic
repeller Xm (see for example [34]) which gives in particular

dimH{x ∈ Xm : χ(x) = α} ≥ Fm(α).

Hence, using (3.7) for any α ∈ (χinf , χsup) we get

dimH{x ∈ K : χ(x) = α} ≥ sup
m
Fm(α) = F (α),

which is the lower bound asserted in Theorem 1.

4.4. Lower bound – boundary and irregular part. It is sufficient to
have the following result.

Theorem 4. Let (Xi)i be a sequence of ECRs invariant for fai in K (Can-

tor sets, we do not allow individual periodic orbits here), disjoint from ∂ÎK .
Let (φi)i be a sequence of Hölder continuous potentials and let (µi)i be a
sequence of equilibrium states for φi with respect to fai |Xi. Then we get

dimH

{
x ∈ K : χ(x) = lim inf

i→∞
χ(µi), χ(x) = lim sup

i→∞
χ(µi)

}
≥ lim inf

i→∞
dimH µi

and for the packing dimension

dimP

{
x ∈ K : χ(x) = lim inf

i→∞
χ(µi), χ(x) = lim sup

i→∞
χ(µi)

}
≥ lim sup

i→∞
dimH µi.

Proof. This proof goes exactly like the proof of [14, Theorem 3]. However
in our setting, even assuming the weak isolation condition, it is not a priori
clear that the Cantor set C of point x constructed in [14] is in K. So, we
should care about this in the construction. The points in C are the points
whose forward trajectory spends time n1 close to a trajectory in X1 Birkhoff
for φ1 (i.e. with finite time Birkhoff average close to

∫
φ1 dµ1), next it goes

along a bridge which joins X2 to X1 (in the forward direction), then it
spends time n2 close to a trajectory in X2 Birkhoff for φ2, next goes to X3,
etc. The sequence (ni)i growths sufficiently fast to guarantee the required
properties.

Since the measures µi are non-atomic, the (countable) set
⋃∞
m=0 f

m(∂ÎK)
has measure 0. Hence, we can choose any point outside this set and con-
struct (backward) bridges from such a point. These bridges will be dis-

joint from ∂ÎK . If Ui consist of components of length small enough, then⋃∞
m=0 f

m(C) ⊂ ÎK . Hence, by the maximality of K in ÎK , we have C ⊂ K,
see Subsection 1.1. �
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To prove lower bounds for, say, dimH L(α, β) with α, β ∈ (χinf , χsup) we
consider ECRs Xi as in Proposition 3.11 (indexed Xm there). Consider also

φi := φti |Xi where ti is such that
∂P (f |Xi , φt)

∂t
|ti =

{
α i odd,

β i even,

and let µi be the equilibrium for φi with respect to f |Xi .

We can assume Xi to be disjoint from ∂ÎK . Otherwise we can subtract

from Xi an open set W covering ∂ÎK which, for example, can be taken to
be small ‘cylinders’ of the form gk1k2 ◦ gk2k3 ◦ · · · ◦ gkn−1kn(Ukn), see Sub-
section 3.4. This does not change the topological pressures on Xi much.
Indeed, this continuity follows from the following

Lemma 4.3. Let f : X → X be an expanding repeller in R (or more gen-
erally an open distance-expanding map, see [40]) which is topologically tran-
sitive and of positive topological entropy. Let φ : X → R be a continuous
function. Take an arbitrary finite set Z ⊂ X. Denote X(r) := X \Yr where
Yr =

⋃∞
j=0 f

−j(B(Z, r)). Then P (f |X(r), φ|X(r))↗ P (f, φ) as r → 0.

For completeness we provide an elementary proof. Another proof follows
from the use of conformal measures, see [9]. Compare also [36, Proof of
Theorem 4.1, Case 2.] from which yet another proof can be extracted. Re-
mark also that using Markov partition one can approximate φ by a function
constant on small ‘cylinders’ and reduce the consideration to the continuity
of the leading eigenvalue of the corresponding Markov matrices.

Proof of Lemma 4.3. We replace Z by a finite subset Z ′ of its forward tra-
jectory, so that no point in Z ′ is pre-periodic but non-periodic and such
that the forward trajectories of any pair of distinct points in Z ′ are disjoint.
Then for an arbitrary r′ > 0 and W = B(Z ′, r′) we get

⋃∞
j=0 f

−j(W ) ⊃ Yr
for all r small enough.

Let `0 be such that every point x ∈ X has at least two distinct preimages
of level `0 in X. Fix n and take r′ > 0 small enough that all the sets
f j(B(z, r′)), z ∈ Z ′, j = 0, . . . , n+ `0 are pairwise disjoint, with the possible
exception of f j1(B(z, r′)), f j2(B(z, r′)) for z ∈ Z ′ periodic with j2−j1 being
a multiplicity of the period (such sets, naturally, must intersect).

Consider

X(W ) := X \
∞⋃

j=−`0

f−j(W ).

Take x ∈ X(W ). Consider two distinct points y, y′ ∈ f−`0(x). Then by
the definition of W at least one of them, say y, has the property that all
the preimages f−j({y}), j = 0, . . . , n are disjoint from W . By definition of
X(W ) also all f j(y), j = 1, . . . , `0 are outside W . Thus, all the backward
branches of x of length n+ `0 passing through y are disjoint from W .



36 K. GELFERT, F. PRZYTYCKI, AND M. RAMS

Let ψ be a nonnegative potential obtained by adding a constant to φ. We
choose n large enough that for all w ∈ X we have

1

n− `0
log

∑
z∈f−n+`0 (w)

exp

(
n−1−`0∑
`=0

ψ(f `(z))

)
≥ P (f, ψ)− ε.

Indeed, this follows by [40, Proposition 4.4.3]. This proposition formally
assumes Hölder continuity. However, the uniform convergence of pressure
holds also in the general case of a merely continuous potential, since every
continuous function can be uniformly approximated by a Hölder continuous
one.

Given x ∈ X(W ) and y as above, using the fact that ψ is nonnegative,
noting also that z ∈ f−n+`0(y) implies z ∈ X(W ), we obtain
(4.3) ∑
z∈f−n(x)∩X(W )

exp

(
n−1∑
`=0

ψ(f `(z))

)
≥

∑
z∈f−n+`0 (y)

exp

(
n−1−`0∑
`=0

ψ(f `(z))

)
.

Composing these two inequalities we obtain a uniform lower bound for
the left hand side of (4.3) valid for every x ∈ X(W ). In particular we can
apply it for each z in place of x in (4.3). Thus, using this lower bound
repeatedly we obtain for every positive integer m∑

z∈f−mn(x)

exp

(
mn−1∑
`=0

ψ(f `(z))

)
≥ exp

(
m(n− `0)(P (f, ψ)− ε)

)
and hence

P (f |X(r), ψ) ≥ n− `0
n

(P (f, ψ)− ε).
This proves the lemma. �

One can correct Xi, defined as X(r) above, to become topologically tran-
sitive, first by slightly extending it so that f |Xi becomes an open map, see

[40, Proposition 4.5.6], but still Xi ⊂ int ÎK , next replacing it by its subset of
all non-wandering points of f |Xi (by variational principle it does not change
pressures). and finally take in it an appropriate basic set in the spectral
decomposition, see [40, Theorem 4.3.8].

If at least one of the numbers α, β is in the boundary of the interval
[χinf , χsup], then we consider µi for a sequence of numbers ti corresponding to
γi ∈ (χinf , χsup) which accumulates at β and at α. This proves in particular
dimH L(0) ≥ F (0) in Theorem 1.

5. On the completeness of the spectrum

Analogously to [14, Section 3] we investigate which numbers can occur at
all as upper/lower Lyapunov exponent. The proof of (1.12) in Theorem 1
that

{x ∈ K : χ(x) > χsup} = ∅
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is the same as in [14, Proof of Lemma 5]. The proof of (1.11) in Theorem 1
that

{x ∈ K : −∞ < χ(x) < χinf} = ∅
is more difficult and in part different from the one in [14]. This section is
devoted to this proof.

5.1. No points with exponent less than χinf . We prove the complete-
ness part of Theorem 1, promised at the beginning of this section.

Theorem 5. Let (f,K) ∈ A BD
+ and satisfy the weak isolation condition.

Then for every x ∈ K such that finite χ(x) exists, we have χ(x) ≥ χinf .

Proof. The proof of χ(x) ≥ 0 under the hypothesis limn→∞ log |f ′(fn(x))| =
0 is the same as in [14, Lemma 6]. However, to prove χ(x) /∈ [0, χinf) we
cannot use complex methods as in [14], so we provide an alternative proof.

Let us suppose that χ(x) ≥ 0. We can also freely assume that x is not
eventually periodic. Indeed, otherwise χ(x) = χ(p) for some periodic p and
χ(p) ≥ χinf because we can distribute an invariant measure on the orbit of p.
If χinf = 0 then automatically χ(x) ≥ χinf and the assertion holds. Thus, it
remains to consider the case χinf > 0. By the properties listed in Subsection
2.4, we know that (f,K) satisfies TCE and lacks indifferent periodic points
in K.

Fix any n = nj from the sequence (nj)j in TCE and consider the intervals

Ŵ = B(fn(x), r) and W :=
1

2
� Ŵ = B(fn(x), r/2),

that is, Ŵ is the 1/2-scaled neighborhood of W (recall (1.1)). Given k =

0, . . . , n, denote by Ŵk the pull-back of Ŵ for fk which contains fn−k(x),

Ŵk := Compfn−k(x) f
−k(Ŵ ),

and denote by Wk the corresponding pull-back of W . Denote by

Ŵk \Wk = Lk ∪Rk
the union of the left and right interval (margin) in this difference.

We shall now prove the following fact.

Claim. There exists a number τ > 0 (which depends only on f , but not on

x, n) such that each Ŵk contains an τ -scaled neighborhood of Wk.

Compare for example [32, Lemma 1.4] in the complex case.

Proof. Recall the choice of δ in (1.2). Assume that in TCE the number r is

small enough so that in BaShrink all pull-backs of Ŵ for iterates of f have
lengths less than δ.

For k ∈ {0, . . . , n} denote by τk the maximal number, for which the claim
still holds. By construction, τ0 ≥ 1/2.
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K

︷ ︸︸ ︷

fn(x) y z

fn(Wn)

Wn+m

a′ � fn(Wn)

a � fn(Wn)

Figure 3

Let 0 ≤ k1 < . . . < kN ≤ n − 1 be the subsequence of all consecutive

integers k such that Ŵk ∩ Crit(f) 6= ∅. By TCE, we have N ≤ M . Note
that M depends neither on x nor on n.

Let us divide the interval {0, . . . , n− 1} into critical times {ki} and inter-
critical intervals {ki + 1, . . . , ki+1 − 1}, i = 1, . . . , N − 1. By (3.9), at any
critical time the number τj can decrease at most by a constant factor. By
(1.2), in an intercritical interval the number τj can decrease at most by a
constant factor. As the number of critical times and intercritical intervals
are bounded by M and M + 1, respectively, the claim follows. �

Notice that fn(∂Wn) ⊂ ∂W (it can happen that both ends of Wn are
mapped to one end of W ). Since fn(Wn) contains also the point fn(x), we
get |fn(Wn)| ≥ r/2.

We will show in the following that there is a constant a ∈ (0, 1) such that

(5.1) a � (fn(Wn)) ∩K 6= ∅ .

Observe that this condition says that there is a point belonging to K which
is “well inside” fn(Wn). We will show this fact not for all nj but for some
subsequence, slightly corrected if necessary, satisfying (2.4) (with the same
r, but the constant M may be altered), and else assuming that x is not
pre-periodic. But let us postpone the proof for a while.

1. Proof χ(x) ≥ χinf assuming (5.1).

1.a) Capture a shadowing periodic orbit. Let a′ = (a + 1)/2. Pick
some z ∈ a � (fn(Wn)) ∩ K. Recall the function mc in Definition 3.4.
There exists some m ∈ {0, . . . ,mc((a

′ − a)r/4))} and y ∈ f−m(x) such that
|y− z| < (a′ − a)r/4. Hence, as |fn(Wn)| ≥ r/2, we have y ∈ a′ � (fn(Wn)).

Hence, due to BaShrink, the pull-back interval Wn+m of Wn for fm which
contains y, has length smaller than (1− a′)r/4, for n large enough. Hence,
it is strictly contained in fn(Wn). Therefore, there exists a periodic point
p ∈Wn+m of period n+m. By the weak isolation condition, p ∈ K.

1.b) Comparison of derivatives. Let us now estimate |(fn+m)′(p)| from
above. Denote by Lip the Lipschitz constant of f |K . First observe existence
and finiteness of χ(x) imply that limn→∞

1
n log |f ′(fn(x))| = 0. Hence, given

ξ > 0, for large enough n we have |(fn)′(x)| ≤ exp(ξNn). For n large
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enough, we have

|(fn+m)′(p)| =

|(fm)′(p)| ·
N∏
i=1

|(fki−ki−1−1)′(fm+n−ki+1(p)) ·
N∏
i=1

|f ′(fm+n−ki(p)| .

Let now τ be as in the Claim and C(τ) as in (1.2). We can further estimate

|(fn+m)′(p)| ≤ Lipm+N C(τ)N ·
N∏
i=1

|(fki−ki−1−1)′(fn−ki+1(x))|

≤ Lipm+N C(τ)N · |(fn)′(x)| exp(ξNn) .

(5.2)

We conclude

1

n+m
log |(fn+m)′(p)| ≤ Nξ + lim

n→∞

1

n
log |(fn)′(x)|+O(

1

n
) .

Considering the f -invariant probability measure

(5.3) µn,ξ :=
1

n+m

n+m−1∑
k=0

δfk(p),

its Lyapunov exponent is χ(p). Hence, letting ξ → 0 and n→∞, we obtain
a sequence of measures µn,ξ such that infn,ξ χ(µn,ξ) ≤ χ(x). This proves the
assertion assuming that (5.1) holds.

What remains to prove is (5.1).

2. Proof of (5.1), changing n and M if necessary. Now let us prove
the postponed (5.1). We shall specify the constant a later on. For any ρ > 0
define

∂ρ := {z ∈ K : (z, z + ρ) ∩K = ∅ or (z − ρ, z) ∩K = ∅} .

Considering a > 1/2, set b = 2a−1 (hence 1−b = 2(1−a)) and ρ = br/2.
Assume first that

(5.4) fn(x) /∈ B(∂ρ, (1− b)r/4).

In words this means that fn(x) ∈ K is not closer than (1− b)r/4 to a “big
hole in K” which is of length at least ρ. Then K intersects both intervals
R = b � (fn(x), fn(x) + r/2) and L = b � (fn(x)− r/2, fn(x)). Since fn(Wn)
covers either (fn(x), fn(x)+r/2) or (fn(x)−r/2, fn(x)), then (5.1) follows.
Indeed, notice that (fn(x), fn(x)+r/2) is a (1−b)r/4-scaled neighborhood of
R (analogously for L), so fn(Wn) contains a (1−a)r/4-scaled neighborhood
of R (or L).

Notice that if 0 < r1 < r2 then ∂r2 ⊂ ∂r1 . If r/3 ≤ ρ and thus b ≥ 2/3,
then (5.4) and thus (5.1) hold for all n such that

(5.5) fn(x) /∈ B(∂r/3, (1− b)r/4) =: B.
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Notice that our subscript at ∂ is independent of b now. Notice that the set
∂r/3 is finite, with the number of elements depending only on r. This set
can contain periodic points, which must be hyperbolic repelling. Let θ > 0
be a constant such that for each periodic point q ∈ ∂r/3 with period m(q),

for every y ∈ B(q, θ) we have |(fm(q))′(y)| > 1.

Let us consider the upper density

d := lim sup
m→∞

1

m
#{0 < k ≤ m : fk(x) /∈ B} .

2.a) The case d > 0. Taking P in the definition of TCE small enough that
1/P + d > 1, possibly passing to a subsequence, we can assume that there
is a strictly increasing sequence (nj)j such that TCE and (5.5) hold. Hence,
this shows (5.1) and finishes the proof of Theorem 5 in this case.

2.b) The case d = 0. Set

α := dist(f(∂r/3) \ ∂r/3, ∂r/3) > 0 .

Then for each z ∈ ∂r/3 \ f−1(∂r/3)

(5.6) f
(
B(z,Lip−1 α/2)

)
∩B(∂r/3, α/2) = ∅ .

Recall that Lip denotes the Lipschitz constant of f |K . Denote

Θ := min{|w − w′| : w 6= w′, w, w′ ∈ ∂r/3} .
We set

α′ := min
{ α

2 Lip
,
Θ

2
,
θ

2

}
.

Let b be defined by (1 − b)r/4 = α′. This in turn eventually specifies a.
Finally define, recalling the definition of κ(·) in BaShrink,

(5.7) M ′ := M + #∂r/3 + κ(2r, α′).

Recall again that fk(x) /∈ B implies (5.5) and hence (5.1). As we have
d = 0, for all m large enough an arbitrarily large proportion of {1, 2, . . . ,m}
is covered by blocks Aj of consecutive integers k so that fk(x) ∈ B(zk, α

′)
for an apropriate zk ∈ ∂r/3, such zk is unique by the choice of α′. Moreover,
it also follows from the choice of α′ that for integers k, k + 1 belonging to
one block Aj we have

(5.8) f(zk) = zk+1.

Hence for each block Aj = {`j , `j+1, . . . , `′j}, if #Aj > #∂r/3 then the point
z`j is eventually periodic, namely there exists a periodic point q ∈ ∂r/3 with

period not greater than #Aj − 1, which we denote by tj .
7

7Notice that we can assume that z`j ∈ f
`j (W`j ). Otherwise f `j (W`j ) would cover the

other side of f `j (x) than the one containing z`j and hence (5.1) would hold immediately.

However we will not use this observation and assumption later on.
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Note that we can exclude the case f `j (x) = z`j , because then x would be
eventually periodic (we considered this case in the beginning of the proof of
Theorem 5). Increasing m if necessary, we can assume that the last block
ends at m and that all the blocks Aj have been chosen maximal, that is,

f `
′
j+1(x) /∈ B for all j. Observe that each block must indeed be finite by

definition of α′.
So (5.5) and hence (5.1) holds for nj = `′j + 1 for each j. What remains

to be checked is that this number satisfies also (2.4) in TCE.
We will prove that (2.4) holds for nj = `′j + 1 with the constant M ′,

provided it holds for some mj ∈ Aj with the constant M . Indeed, the

pull-backs Compfk(x) f
−(`′j+1−k)B(f `

′
j+1(x), r) have lengths smaller than α′

for all k ≥ κ(2r, α′) by the definition of the latter constant in BaShrink,
and hence their consecutive pull-backs do not capture critical points for
`j + tj ≤ k ≤ `′j − κ(2r, α′); they can capture critical points only for k ∈
{mj , . . . ,mj + tj − 1} and the number of such k’s is bounded by #∂r/3. In
conclusion, when passing from mj to `′j+1, TCE still holds with M replaced

by M ′ defined in (5.7).
Finally recall that the union of the blocks Aj covers an arbitrarily large

proportion of {0, . . . ,m} for m large enough, hence there exist arbitrarily
large mj belonging to some Aj satisfying also TCE, hence there exist ar-
bitrarily large nj = `′j + 1 satisfying TCE with M ′, and simultaneously

satisfying (5.1).

This finishes the proof of the theorem. �

6. Strong upper bound for irregular part

We now shall prove Theorem 2 and Theorem 3 from Subsection 1.7. We
start with a technical lemma, to be applied later for Φ(n) = log |(fn)′(x)|. It
will allow to strengthen Pliss lemma 3.12 that for x with χ(x) > σ > 0 there
is an abundance of hyperbolic times with exponent σ for x (i.e. ‘illuminated’
from an angle σ, see Figure 4). We will conclude that, in fact, there are times
with exponent 1

n log |(fn)′(x)| within an arbitrary a priori fixed reasonable
interval [q1, q2].

Lemma 6.1. Let Φ: R+ → R be a continuous function, and L > 0 such that
for each 0 ≤ t1 < t2 we have Φ(t2)−Φ(t1) ≤ L(t2− t1). Let 0 ≤ σ ≤ q1 < q2

be real numbers. Let C := L−1(q2 − q1) and denote

Φσ(t) := sup
s<t

(Φ(s) + σ(t− s))

and

HR := {x ∈ R+ : Φ(x) = Φσ(x)} and HN := {n ∈ N : Φ(n) = Φσ(n)} .
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Let τ1 < τ2 be positive numbers satisfying Φσ(τ1) = q1τ1, Φσ(τ2) = q2τ2.
Then, with ` denoting the length measure, we have

(6.1)
1

τ2
`(HR ∩ [τ1, τ2]) ≥ C .

If Φ is affine between each pair of consecutive integers and τ2 is an integer
then

(6.2)
1

τ2
#(HN ∩ [τ1, τ2]) ≥ C.

Proof. Notice that the function Φσ is affine on certain open intervals, on
each such interval its graph has slope σ, and these intervals are all in the
complement of HR. Since by our assumption σ < L, the function Φσ is
monotone increasing Lipschitz continuous with Lipschitz constant L. Hence

Φσ(τ2)− Φσ(τ1) ≤ L · `
(
HR ∩ [τ1, τ2]

)
+ σ · `

(
[τ1, τ2] \HR

)
.

On the other hand

Φσ(τ2)− Φσ(τ1) = q2τ2 − q1τ1 = (q2 − q1)τ2 + q1(τ2 − τ1).

From σ ≤ q1 we get

(q2 − q1)τ2 ≤ L · `
(
HR ∩ [τ1, τ2]

)
and (6.1) follows.

Finally notice that if Φ is affine between each two consecutive integers,
then t ∈ HR implies dte ∈ HR where dte denotes the smallest integer ≥ t.
Hence #(HN ∩ [τ1, τ2] for integer τ2 is not less than the number of intervals
of the form (m,m+ 1] intersecting HR ∩ [τ1, τ2]. Hence

#(HN ∩ [τ1, τ2]) ≥ `(HR ∩ (τ1, τ2)) ≥ L−1(q2 − q1)τ2 ,

which proves (6.2). �

Below we will apply this lemma to numbers 0 ≤ σ ≤ q1 < q2 < L so that

Φσ(τ1) = q1τ1, q1t ≤ Φσ(t) ≤ q2t ∀t ∈ [τ1, τ2], Φσ(τ2) = q2τ2 .

We call such an interval [τ1, τ2] a (q1, q2)-interval for Φσ. If it is the minimal
interval with this property, we call it a (q1, q2)-crossing interval (compare
Figure 4).

Lemma 6.2. Let Φ, L be as in Lemma 6.1, β = lim supt→∞Φ(t)/t, and
α = lim inft→∞Φ(t)/t (we allow α to be negative). Let

L0 := lim sup
N→∞

sup
k

1

N
|Φ(k +N)− Φ(k)|.

Then for σ ∈ [0, β) we have

(6.3) lim inf
t→∞

Φσ(t)

t
≤ β + σ(β − α)/(L0 − σ)

1 + (β − α)/(L0 − σ)
.
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τ2τ1τ ′1 t

q2

q1

Φσ

Φ

σ

σ

σ

σ

HR ︸ ︷︷ ︸
(q1, q2)-crossing interval

︸ ︷︷ ︸
(q1, q2)-interval

Figure 4. (q1, q2)- and crossing intervals

In particular, for σ = 0 we have

lim inf
t→∞

Φ0(t)

t
≤ β

1 + (β − α)/L0
.

Applying this lemma we shall consider σ > 0 arbitrarily close to 0, so we
will be allowed to use the latter formula.

Proof. We always have

(6.4) α < α](σ) :=
β + σ(β − α)/(L0 − σ)

1 + (β − α)/(L0 − σ)
.

Fix a small ε < min{β − σ, (α](σ) − α)/2}. Let (ni)i be a sequence of
times for which Φ(ni) ≤ (α + ε)ni. We can freely assume (passing to a
subsequence if necessarily) that Φσ(ni) ≥ Φ(ni) for every i, otherwise the
assertion follows immediately. Hence, each ni lies on plateaux of Φσ, denote
by ki and `i the beginning and the end of this plateaux. We have

Φ(ki) + (`i − ki)σ = Φ(`i)

and, for i large enough,

Φ(ki) ≤ (β + ε)ki .
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We can freely assume that Φσ(`i) ≥ (α](σ)− ε)`i, otherwise the assertion
follows. As

Φ(`i) ≤ Φ(ni) + (`i − ni)L,
this implies that

`i
ni
≥ L− α− ε
L− α](σ) + ε

> 1,

and hence for i large enough

Φ(`i) ≤ Φ(ni) + (L0 + ε)(`i − ni) ≤ (α+ ε)ki + L0(`i − ki).
Hence,

`i
ki
≥ 1 +

1

L0 + ε− σ

(
Φ(ki)

ki
− (α+ ε)

)
and

Φ(`i)

ki
− σ `i

ki
=

Φ(ki)

ki
− σ.

Dividing side by side we get

Φ(`i)

`i
− σ ≤

(
Φ(ki)
ki
− σ

)
(L0 + ε− σ)

Φ(ki)
ki

+ L0 − σ − α
.

The function x→ (x−σ)/(x−σ+L0−α) is increasing. As Φ(ki)/ki ≤ β+ε,

Φ(`i)

`i
≤ σ +

(β + ε− σ)(L0 + ε− σ)

L0 − σ + β − α+ ε
Passing with ε to 0 we get the assertion. �

In the remaining section we consider the following piecewise affine function

(6.5) Φ(t) :=

{
log |(f `)′(x)| if t = ` ∈ N,
(`+ 1− t) · Φ(`) + (t− `) · Φ(`+ 1) if ` < t < `+ 1.

Observe that by [36, Proposition 4.7] when considering the orbit of a point
x and the above defined function then we have L0 ≤ χsup. Hence, in the
following for this function we let

α] = α](β) :=
β

1 + (β − α)/χsup
.

Lemma 6.3. For every d ∈ (0, 1] and every positive integer k there exist an
integer m = m(d, k) and a number n0 such that for every n ≥ n0 and every
J ⊂ {1, . . . , n} such that #J ≥ dn there exist numbers a1 < a2 < · · · < ak
in J such that ak − a1 ≤ m.

Proof. Let m = b2k/dc+ 1, where b·c denotes the integer part. Then for n
large enough∑

j∈J

∣∣[j, j +m] ∩ [1, n]
∣∣ ≥ m(#J −m) ≥ mdn−m2 ≥ 1

2
mnd.
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tτ1

α

α]
β Φ

L0

Φ0

Figure 5. Sketch of the proof of Lemma 6.2 (σ = 0)

Hence, there exists i ∈ {0, . . . , n} such that

A(i) :=
{
j ∈ J : i ∈ [j, j +m] ∩ [1, n]

}
satisfies #A(i) ≥ 1

2
md .

We now let a1 < a2 < · · · < ak be the consecutive indices j in A(i). �

The following lemma will provide a substantial technical ingredient to
prove Theorem 2

Lemma 6.4. Let (f,K) ∈ A . Given α ≤ β with β > 0, for every q > σ > 0
such that α] ≤ q ≤ β and every ε > 0, there exist M ≥ 0, r > 0, ε′ > 0 such
that for every x ∈ L(α, β), there exists a subset H of N of upper density

d(H) := lim sup
n→0

#(H ∩ [1, n])

n
> 0

such that for every n ∈ H and every k = 0, . . . , n for the pull-back Wk of
B(fn(x), r) for fk which contains fn−k(x) the following properties hold

(6.6) |(fk)′(fn−k(x))|−1 ≤ e−kσ,

(6.7) |Wk| ≤ e−k(σ−ε),

(6.8) n(q − ε) ≤ log |(fn)′(x)| ≤ n(q + ε),

(6.9) #{k : 0 ≤ k < n,Wk ∩ Crit(f) 6= ∅} ≤M.
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Moreover, for Φ defined in (6.5), if α < β then there exists nup > n such
that

(6.10)
Φ(nup)

nup
≥ Φ(n)

n
+ ε′ and

Φ(t)

t
≥ Φ(n)

n
− ε for all n < t < nup.

If α = β then only the second inequality holds for all t > n.

Observe that (6.9) is as in (2.4) in TCE, however we conclude this property
for the subset L(α, β) ⊂ K only.

The property (6.10) is technical, not needed in the case K = ÎK . The
possibility to find a positive upper density set H of integers for which Pliss’
type properties (6.6), (6.7) and simultaneously (6.9) hold, has been recently
proved in [23], using ‘shadows’ from [39].

Proof. Step 1. Let H1 be the set of all Pliss hyperbolic times for x with
exponent σ. As σ < χ(x) = β, by the Pliss Lemma 3.12 (see Subsection 3.6)
H1 has positive upper density d(H1). Now the property (6.6) follows by defi-
nition of the Pliss hyperbolic times and (6.7) holds by Telescope Lemma 3.13.

To prove (6.8) and (6.10) we can assume α < β, since for α = q = β these
properties hold immediately.

Let q1 < q′2 and [q1, q
′
2] ⊂ (q− ε, q+ ε)∩ (α], β). Assume also σ < q1. Let

q2 =
q1+q′2

2 (hence q2 − q1 ≤ ε). We define ε′ := q′2 − q2.
To apply Lemma 6.1, let us consider the piecewise affine function Φ de-

fined in (6.5). Now let HN be the set from Lemma 6.1 applied to this
function. Recall that every integer n ∈ HN satisfies Φσ(n) = Φ(n) and is a
Pliss hyperbolic time for x with exponent σ, that is, HN ⊂ H1. Continue
to consider the set H2 being the set HN intersected with the union of all
the (q1, q2)-crossing intervals (recall the definition right after the proof of
Lemma 6.1). If [τ1, τ2] is now such a crossing interval then for n = τ2 and
for C as in Lemma 6.1, we have

#(HN ∩ [τ1, n])

n
≥ C > 0 .

Moreover, by

lim inf
n→∞

1

n
log |(fn)′(x)| ≤ α] < q1 and q′2 < lim sup

n→∞

1

n
log |(fn)′(x)| = β

there are infinitely many crossing intervals, hence infinitely many such n’s.
Thus, the set H2 has positive upper density and also satisfies (6.6) and (6.8).
The crossing property implies easily (6.10).

Step 2. Now we shall concentrate on proving (6.9), further restricting H2.
By [36, Lemma 3.1] (see also [27], or [11] in the holomorphic case) there is
a constant Q > 0 such that for every x ∈ K for every n and an arbitrary
c ∈ Crit(f) we have

(6.11)
n∑
j=0

′ − log |f j(x)− c| ≤ Qn,
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here Σ′ means that in the sum we omit an index j of smallest distance
|f j(x) − c| (only one if there is more than one such j). For normalization
(to have only non-negative numbers in (6.11)) we assume K ⊂ [0, 1]; this
influences only the constant Q.

We continue, using the ideas from [39] following the proof of the fact that
ExpShrink implies TCE (see also [27]). Given j ≥ 1, let

a(j) := − log dist(f j(x),Crit) .

Fix a number κ > 1/(σ − ε). For each j consider the interval (“shadow”)
Sj := (j, j + κa(j)]. Denote by 1Sj the characteristic function of Sj . Then,
by (6.11) we have

n∑
k=1

n∑
j=0

1Sj (k) ≤
n∑
j=0

κa(j) ≤ # Crit ·n+ κQn = n(# Crit +κQ) =: nQκ,

where in the term # Crit ·n takes care of the indices which have been omitted
in the sum in (6.11). So, given an arbitrary M > 0 the cardinality nM of
the set of k ∈ {1, . . . , n} covered by more than M shadows is less than
n(# Crit +κQ)/M . Hence, there is η = η(M,κ, Q) such that

1− nM/n ≥ 1− (# Crit +κQ)/M = η.

In particular the lower density satisfies

lim inf
n→∞

(
1− nM

n

)
≥ η,

and choosing M sufficiently large η is arbitrarily close to 1.
Let now H be the set of numbers in H2 which do not belong to more than

M shadows. Thus, its upper density is still positive for sufficiently large M .
What remains to show is that every n ∈ H satisfies (6.9). If n ∈ H and

n /∈ Sj for j < n then, by definition n− j > κaj and hence

exp(−(n− j)/κ) < dist(f j(x),Crit) .

Thus, by (6.7) we obtain |Wj | ≤ e−(n−j)(σ−ε). Since κ > 1/(σ − ε) we
conclude that Wj is disjoint from Crit. Thus the set H defined above satisfies
(6.9). �

We remark that the used term “shadow” origins in its analogy to the
“shadows” in the proof of existence of Pliss hyperbolic times. Indeed, com-
pare Figure 4 where the shadows correspond to the lines with slope σ to
catch hyperbolic times with such exponent.

The following proposition is the key step in the proof of Theorem 2. In
the remainder of the section we will assume that (f,K) ∈ A BD

+ is non-
exceptional and we will consider the following family of measures µt. In
the case that there are no indifferent periodic orbits in K, then for every
t < t+ we denote by µt the unique (nonatomic) eP (t)|f ′|t-conformal measure
which is well-defined by [36, Theorem A]. For t < 0 if such measure does
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not exist we consider a CaS measure µ∗t instead, positive on open sets (see
Subsection 2.3 and Subsection 4.2) and denote it also by µt.

Proposition 6.5. Let (f,K) ∈ A BD
+ satisfy the weak isolation condition

and be non-exceptional and without indifferent periodic orbits. Given num-
bers α ≤ β and q such that α] ≤ q ≤ β, for every x ∈ L(α, β) not weakly
S′-exceptional and there exist a sequence of integers ni → ∞, a sequence
(qi)i of positive numbers qi ∈ [q, β], and r > 0 such that for every ε > 0 and
i ≥ 1 we have

(6.12) diam Compx f
−ni(B(fni(x), r)) ≤ e−ni(qi−ε).

For every t < t+, the measure µt satisfies

(6.13) µt
(

Compx f
−ni(B(fni(x), r))

)
≥ e−niP (t)e−niqi−niε|t|Υ(t),

where Υ(t) := Υ(µt,∆) defined in (3.2), for ∆ depending only on r, f , and

sgn(t). In the case K = ÎK , one can take qi = q for all i.

Proof. The property (6.12) for n = ni ∈ H and qi ≡ q follows immediately
from (6.6), (6.8), and Proposition 3.13. (Though later on there will occur a
case we need to work with different choice of qi.) Therefore the rest of the
proof will be devoted to (6.13).

We start by repeating the construction in the proof of Theorem 5. Con-

sider Ŵ and W = 1/2� Ŵ = B(fn(x), r/2) and denote by Ŵk the pull-back

of Ŵ for fk which contains fn−k(x).

The general strategy to prove (6.13) is the same as Proposition 4.2 using
the conformal measure µ = µt. We will start considering a particular case.

1. Assume fn(Wn) = W .8

1a. The case t ≥ 0. We will pay particular attention to the encounter of
critical points. As in the proof of Theorem 5, let 0 ≤ k1 < . . . < kM ′ ≤ n−1

be the subsequence of all consecutive integers k such that Ŵk ∩ Crit 6= ∅.
Here, by Lemma 6.4 property (6.9) we capture critical points only M ′ ≤M
times.

We pull back W = B(fn(x), r/2) in place of B(fn(x), r) and use bounded

distortion for fki−ki−1−1 on the pull-back Wki−1 3 fn−(ki−1)(x) for fki−1 as
in proof of Theorem 5 (the formula (5.2)).

In the proof of Theorem 5 in the part 1.b) we only needed to compare
derivatives. Here however we pull back µt on K so we must be careful. Let us

explain it in detail. As in Lemma 3.2 we use the notation W j
n = f j(Wn). By

Corollary 3.3 the map fki−ki−1−1 is a K-homeomorphism of Wn−ki+1
n onto

W
n−ki−1
n . These are in fact diffeomorphisms with bounded distortion, since

we take into account, while defining ki, also captures of inflection critical

8This is so in the iteration of a rational function case. Hence for rational maps the
same proof will give us (6.13), see Appendix A.
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points. Therefore, there exists some constant C coming from the distortion
relation (1.2) so that

(6.14)
µt(W

n−ki+1
n )

µt(W
n−ki−1
n )

≥ Cte−(ki−ki−1−1)P (t)
( |Wn−ki+1

n |
|Wn−ki−1

n |

)t
.

If Wn−ki
n contains an inflection critical point c, f is a K-homeomorphism

onto Wn−ki+1
n again by Corollary 3.3 and denoting (f |

W
n−ki
n

)−1 by g we

have, (as µt is non-atomic, in particular not having an atom at c we can
write even equality in place of the first inequality)

µt(W
n−ki
n ) ≥ e−P (t)

∫
W

n−ki+1
n

|g′(y)|t dµt(y)

≥ Cte−P (t)
( |Wn−ki

n |
|Wn−ki+1

n |

)t
µt(W

n−ki+1
n ),

with a constant C arising from Lemma 3.14, applied for every y under the
integral. We again get (6.14) (for n = 1).

If Wn−ki
n contains a turning critical point c, then we apply the above

estimate by choosing as g the branch of f−1 on Wn−ki+1
n mapping it onto

Wn−ki
n according to Corollary 3.3.
Notice finally that the case Wn−ki

n contains no critical points can hap-
pen, since this set can be strictly contained in Wki . Then f is a K-
homeomorphism on its image and we also get the above estimate, referring
to Remark 3.15.

Composing those inequalities we obtain

(6.15) µt(Wn) ≥ Ct(2M ′+1)e−nP (t)
( |Wn|
|fn(Wn)|

)t
µt(f

n(Wn)).

This ends the proof as we assumed fn(Wn) = W and hence

µt(B(fn(x), r/2)) ≥ Υ(µt, r/2) > 0

see (3.2) and (6.12).

1b. The case t < 0. By Lemma 3.5 applied to X = K there is some
r′ = ε(r/2,M+1)/2 and z ∈ K∩B(fn(x), r/2) such that B(z, r′) is disjoint
with

⋃n
j=1 f

j(Crit∩Wj). Then fn has no critical points and has bounded

distortion on the pull-back W ′n of W ′ = B(z, r′/2) contained in Wn. Hence,
by (1.2) and the telescope estimate in Proposition 3.13, since B(z, r′) is
1/2-scaled neighborhood of B(z, r′/2), for every y ∈W ′n

|(fn)′(y)| ≥ 1

C(1/2)

r′

|W ′n|
≥ C1

|Wn|
≥ C2|(fn)′(x)|e−nε

for arbitrarily small ε > 0 and some constants C1, C2. As fn is a K-
homeomorphism on W ′n, by Corollary 3.3, for t < 0 we get

µt
(

Compx f
−n(B(fn(x), r))

)
≥ µt(W ′n)

≥ C |t|2 e
−nP (t)|(fn)′(x)|−te−n|t|ε ·Υ(µt, r

′/2)
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giving again (6.13), with Υ(t) = Υ(µt, r
′/2).

In the Steps 1a and 1b we showed the assertion under the assumption
that fn(Wn) = W . However this equality, which is always true for rational
maps, is not true in general. To prove the general case, we need to modify
the construction.

The problem is, that when fn : Wn →W is not onto, during the pull-back
we can lose part of the conformal measure. To have fn onto, we replace in
this construction W by fn(Wn). Then however we lose the uniform bound
µt(f

n(Wn)) ≥ c > 0. (Notice that in Subsection 4.2 we did not have this
trouble.)

A priori µt(f
n(Wn)) (or its piece if t < 0 as in 1b.) could be arbitrarily

close to 0. Notice however that if there is a constant δ > 0 such that there
is y ∈ K with B(y, δ) ⊂ fn(Wn) then as before µt(f

n(Wn)) ≥ Υ(µt, δ) and
we are done. (Compare (5.5) to be used also later on.)

2. Assume fn(Wn) 6= W , but K = ÎK . In this case the above holds.

Indeed, we assume that r is smaller than the lengths of all gaps in R \ ÎK
and all components of ÎK . For n large enough |Wn| < r by BaShrink, see
Subsection 2.4. Hence, as x ∈ K, at least one end, say z, of Wn is in K.
Hence fn(z) ∈ K. Since |fn(x) − fn(z)| = r/2 and fn(x) ∈ K, so letting
y being the middle point between fn(x) and fn(z) and δ := r/4 we have
µt(f

n(Wn)) ≥ Υ(µt, δ) and we are done.

3. The general (f,K) ∈ A BD
+ . We shall overcome the difficulty with

estimating µt(f
n(Wn)) from below by acting similarly as in the last part

of the proof of Theorem 5. Unfortunately it can happen that we need to
replace q by some q′ > q.

We first restrict our considerations to a particular subset of the Pliss
hyperbolic times H, see Lemma 3.12. Fix a number n̂ ∈ N sufficiently
large such that #(H ∩ {1, . . . , n̂}) ≥ d(H)/2. Then, for d = d(H)/4 we
have #(H ∩ {bn̂ dc, . . . , n̂}) ≥ dn̂. Applying now Lemma 6.3 to d, k =
#∂r/3 + 1 (see the notation in the proof of Theorem 5), n̂, and the set
Hn̂ := H ∩ {1, . . . , n̂}, we find a number m = m(d, k) > 0 and numbers
a1 < a2 < · · · < ak all in Hn̂ such that ak − a1 ≤ m.

Consider now an arbitrary constant b ∈ (0, 1) (to be specified later on),
close to 1. Denote

B := B(δr/3, (1− b)r/4) .

We consider two cases.

3a. Assume there exists n ∈ Hn̂ with fn(x) /∈ B. Then, comparing (5.5)
and the notation in the proof of Theorem 5, there is some a ∈ (0, 1) such that
some point x′ ∈ K is well inside fn(Wn), that is, x′ ∈ a� (fn(Wn))∩K, and
thus fn(Wn) contains the ball B(x′, (1− b)r/4). So, as above, we conclude

µt(f
n(Wn)) ≥ Υ(µt, (1− b)r/4) > 0 .

This proves the assertion in the case t ≥ 0.
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For t < 0 we proved already that there is some point x′′ ∈ K such that
B(x′′, (1− b)r/4) ⊂ fn(Wn). As in Step 1b, applying Lemma 3.5 to X = K
there is r′′ = ε((1 − b)r/4,M + 1)/2 and z ∈ K ∩ B(x′′, (1 − b)r/4) such
that the pull-back of B(z, r′′) along the trajectory of x does not encounter
critical points. As before we obtain

µt(B(x′′, (1− b)r/4)) ≥ Υ(µt, r
′′) > 0 .

This proves the assertion in the case t < 0.

3b. Assume fn(x) ∈ B for all n ∈ Hn̂. In particular, this holds for all
n = a1 < a2 < · · · < ak in Hn̂ as chosen above. For any integer N > 0
define

αN := dist
( N⋃
j=1

f j(∂r/3) \ ∂r/3, ∂r/3
)
> 0 .

Then for each j = 1, . . . , N we have for each z ∈ ∂r/3 \
⋃N
j=1 f

−j(∂r/3)

(6.16) f j(B(z,Lip−N αN/2)) ∩B(∂r/3, αN/2)) = ∅,

where Lip denotes the Lipschitz constant of f |K . Hence, comparing the
definition of α′ preceding (5.7), for

α′N := min
{ αN

2 LipN
,
Θ

2
,
θ

2

}
,

for each 0 < s1 < s2, if fs1(x) ∈ B(z1, α
′
N ) and f s2(x) ∈ B(z2, α

′
N ) for

z1, z2 ∈ ∂r/3, then either s2 − s1 > N or

fs2−s1(z1) = z2,

compare (5.8).
Now we fix N := m and let s1, s2 be any ai, aj for i < j. We fix b such

that (1− b)r/4 = α′m. Hence fai(x) ∈ B(∂r/3, α
′
m) = B for all i = 1, . . . , k.

Therefore there is an index i such that y := fai(x) is within the distance
at most α′m from a periodic point p ∈ ∂r/3, of period at most m. Let us take

n := ai. Note that p is hyperbolic repelling.9

If y = p then χ(x) = χ(p), and in particular χ(x) exists, contrary to our
assumption that x ∈ L(α, β) for α 6= β. So we can assume y 6= p. Let ` ≥ n
be the least integer, such that f `(x) /∈ B. It exists by the definition of θ.

Considering the pull-back W` of B(f `(x), r/2) containing x, we repeat the
reasoning in Case 3a. This provides us lower bounds for µt.

Unfortunately we do not know now whether q(`) := log |(f `)′(x)|/` is in
[q − ε, q + ε]. This depends on χ(p). We deal with this difficulty using the
item (6.10) in Lemma 6.4. For simplicity, we assume the period of p to be
equal to 1.

9The remainder of the proof would also work if p were indifferent, repelling to one
side, but in this proof we had to exclude indifferent periodic orbits to refer to [36] for the
existence of µt.
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Case 1. χ(p) ≥ q − 2ε. Then q(`) ≥ min{q − ε, χ(p) − ε} ≥ q − 3ε. We
obtain (6.12) and (6.13) with ` in place of n, with 3ε in place of ε and with
q(`) ≥ q(n).

Case 2. χ(p) < q − 2ε. In this case

q(t) ≤ 1

t
(nq(n) + (t− n)(χ(p) + ε)) < q(n)

for t ∈ (n, l]. In particular, nup > `. Hence, by (6.10), q(`) ≥ q(n) − ε ≥
q − 3ε. Hence we obtain (6.12) and (6.13) with ` in place of n, 3ε in place
of ε and with q(`) ≥ q − 3ε.

To define the sequence (ni)i in the proposition, we repeat the above steps
infinitely many times, for some increasing sequence of restricted Pliss hy-
perbolic times obtaining (6.12) and (6.13) for some numbers ni and qi :=
q(ni) ∈ [q, β]. �

Now we can finally prove Theorems 2 and 3.

Proof of Theorem 2.
1. Special case. Suppose that in Proposition 6.5 all qi’s are equal to q,

which occurs, for example, if K = ÎK (and also in the case of a rational
function on the Riemann sphere as in Appendix A).

Let x ∈ L(α, β). We can assume x is not weakly S′-exceptional by replac-
ing it by fn(x) for some n > 0, see Lemma 3.6. Indeed, for each n we conside
Xn := {x ∈ L(α, β) : fn(x) is weakly regular} and any upper estimate of
dimH(fn(Xn)) holds automatically for Xn. Notice that x ∈ L(α, β) implies
that x is not precritical, hence fn(x) ∈ L(α, β).). For every q ∈ [α], β],
for every t < t+ for the measure µt as in the proposition, the lower local
dimension at x satisfies

dµt(x) ≤ lim inf
i→∞

logµt
(

Compx f
−ni(B(fni(x), r))

log diam Compx f
−ni(B(fni(x), r))

≤ lim inf
i→∞

−ni(P (t) + (q + ε)t) + log Υ(t)

−ni(q − ε)
≤ P (t) + qt

q
+ ε′,

with ε′ > 0 arbitrarily close to 0 for ε appropriately small. We conclude
that

(6.17) dµt(x) ≤ P (t) + qt

q
=
P (t)

q
+ t .

2. General case. In general, Proposition 6.5 provides us only with a
sequence of qi ∈ [q, β] instead of qi ≡ q. This leads to the estimate

(6.18) dµt(x) ≤ max
qi∈[q,β]

P (t)

qi
+ t .

3. Conclusion. To obtain the estimates (1.14) and (1.15) we will use
the Frostman Lemma. To obtain (1.14) we consider q = β and then (6.17)
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and (6.18) coincide. We can choose t < t+ such that the right hand side
in (1.14) takes value arbitrarily close to F (β), recall (1.7), and the assertion
follows from Frostman Lemma.

To obtain the additional upper bound for (1.15) (note that our assump-
tions for this inequality guarantee that we are in the special case here) we
will use q = α]. As we are in the special case, (6.17) holds and we can find
t < t+ such that the right hand side of (6.17) is arbitrarily close to F (α]),
and then apply the Frostman Lemma.

This proves Theorem 2. �

Proof of Theorem 3. We are in the special case in the proof of Theorem 2.
Let α and β be such that α](α, β) < χinf . Let x ∈ L(α, β). We have (6.17)
for any t < t+. If α] < χinf then F (α]) = −∞, hence there exist t < t+ such
that

P (t)

t
+ t < 0 .

By (6.17), this implies that the corresponding measure µt has negative local
dimension at x (that is, the measure µt(B(x, r)) escapes to infinity as r → 0),
which is impossible. Hence, no such point x can exist. �

Appendix A. Strong upper bound. Holomorphic case

We consider a rational map f : C → C of degree at least 2. Denote by
J its Julia set (it corresponds to the set K in our interval maps notation).
The sets considered below are subsets of J .

The following results provide the complex counterparts of our main re-
sults. The first one is a slightly strengthened version of [14, Theorem 2]
(observe that there we only assumed that α > 0). The other two are new.
For their proofs we refer to the remarks and footnotes in Section 6.

Theorem A.1. Let f be a non-exceptional rational map of degree ≥ 2. For
any α ≤ β ≤ χsup with β > 0, and additionally with α > 0 if χinf = 0, we
have

(A.1) min{F (α), F (β)} ≤ dimH L(α, β) ≤ max
{

0, max
α≤q≤β

F (q)
}
.

In particular, for any α ∈ [χinf , χsup] \ {0} we have

dimH L(α) = F (α) and dimH L(0) ≥ F (0) .

Moreover,

{x ∈ K : −∞ < χ(x) < χinf} = {x ∈ K : χ(x) > χsup} = ∅
and

dimH {x ∈ K : 0 < χ(x) < χinf} = 0 .

Theorem A.2. Let f be a non-exceptional rational map of degree ≥ 2
without indifferent periodic orbits. For any α ≤ β ≤ χsup with β > 0, we
have

(A.2) dimH L(α, β) = max
{

0,min{F (α]), F (β)}
}
,
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where

α] :=
β

1 + (β − α)/χsup
.

Theorem A.3. Let f be a non-exceptional rational map without indifferent
periodic orbits. Assume χinf > 0 (f is Topological Collet-Eckmann). Then,
for any α ≤ β ≤ χsup with β > 0, if α] < χinf , then L(α, β) = ∅.

Appendix B. On Rivera-Letelier’s proof of χ(x) ≥ χinf

After this paper was written, J. Rivera-Letelier explained to us that χ(x) ≥
χinf , more precisely (1.11) in Theorem 1, follows easily from his paper [42].
We devote this Appendix to a brief explanation and comparison to our proof.

In [42] multimodal maps of the unit interval I are considered with K =
J(f) being Julia set (see Subsection 1.2: Periodic orbits), of class C3, with all
periodic orbits in K hyperbolic repelling and f |K topologically exact (which
is formally stronger than having positive entropy; see [36] for a discussion
concerning a comparison of these notions). However, this theory is working
in our more general setting of (f,K) ∈ A BD.

Define

(B.1) χExpShrink := − lim sup
n→∞

1

n
log
(
max{|Tn|}

)
,

where the maximum is taken over all connected components Tn of f−n(T )
intersecting K, over all open intervals T ⊂ R of length at most r, not
intersecting G being the union of all components of R \K longer than some
constant r′ (‘large gaps’). The number r > 0 is also a constant small enough,
in particular not bigger than δ in the definition of Backward Shrinking in
Subsection 2.4. (Then χExpShrink occurs independent of r by a variant of the
Telescope Proposition 3.13.)

Then a part of the Main Theorem in [42, Section 4] asserts (in our setting)
that

(B.2) χExpShrink ≥ χinf .

Corollary B.1. Let (f,K) ∈ A BD
+ satisfy the weak isolation condition. For

every regular x ∈ K (i.e. such that χ(x) exists), if χ(x) > −∞, then

(B.3) χ(x) ≥ χinf .

Proof. First notice, as in Proof of Theorem 5 which refers to [14], that
χ(x) ≥ 0. Notice also that by the existence of a finite χ(x) we have

(B.4) lim inf
n→∞

dist(fn(x),Crit(f)) = 0.

Using this, one can prove, compare [14, Claim in Section 3], that there ex-
ists r > 0 (maybe smaller than the previous one) such that for any ε > 0
arbitrarily close to 0, for every n large enough the map fn is a diffeomor-
phism of Compx f

−n(B(fn(x), r exp(−εn)/2)) onto B(fn(x), r exp(−εn)/2)
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with distortion bounded by, say, 1/2. Therefore χ(x) ≥ χExpShrink−ε, hence
taking ε→ 0

(B.5) χ(x) ≥ χExpShrink.

Hence, by (B.2) applied to T = B(fn(x), r/2), we get (B.3), provided there
is a sequence nj such that all fnj (x) are within the distance at least r/2
from ∂G. This is not the case only if x is pre-periodic, where χ(x) ≥ χinf

holds directly. �

Remark B.2. In fact we use above only an easy case of (B.2), where the
distance of T from ∂G is bounded away from 0. This is explained in more
detail below.

The strategy above, together with the proof of (B.2) is in fact similar to
ours. Here is a comparison of both.

• Our proof is direct. We shadow x, . . . , fn(x), extended by a block of a
backward trajectory of x of length bounded by a constant independent of n,
ending close to fn(x) (we call it ‘closing the loop’), by a periodic trajectory
of a point pn close to K thus in K by the weak isolation assumption. TCE
allows to easily compare the derivatives, though on the other hand we can
consider only n = nj , see (2.4), which causes, fortunately minor, difficulties.
Hence χ(x) ≥ lim infn→∞ χ(pn) ≥ χinf .

We can ‘close the loop’ whenever we can choose n so that fn(x) is not
too close to ∂G, see Section 5, (5.1). If we cannot then x is pre-periodic as
above and we are done.

• To follow [42] one considers an auxiliary number χCE2(z) and proves
that for z being safe and hyperbolic (see [36, Definition 1.22 and Definition
1.23] and [40, Definition 12.5.7]) one has

(B.6) χ(x) ≥ χExpShrink ≥ χCE2(z) ≥ χinf .

1. The first inequality has been already proven above. It is sufficient to
consider x not pre-periodic, so we can consider in the definition of χExpShrink

only T within the distance at least r from G, getting the same inequality.

2. Define χCE2(z) for a point z ∈ K as logarithm of λCE2(z) being the
supremum of such λ that there exists C = C(z, λ) > 0 such that for every
n ≥ 1 and every w ∈ f−n(z),

(B.7) |(fn)′(w)| ≥ Cλn.

Here w is not necessarily inK but we consider all w such that Compw f
−n(B(z, r1))

intersects K, for a constant r1.

Safe and hyperbolic points exist, see [36, Lemma 4.4].

The conditions ‘safe’ and ‘hyperbolic’ allow to find via shadowing (as in
[37, Lemma 3.1] or e.g. [36, Section 3]; compare also Proposition 4.1, al-
though there we do not care about the times of going to large scale) periodic
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points pn such that χCE2(z) ≥ lim infn→∞ χ(pn) ≥ χinf , thus proving the
last inequality in (B.6).

(The property χCE2(z) > 0 is called CE2∗(z) (or backward Collet-Eckmann
condition at z for preimages close to K), see [36, Section 3]. So the last in-
equality yields LyapHyp ⇒ CE2∗(z) for safe hyperbolic z.)

3. The novelty in [42] is proving the missing inequality

(B.8) χExpShrink ≥ χCE2(z)

As remarked above we need here only its easy case where T is not close
to ∂G. Then also the proof in [36, Proof of Theorem C. Case 1] works.
We consider a finite set Y of f j-preimages y ∈ K of z, j = 0, 1, ... which
constitute a δ-dense set for K for δ small enough. By finiteness for every λ
as in the definition of χCE2(z) we can find a common C. If T is not close
to ∂ we can assume it is between two consecutive points y, y′ of V . Then
pulling [y, y′] back we obtain (B.8) for z being y or y′.

Note the following.
The pull-backs of T become short after a bounded time by Backward

Shrinking, see Subsection 2.4. Note that we can assume χCE2(z) > 0, oth-
erwise there is nothing to prove, since χExpShrink is obviously non-negative.
Then we deal with short intervals and capture critical points rarely. One
proves by induction that increasingly rarely. This yields at most subexpo-
nential growth of |Tn| · |(fn)′(xn)|. The proof resembles the proof of the
Telescope Proposition 3.13. One need not use TCE, one allows to capture
critical points unbounded number of times.

In the complex situation this proof does not work. One does not have the
Backward Shrinking property and the pull-backs already at the beginning
can become uncontrollable large. Fortunately one has a different method:
joining fn(x) to z satisfying CE2 with a curve γ in sufficient distance from
critical values (of subexponential quasi-hyperbolic length, see [14] and [33]).

Surprisingly our proof works in the complex case too, since the Backward
Shrinking (even ExpShrink) holds due to TCE. Since f is open in the com-
plex case, only the easy part of the proof of Theorem 5.1 is needed ((5.1)
holds automatically). So we get a new proof of χ(x) ≥ χinf , easier than the
one in [14], just by shadowing by periodic orbits, without joining fn(x) with
γ to a remote safe hyperbolic z.
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rational functions revisited, Fund. Math. 157 (1998), 161–173.
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