
Classical and Quantum Systems Interacting with their Environment

Anthony M. Bloch

Work with Brockett, Ratiu, Marsden, Krishnaprasad, Zenkov, Hagerty, Weinstein, Rojo...

• The Toda lattice and double bracket dissipation

• Dissipation in nonholonomic systems

• Dissipation and Squeezing of Phonons

• Spin Squeezing and Control

• Nonholonomic Systems and fields



•Background
• Basic observation about Hamiltonian systems: satisfy Liou-

ville’s theorem, preserving volume in phase space, thus cannot
exhibit asymptotic stability.
Reflection of this: spectrum of linearization about a fixed

point symmetric about imaginary axis.

• However: Hamiltonian systems can exhibit asymptotic sta-
bility with respect to some of their variables.
Special case: system is integrable, the flow restricts to a level

set of the integrals and the flow on this level set exhibits asymp-
totic stability.
See Toda: Moser [1974], Bloch, Brockett and Ratiu [1990,

92].



• Another class of systems exhibiting asymptotic stability be-
havior: nonholonomic systems – systems with nonintegrable
constraints. In the absence of external dissipative forces, are
always energy preserving.
Do not necessarily preserve volume in the phase space – – see

for example Zenkov, Bloch and Marsden [1998], Zenkov and
Bloch [2002], Kozlov, Jovanovich,

• Infinite Dimensions – oscillators interacting with fields. Hagerty,
Bloch and Weinstein. Bloch, Hagerty, Rojo and Weinstein.
Radiation Damping. Sofer and Weinstein.



•The Toda Lattice
Interacting particles on the line.
Non-periodic finite Toda lattice as analyzed by Moser [1974]:

H(x, y) =
1

2

n
∑

k=1

y2
k +

n−1
∑

k−1

e(xk−xk+1) .

Hamiltonian equations:

ẋk =
∂H

∂yk
= yk

ẏk = −∂H
∂xk

= exk−1−xk − exk−xk−1 ,

where assume ex0−x1 = exn−xn+1 = 0.
Flaschka:

ak =
1

2
e(xk−xk+1)/2 bk = −1

2
yk .



Get:

ȧk = ak(bk+1 − bk) , k = 1, · · · , n− 1

ḃk = 2(a2
k − a2

k−1) , k = 1, · · · , n
with the boundary conditions a0 = an = 0 and where the ai > 0.
Matrix form:

d

dt
L = [B,L] = BL− LB,

where

L =













b1 a1 0 · · · 0
a1 b2 a2 · · · 0

. . .

bn−1 an−1

0 an−1 bn















B =













0 a1 0 · · · 0
−a1 0 a2 · · · 0

. . .

0 an−1

0 −an−1 0













Poisson matrix:

J =

(

0 A
−A 0

)

where A has entries aii = ai, aii+1 = −ai and all other entries
are zero. L is assumed to be traceless.
The flow is then given by

q̇ = JgradH

where q = [b1, · · · , bn−1, a1, · · · , an−1] and H = 1/2TrL2.
• Eigenvalues of L preserved along the flow. Enough to show

system is integrable.
Another basis for integrals: 1/2TrLk.



If N is the matrix diag[1, 2, · · · , n] the Toda flow can be written

L̇ = [L, [L,N ]] .

Shows flow also gradient (on a level set of its integrals).
• Double bracket form of Brockett [1988] (see Bloch [1990],

Bloch Brockett and Ratiu [1990, 1992]).
Gradient flow of the function TrLN with respect to the normal

metric.

• Explicit solution:
Let initial data be given by L(0) = L0. Factorize a symmetric

matrix L as L = k(L)u(L) where k(L) is orthogonal and u(L) is
upper triangular.
Toda flow given by

L(t) = (Adk(exp(tL0))L0 .



•Double Brackets and Dissipation Double bracket flows: dis-
sipative mechanism in otherwise energy conserving mechanical
systems, Bloch, Krishnaprasad, Marsden and Ratiu [1996].

• Simple example: rigid body equations:

IΩ̇ = (IΩ) × Ω,

or, in terms of the body angular momentum M = IΩ,

Ṁ = M × Ω.

Energy equals the Lagrangian: E(Ω) = L(Ω) and energy is
conserved.
Add a term cubic in the angular velocity:

Ṁ = M × Ω + αM × (M × Ω),

where α is a positive constant.



• Related example is the Landau-Lifschitz equations for the
magnetization vector M in a given magnetic field B:

Ṁ = γM ×B +
λ

‖M‖2
(M × (M ×B)),

where γ is the magneto-mechanical ratio (so that γ‖B‖ is the
Larmour frequency) and λ is the damping coefficient due to
domain walls.
• The equations are Hamiltonian with the rigid body Poisson

bracket:
{F,K}rb(M) = −M · [∇F (M) ×∇K(M)]

with Hamiltonians given respectively by H(M) = (M · Ω)/2 and
H(M) = γM ·B.
Dissipation in these systems is not induced by any Rayleigh

dissipation function in the literal sense
However, it is induced by a dissipation function in the follow-

ing restricted sense: It is a gradient when restricted to each
momentum sphere,



Have:
d

dt
‖M‖2 = 0

d

dt
E = −α‖M × Ω‖2,

for the rigid body,

• Interesting feature of these dissipation terms is that they
can be derived from a symmetric bracket. in much the same
way that the Hamiltonian equations can be derived from a skew
symmetric Poisson bracket. For the case of the rigid body, this
bracket is

{{F,K}} = α(M ×∇F ) · (M ×∇K).

(For more on symmetric brackets see Crouch [1981] and Lewis
and Murray [1999].)



•The Two-dimensional Toda Lattice
In two-dimensional case matrices in the Lax pair are

L =

(

b1 a1

a1 −b1

)

B =

(

0 a1

−a1 0

)

.

Equations of motion:

ḃ1 = 2a2
1

ȧ1 = −2a1b1

For initial data b1 = 0, a1 = c, explicitly carrying out the fac-
torization yields explicit solution

b1(t) = −c sinh 2ct

cosh 2ct
, a1(t) =

c

cosh 2ct



•The Chaplygin Sleigh
Here we describe the Chaplygin sleigh, perhaps the simplest

mechanical system which illustrates the possible dissipative na-
ture of energy preserving nonholonomic systems.
Nonholonomic: subject to nonintegrable constraints – satisifes

Lagrange D’Alembert equations.
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Figure 0.1: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.



Equations:

v̇ = aω2

ω̇ = − ma2

I +ma2
vω

Equations have a family of relative equilibria given by (v, ω)|v =
const, ω = 0.



Linearizing about any of these equilibria one finds one zero
eigenvalue and one negative eigenvalue.
In fact the solution curves are ellipses in v− ω plane with the

positive v-axis attracting all solutions.
Normalizing, we have the equations

v̇ = ω2

ω̇ = −vω .
Scaling time by a factor of two have: Chaplygin sleigh equa-

tions are equivalent to the two-dimensional Toda lattice equa-
tions except for the fact that there is no sign restriction on the
variable ω. Hence can be written in Lax pair form and solved
by the method of factorization.



±2

±1

0

1

2

y

±2 ±1 1 2
x

Figure 0.2: Chaplygin Sleigh/2d Toda phase portrait.



•Almost Poisson Systems
Recall:

Definition 0.1 An almost Poisson manifold is a pair (M, {, })
where M is a smooth manifold and (i){, } defines an almost
Lie algebra structure on the C∞ functions on M, i.e. the
bracket satisfies all conditions for a Lie algebra except that
the Jacobi identity is not satisfied and (ii) {, } is a derivation
in each factor.

If in addition Jacobi satisfied, Poisson manifold.
An almost Poisson structure on M will be Poisson if its Jaco-

biator, defined by

J(f, g, h) = {{f, g}, h} + {{g, h}, f} + {{h, f}g}
vanishes.



• “Hamiltonian” Formulation of Nonholonomic Systems
Nonholonomic systems are almost Poisson.
Start on the Lagrangian side with a configuration space Q

and a Lagrangian L (possibly of the form kinetic energy minus
potential energy, i.e.,

L(q, q̇) =
1

2
〈〈q̇, q̇〉〉 − V (q),

As above, our nonholonomic constraints are given by a dis-
tribution D ⊂ TQ. We also let D0 ⊂ T ∗Q denote the annihilator
of this distribution. Using a basis ωa of the annihilator Do, we
can write the constraints as

ωa(q̇) = 0,

where a = 1, . . . , k.



Recall that the cotangent bundle T ∗Q is equipped with a
canonical Poisson bracket and is expressed in the canonical co-
ordinates (q, p) as

{F,G}(q, p) =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
=

(

∂F T

∂q
,
∂F T

∂p

)

J

(

∂G
∂q
∂G
∂p

)

.

Here J is the canonical Poisson tensor

J =

(

0n In
−In 0n

)

.



A constrained phase space M = FL(D) ⊂ T ∗Q is defined so that
the constraints on the Hamiltonian side are given by p ∈ M. In
local coordinates,

M =

{

(q, p) ∈ T ∗Q
∣

∣

∣
ωai
∂H

∂pi
= 0

}

.

Let {Xα} be a local basis for the constraint distribution D and
let {ωa} be a local basis for the annihilator D0. Let {ωa} span the
complementary subspace to D such that 〈ωa, ωb〉 = δab , where δab is
the usual Kronecker delta. Here a = 1, . . . , k and α = 1, . . . , n− k.
Define a coordinate transformation (q, p) 7→ (q, p̃α, p̃a) by

p̃α = X i
αpi, p̃a = ωiapi.

In the new (generally not canonical) coordinates (q, p̃α, p̃a), the
Poisson tensor becomes

J̃(q, p̃) =

(

{qi, qj} {qi, p̃j}
{p̃i, qj} {p̃i, p̃j}

)

.



Use (q, p̃α) as induced local coordinates for M. It is easy to
show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM
∂qj

(q, p̃α),

∂H̃

∂p̃β
(q, p̃α, p̃a) =

∂HM
∂p̃β

(q, p̃α),

where HM is the constrained Hamiltonian on M expressed in
the induced coordinates. We can also truncate the Poisson
tensor J̃ by leaving out its last k columns and last k rows and
then describe the constrained dynamics on M expressed in the
induced coordinates (qi, p̃α) as follows:

(

q̇i

˙̃pα

)

= JM(q, p̃α)

(

∂HM
∂qj

(q, p̃α)
∂HM
∂p̃β

(q, p̃α)

)

,

(

qi

p̃α

)

∈ M.

Here JM is the (2n−k)×(2n−k) truncated matrix of J̃ restricted
to M and is expressed in the induced coordinates.



The matrix JM defines a bracket {· , ·}M on the constraint
submanifold M as follows:

{FM, GM}M(q, p̃α) :=

(

∂F T
M

∂qi
∂F T

M
∂p̃α

)

JM(qi, p̃α)

(

∂GM
∂qj

∂GM
∂p̃β

)

,

for any two smooth functions FM, GM on the constraint subman-
ifold M. Clearly, this bracket satisfies the first two defining
properties of a Poisson bracket, namely, skew symmetry and
the Leibniz rule, and one can show that it satisfies the Jacobi
identity if and only if the constraints are holonomic. Further-
more, the constrained Hamiltonian HM is an integral of motion
for the constrained dynamics on M due to the skew symmetry
of the bracket.



Following e.g. van der Schaft and Maschke [1994] and Koon
and Marsden [1997] we can write the nonholonomic equations
of motion as follows:





ṡa

ṙα

˙̃pα



 =





0 0 −Aa
β

0 0 δαβ
(Ab

α)
T −δβα −pcBc

αβ













∂HM
∂sb

∂HM
∂rβ

∂HM
∂p̃β









Jacobiator of the Poisson tensor vanishes precisely when the
curvature of the nonholonomic constraint distribution is zero
or the constraints are holonomic.



•Euler-Poincaré-Suslov Equations
Important special case of the reduced nonholonomic equa-

tions.
•Example: Euler-Poincaré-Suslov Problem on SO(3) In this

case the problem can be formulated as the standard Euler equa-
tions

Iω̇ = Iω × ω

where ω = (ω1, ω2, ω3) are the system angular velocities in a frame
where the inertia matrix is of the form I = diag(I1, I2, I3) and the
system is subject to the constraint

a · ω = 0

where a = (a1, a2, a3).



The nonholonomic equations of motion are then given by

Iω̇ = Iω × ω + λa

subject to the constraint. Solve for λ:

λ = −I
−1a · (Iω × ω)

I−1a · a .

If a is an eigenvector of the moment of inertia tensor flow is
measure preserving.



•Radiation Damping
See Hagerty, Bloch and Weinstein [1999], [2002].
Important early work: Lamb [1900]. Related recent work may

be found in Soffer and Weinstein [1998a,b] [1999] and Kirr and
Weinstein [2001].
• Original Lamb model an oscillator is physically coupled to

a string. The vibrations of the oscillator transmit waves into
the string and are carried off to infinity. Hence the oscillator
loses energy and is effectively damped by the string.

• Lamb model
w(x, t) displacement of the string. with mass density ρ, ten-

sion T . Assuming a singular mass density at x = 0, we couple
dynamics of an oscillator, q, of mass M :



Figure 0.3: Lamb model of an oscillator coupled to a string.

∂2w

∂t2
= c2

∂2w

∂x2

Mq̈ + V q = T [wx]x=0

q(t) = w(0, t).

[wx]x=0 = wx(0+, t)−wx(0−, t) is the jump discontinuity of the slope
of the string. Note that this is a Hamiltonian system.
Can solve for w and reduce:



• Obtain a reduced form of the dynamics describing the ex-
plicit motion of the oscillator subsystem,

Mq̈ +
2T

c
q̇ + V q = 0.

The coupling term arises explicitly as a Rayleigh dissipation
term 2T

c q̇ in the dynamics of the oscillator.



Gyroscopic systems:
See Bloch, Krishnaprasad, Marsden and Ratiu [1994].
Linear systems of the form

Mq̈ + Sq̇ + Λq = 0

where q ∈ R
n, M is a positive definite symmetric n × n matrix,

S is skew, and Λ is symmetric.
This system Hamiltonian with p = Mq̇, energy function

H(q, p) =
1

2
pM−1p +

1

2
qΛq

and the bracket

{F,K} =
∂F

∂qi
∂K

∂pi
− ∂K

∂qi
∂F

∂pi
− Sij

∂F

∂pi

∂K

∂pj
.

Systems of this form arise from simple mechanical systems
via reduction; normal form of the linearized equations when
one has an abelian group.



Theorem 0.2 Dissipation induced instabilities—abelian case Un-
der the above conditions, if we modify the equation to

Mq̈ + (S + εR)q̇ + Λq = 0

for small ε > 0, where R is symmetric and positive definite,
then the perturbed linearized equations

ż = Lεz,

where z = (q, p) are spectrally unstable, i.e., at least one pair
of eigenvalues of Lε is in the right half plane.



ω

Figure 0.4: Rotating plate with springs.

• Gyroscopic systens connected to wave fields.
In Hagerty, Bloch and Weinstein [2002] we describe a gyro-

scopic version of the Lamb model coupled to a standard non-
dispersive wave equation and to a dispersive wave equation.
Show that instabilities will arise in certain mechanical systems.
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Figure 0.5: Inverted spherical pendulum.



In the dispersionless case, the system is of the form

∂2w

∂t2
(z, t) = c2

∂2w

∂z2
(z, t),

M q̈(t) + Sq̇(t) + V q(t) = T
[∂w

∂z

]

z=0

w(0, t) = q(t),

w =
[

w1(z, t) · · · wn(z, t)
]T

is the displacement of the string in

the first n dimensions and [∂w∂z ]z=0 is the jump discontinuity in
the slope of the string.
• Can reduce dynamics to essentially:

M q̈(t) = − Sq̇(t) − V q(t) − 2T

c
q̇(t),
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Figure 0.6: Gyroscopic Lamb coupling to a spherical pendulum.

•Non-local field coupling



M q̈ + Sq̇ + V q = κ

∫

R

χ(z)w(z, t)dz





1
...
1



 ,

ẅ − c2
∂2w

∂z2
= κχ(z)





1
...
1





T

q

where κ is s coupling parameter and χ(ξ); is a suitable distribu-
tion.



• Squeezing and Control
Bloch and Rojo, EJC 2004.

Squeezing: method for reducing noise in quantum systems
below the standard quantum limit.
• Laser pulses, quantum contro

• Classical Squeezing: interested in reducing noise induced by
random perturbations.

Here: in classical case, system subject to thermal noise while
in quantum case consider a system at zero temperature and in
the presence of noise. In both cases the control is given by an
external electromagnetic field and enters the control equations
multiplicatively. In this sense the setting is similar to the NMR
control problems.

• Key feature of squeezing: results in a redistribution of un-



certainty between observables.
Here consider a model for phonon squeezing in solids following

the work of Garret at. al. [1997] (see also Hu and Nori [1996]
and references therein for interesting related work), but one can
equally well consider the case of photons in quantum optics.

Control is via a single pulse on a large ensemble of oscilla-
tors and this sense we are considering under-actuated control
systems in both the classical and quantum case.

We also model the effect of dissipation on the classical system
and the effect of coupling to a heat bath in the quantum setting.
This causes the squeezing effect to gradually moderate.
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Figure 0.7: Quasiprobability distribution in the (Sz, Sy) plane for N spins, before and after a pulse H ′ = δ(t)λS2

z is applied on the lowest eigenstate
of H0 = ω0Sx. The response is equivalent to the harmonic oscillator case, with the proviso that the distribution is bounded by a circle of radius
N/2.



• Squeezing of the Quantum Harmonic Oscillator
Consider the following Hamiltonian

H =
P 2

2m
+
mω2

2
Q2 + λδ(t)Q2,

which reflects an impulsive change in the spring constant and
where ω =

√

K/m, K being the original spring constant.
The variables P and Q, operators in the quantum case, obey

canonical commutation rules [P,Q] = i~.

• Rewrite Hamiltonian in terms of creation operators a and
a† defined by

Q =

√

~

2mω
(a + a†), P = i

√

~mω

2
(a† − a),

with [a, a†] = 1.
Hamiltonian becomes

H = ~ω(a†a + 1/2) + λδ(t)(a + a†)2.



The ground state of the system, for t 6= 0, |0〉, corresponds to
the vacuum of a, (a|0〉 = 0), and the excited states are of the
form (a†)2|0〉.
Now want to study the behavior of the system at t > 0, given

that the system is in its ground state at t < 0.



The wave function at t = 0+ is of the form |ψ(t = 0+)〉 =
exp(−iλQ2)|0〉, and for longer times the system evolves with the

“unperturbed” Hamiltonian: |ψ(t > 0)〉 = exp(−iH0t)e
−iλQ2|0〉.

First quantity of interest is 〈ψ(t)|Q2|ψ(t)〉 ≡ 〈Q2(t)〉.

• Find

〈Q2(t)〉 = 〈0|eiλQ2
(ae−iωt + a†e−iωt)2e−iλQ

2|0〉,
where we have used the fact that eiH0tae−iH0t = ae−iωt, which

states that a† and a respectively destroy and create eigenstates
of H0, and where Q is defined in units of

√

~/(2mω).

Now we introduce a basis of coherent states |z〉, which satisfy
a|z〉 = z|z〉, 〈z|a† = 〈z|z∗, and form an overcomplete set of
states:

1 =
1

2πi

∫

dz dz∗e−zz
∗|z〉〈z|.



Find

〈Q2(t)〉 =
1

2πi

∫ ∫

dz dz∗e−zz
∗

(z2e−2iωt + z∗2e2iωt + 2zz∗ − 1)|〈0|eiλx2|z〉|2.

To evaluate the last term we need the position representation
of the ground state (note that at this point Q is a real number)

〈0|Q〉 =
1

π
1
4

e−Q
2/2

and that of the coherent state

〈Q|z〉 =
1

π
1
4

e−Q
2/2+

√
2zQ−z2/2.



Integration gives

〈0|eiλQ2|z〉 =

∫

dx〈0|Q〉〈Q|z〉eiλQ2

=
1√

1 − iλ
eiλz

2/2(1−iλ).

Changing to the variables z = u + iv we have

e−zz
∗|〈0|eiλQ2|z〉|2 =

1√
1 + λ2

e−[v2+(2λ2+1)u2+2λuv]/(1+λ2),

and

〈Q2(t)〉 =
4

π
√

1 + λ2

∫ ∞

−∞
du

∫ ∞

−∞
dv

(

u2 cos2 ωt + v2 sin2 ωt + uv sin 2ωt− 1

4

)

×e−[v2+(2λ2+1)u2+2λuv]/(1+λ2)

= 1 + 4λ2 sin2 ωt + 2λ sin 2ωt



• Compare this with an ensemble of classical oscillators with
initial conditions taken from a heat bath.

For simplicity take ω = m = kB = T = 1 (kB is Boltzman’s
constant).
Arbitrary oscillator evolves as

Q(t) = u cos t + v sin t,

with u and v its initial position and velocity. If a pulse is applied
at t = 0 of the form treated above:

Q(t) = u cos t + (v + 2λu) sin t.

Now average over initial conditions taken from a measure
given by (a thermal bath):

〈Q2(t)〉 ∼
∫

du dv[u cos t + (v + 2λu) sin t]2e−(u2+v2)

= 1 + 4λ2 sin2 t + 2λ sin 2t.



• Note: the two expressions for, respectively, the quantum
oscillator at zero temperature and the classical oscillator at
finite temperature, are exactly the same.
The general time dependence of the variance for a squeezed

harmonic oscillator with frequency ω can thus be written in the
following form:

〈[Q(t)]2〉 =
ε0
K

[

1 +

(

2λ

ω

)

sin 2ωt +

(

2λ

ω

)2

sin2 ωt

]

with ε0 = ~ω/2 for the quantum case and ε0 = kBT for the classical
oscillator at a temperature T .



• Method of coherent states above has the advantage of being
suitable for calculating other quantities. For example, if the
oscillators are atoms within a solid, the scattering amplitude
for an X-ray is decreased by a factor (called the Debye-Waller
factor – see Ziman [1972]) ∼ 〈exp ikQ(t)〉, with k the wave-vector
of the X-ray.
Now ask what is the time evolution of the Debye-Waller factor

for a squeezed phonon. Need to compute

I(λ, t) = 〈0|eiλQ2
e(ae−iωt+a†e−iωt)e−iλQ

2|0〉
=

1√
e

1√
1 + λ2

1

π

∫

du dv

e
2u cosωt+2v sinωt−−[v2+(2λ2+1)u2+2λuv]

(1+λ2)

= e1+4λ2 sin2 ωt+2λ sin 2ωt.

For the Debye-Waller factor, we obtain the following time
dependence

〈eikQ(t)〉 = e−k
2〈Q2(t)〉



Measurement of the Debye-Waller factor may provide a prac-
tical method of detecting the squeezing phenomenon experi-
mentally.



• Squeezing and dissipation
• Now consider the squeezing of a quantum oscillator coupled

to a an infinite number of oscillators representing a “heat”
bath.
• Show that this causes a decay in the squeezing oscillation

for small time and true damping in the limit of a continuum of
oscillators.
Damping effect of the heat bath is similar to that analyzed

classically in Lamb [1900], Komech [1995], Sofer and Weinstein
[1999] and Hagerty, Bloch and Weinstein [1999].
• Considering here a zero temperature case, and the damping

effects appear due to a) the coupling of a single variable with
a continuum of variables and b) an “asymmetry” in the initial
conditions.

The Hamiltonian of the system consists of three parts: H0



describing the original oscillator:

H0 =
p2

0

2m
+
mω2

0

2
q2
0 ,

the Hamiltonian He of the environment:

He =
∑

α

[

p2
α

2m
+
mω2

α

2
q2
α

]

,

and a linear coupling between the two

Hint =
∑

α

ξαqαq0 .



Formally, the total Hamiltonian

H = H0 +He +Hint

can be written in terms of its normal mode coordinates Xν

and Pν:

H =
∑

ν

[

P 2
ν

2m
+
mω2

ν

2
X2
ν

]

,

and we will consider a situation in which the initial (before
the pulse) wave function corresponds to all the modes in the
ground state:

Ψ0 =
∏

ν

(ων
π~

)1/4

e−ωνX
2
ν/2~.



At t = 0 a pulse is applied to the (original) oscillator, the wave
function immediately after the pulse given by:

Ψ0(t = 0+) = eiλq
2
0Ψ0

= eiλ
∑

µν U0µU0νXµXνΨ0 ,

where Uµν is the matrix transforming from the original (uncou-
pled) modes to the coupled system (q0 =

∑

ν U0νXν).

• Interested in the fluctuations of the variance of q0, given in
this case by

〈q2
0(t)〉 =

∑

µν

U0µU0ν〈XµXν〉(t) .

Compute by solving the equation of motion obeyed by the
correlations 〈XµXν〉(t).
Since Xµ and Xν correspond to harmonic coordinates, using

the quantum mechanical commutation relations compute the
equations of motion:



d

dt
〈XµXν〉 =

1

m
〈(PµXν + PνXµ)〉

d2

dt2
〈XµXν〉 = −(ω2

µ + ω2
ν)〈XµXν〉 +

2

m2
〈PµPν〉

d

dt
〈PµPν〉 = −m

(

ω2
µ〈XµPν〉 + ω2

ν〈XνPµ〉
)

d2

dt2
〈PµPν〉 = −(ω2

µ + ω2
ν)〈PµPν〉 + 2m2ω2

µω
2
ν〈XµXν〉 .

• Note that the above equations are identical to those of clas-
sical harmonic oscillators for the quantities Xµ(t)Xν(t) etc., with
initial conditions given by the values of the correlations evalu-
ated for the quantum wave function:



〈XµXν〉(0+) = δµν
~

2mωµ
,

〈PµPν〉(0+) = δµν
~mωµ

2

+2~
2λ2(1 + δµν)

U0µ

mωµ

U0ν

mων
q2
0

〈(XµPν + PνXµ)〉(0+) = 4λ~U0µU0ν
~

2m
(

1

ωµ
+

1

ων
)

with q2
0 ≡ 〈q2

0(0
−)〉 =

∑

α ~U 2
0α/2mωα.

Collecting the above equations we obtain

〈q2
0(t)〉 = q2

0

{

1 + 4λ2S2(t) +
λ

q2
0

C(t)S(t)

}

,

with

S(t) =
∑

µ

~U 2
0µ

mωµ
sinωµt C(t) =

∑

µ

~U 2
0µ

mωµ
cosωµt.



• All the information of the evolution of the variance is con-
tained in the function J(ω), the physical interpretation of which
is that of a local density of states of the oscillator, defined as

J(ω) =
∑

µ

~U 2
0µ

mωµ
δ(ω − ωµ),

from which

S(t) =

∫

dωJ(ω) sinωt, C(t) =

∫

dωJ(ω) cosωt.

• J(ω) is a sum over delta functions, leading to a superposition
of oscillations with frequencies ων for both S(t) and C(t). In
the infinite limit when the modes are spatially extended over
all space J(ω) becomes a continuous function. The oscillatory
behavior acquires a damped component, the time dependence
being given by the frequency spectrum of J(ω). A lorenzian
shape for J(ω) gives an exponentially damped oscillation for
both S(t) and C(t).



• Illustration: consider a model for which J(ω) can be com-
puted explicitly – see the classical analysis in Lamb [1900]
Komech [1995].
Consider a one-dimensional string coupled to our oscillator.

The string is described by a “transverse” displacement u(x, t).
The classical equations of motion of the system are

utt(x, t) = c2uxx(x, t)

Md2q0(t)/dt
2 = −V q0(t) + T [ux(0+, t) − ux(0−, t)]

q0(t) = u(0, t).

The normal modes consist of even and odd (in x) solutions.
The odd solutions do not involve q0 and are of the form uq,o(x, t) =
eicqt sin qx, whereas the even solutions are of the form uq,e(x, t) =
eicqt cos(q|x| + δq), with δq a phase shift (to be found).
The wave vectors q label the normal modes, and play the role

of the index µ in the above discussion: ωµ = cq, and U 2
µ0 = cos2(δq)

(up to a normalization constant) here.



Substituting in the above we obtain (ω2
0 = V/M)

tan δq =
Mc

2T

(ω2
0 − ω2

q)

ωq
,

from which U 2
µ0 = cos2 δq is given by

U 2
µ0 =

α2ω2
q

α2ω2
q + (ω2

q − ω2
0)

2
≡ U 2

q ,

where we have defined α = 2T/Mc.
Note that Uq represents the transformation matrix that has

to be normalized and since the frequencies form a continuum
we normalize Uq(ωq) to its integral over ωq. Omitting the index
q in ωq, we obtain

U(ω) =
2α

π

ω2

α2ω2 + (ω2 − ω2
0)

2
=
mω

~
J(ω).

We obtain

S(t) =
~

mω0
e−Γt sin Ω0t, C(t) =

~

mω0
e−Γt cos Ω0t,



with

Ω0 = ω0

(

1 + [α/ω0]
2
)1/4

cos δ/2,

Γ = ω0

(

1 + [α/ω0]
2
)1/4

sin δ/2,

where δ = tan−1 α/ω0.

• In the realistic limit α� ω0 which corresponds to a “weak”
coupling to the environment) these expressions take the form:

S(t) ∼= (~/(mω0)exp(−Tt/Mc) sinω0t

C(t) ∼= (~/(mω0)exp(−Tt/Mc) cosω0t.

Note that in this model, and in the limit of weak coupling, the
initial variance q2

0 of the reference oscillator is unchanged due
to the coupling to the environment, and is given by q2

0 = ~/2mω0.
Final result then:



〈q2
0(t)〉 ∼= q2

0

{

1 + e−2(T/Mc)t

[

(

2λ~

mω0

)

sin 2ω0t +

(

2λ~

mω0

)2

sinω2
0t

]}

.



• Spin squeezing
The mechanism of squeezing by the application of non-linear

pulses extends to spin systems, where the quantum nature of
the spatial components Si is reflected in the commutation rela-
tions [Si, Sj] = i~εijkSk. Squeezing for spin systems is of topical
interest in quantum information, where quantum processing
protocols require manipulation of entangled systems.

One realization of a string of quantum bits is an ensemble of
two-level atoms, where each atom can be treated as a spin 1/2.
Wineland et. al. showed that the resolution in spectroscopic
experiments on N two-level atoms is determined by the factor

ξ =
∆S⊥
|〈S〉|,

which measures the quantum noise in a direction perpendicular
to the mean value of the total spin.
Note that ξ measures the precision of a measurement on the



rotation of a spin. We establish a parallel between the squeezed
states of the harmonic oscillator and those of spin systems.
Depending on the context, other definitions of spin squeez-

ing can also be used: starting from the uncertainty relation
∆Sx∆Sy ≥ |〈Sz〉/2| (and cyclic permutations), a possibility is to
define states satisfying ∆2Si < |〈Sj〉/2| as spin-squeezed. How-
ever, these states don’t have in general a noise reduced in the
direction perpendicular to the mean spin, and therefore are not
relevant to quantum information.



Consider an ensemble of identical N two-level atoms with en-
ergy splitting ~ω0. We define the corresponding spin quantiza-
tion axis in the x direction so that

H0 = ω0

N
∑

i=1

Sx,i = ω0Sx,

where Si is the spin of atom i. The equations of motion for Sz(t)
and Sy(t) are very similar to those of x and p for a harmonic
oscillator of frequency ω0:

Ṡz(t) = ω0Sy
Ṡy(t) = −ω0Sz,



and
d

dt
S2
z (t) = ω0(SySz + SzSy)

d

dt
(SySz + SzSy) = 2ω0(S

2
y − S2

z )

d

dt
S2
y(t) = −ω0(SySz + SzSy)

which have also the same structure as the corresponding oper-
ators for the harmonic oscillator. Note here that S2

y(t) + S2
z (t) is

conserved along the flow.
The solutions for the expectation values are:

〈S2
z (t)〉 =

〈S2
z〉0 + 〈S2

y〉0
2

+

[

〈S2
z〉0 − 〈S2

y〉0
2

]

cos 2ω0t−
X0

2
sin 2ω0t,

with X0 = 〈SzSy〉0+〈SxSy〉0. If the initial state |Ψ〉 is an eigenstate
of Sx, for example Sx|Ψ〉 = −(N/2)|Ψ〉, then 〈S2

z〉0 = 〈S2
y〉0 = N/4,



X0 = 0 and

ξ(t) =

√

〈S2
z (t)〉

〈Sx〉
=

1√
N
.

This time independent value of ξ corresponds to the unsqueezed
state, and we are interested in decreasing its value, bringing it
as close as possible to the Heisenberg limit ξ = 1/N . Proceeding
in analogy with the harmonic oscillator, we consider the effect
of a pulse acting on the ground state of H0

H ′ = δ(t)λS2
z .

The wave function right after the pulse is

|Ψ(t = 0+)〉 = eiλS
2
z |Ψ〉0,

and the quasiprobability distribution in the (Sz, Sy) plane is
modified.
In order to compute the modified initial conditions we con-

sider the case of large N .



We define boson creation operators a and a†, with [a, a†] = 1,
in terms of which

H0 = ~ω0

(

N + 1

2
− a†a

)

,

in such a way that the spin projections in the x direction cor-
respond to the occupation number of the new bosons. The
transformation to the S+ and S− operators from these bosons
is the well known Holstein-Primakov transformation

S+ = Sz + iSy

= N 1/2(1 − a†a/N)1/2a ' N 1/2a

S− = Sz − iSy

= N 1/2a†(1 − a†a/N)1/2a† ' N 1/2a†.

where the approximation is valid as long as the relative varia-
tions of the spin projection are small:

〈a†a〉/N � 1.



The operator equivalence between the bosons and spins im-
plies the following correspondence:

Sz →
√

N

2
x,

Sy → i

√

N

2

d

dx

Sx → −N + 1

2
+

1

2

(

− d2

dx2
+ x2

)

,

where x is a new variable, in terms of which the ground state
of H0 is |Ψ〉0 = π1/4 exp−x2/2, and

Ψ(t = 0+)〉 ≡ |Ψλ〉 =
1

π1/4
eiNλx

2/2e−x
2/2.

The mapping allows us to compute the initial values:



〈S2
z〉0 =

N

2
〈Ψλ|x2|Ψλ〉 =

N

4

〈S2
y〉0 = −N

2
〈Ψλ|

d2

dx2
|Ψλ〉 =

N

4

(

1 + (λN)2
)

〈SzSy〉0 + 〈SxSy〉0 =
N

2
〈Ψλ|

(

ix
d

dx
+ i

d

dx
x

)

|Ψλ〉

= −λN
2

2

〈Sx〉0 =
N

2

(

1 − Nλ2

2

)

,

where we stress that these values are exact provided λ < 1/
√
N

(for larger λ the response is periodic in λ). Notice that the
quasiprobability distribution, which before the pulse is a circle
of radius

√

N/2 in the (Sz, Sy) plane, now becomes an ellipse as
shown in Figure 0.8. With the above initial values, for t > 0 the
distorted distribution rotates at frequency ω0 and the squeezing



factor evolves as

ξ(t) =
1√
N

[

1 + (λN sinω0t)
2 − λN sin 2ω0t

]1/2

1 −Nλ2/2
.

If we call λ = α0/
√
N , with α0 < 1, we obtain the minimum

squeezing

ξmin =
1

N

1

[1 − α2
0/2]α0

,

which scales as 1/N and is reached twice during the cycle of the
rotation of the ellipse of Figure 0.8.
From the development above we can see that the analysis of

dissipation above extends essentially without change to the spin
setting provided the number of spins N is large.



S

N

1/2

y

z

ω

(N/2)

S

3/2

N/2

0 λ

Figure 0.8: Quasiprobability distribution in the (Sz, Sy) plane for N spins, before and after a pulse H ′ = δ(t)λS2

z is applied on the lowest eigenstate
of H0 = ω0Sx. The response is equivalent to the harmonic oscillator case, with the proviso that the distribution is bounded by a circle of radius
N/2.



• Cancellation of Squeezed States
Here we compare the cancellation of squeezing to that of

coherent states as generated by impulsively excited coherent
phonons, as observed in the experiment by Hase et al.. In the
case of coherent states, a second pulse can cancel the coherent
state if the separation time between pulses is matched to the
period of the phonon oscillation. For squeezed states the sep-
aration between the pulses has to be adjusted to the intensity
of the pulse. This can be easily seen graphically or from the
the structure of the propagator of the harmonic oscillator:

Ψ(x, t) =

∫

dx′G(x, x′; t)Ψ(x′, t = 0+)

with

G(x, x′; t) =
1

√

2πi~ sin(ωt)/mω

exp

{

imω

2~ sinωt

[

(x2 + (x′)2) cosωt− 2xx′
]

}



and where Ψ(x′, t = 0+) = exp(iλ(x′)2)Ψ0(x
′) and Ψ0(x

′) = Ψ(x′, t =
0−) is the initial (ground) state of the oscillator.
Note that at times t = tn with

mω

2~
cotωtn = −λ

2
,

mω

2~ sinωtn
=

√

(

λ

2

)2

+
(mω

2~

)2

we have

Ψ(x, tn) ∝ exp
(

−iλx2/2
)

∫

dx′ exp

{(

i
λ

2
− mω

2~

)

(x′)2

−2ixx′

√

(

λ

2

)2

+
(mω

2~

)2







,

which gives

Ψ(x, tn) = exp iδ exp
(

−iλx2
)

Ψ0(x),



with δ an overall phase factor.
This means that a second pulse with the same intensity ap-

plied at tn restores the wave function to the ground state.

λx

p

λx

tnω

x

Figure 0.9: Graphical rendition of the squeezing cancellation produced by a second pulse, of equal amplitude as the first, applied at a time tn such
that mω

2~
cot ωtn = −λ

2
.



• The Chaplygin Sleigh as as Particle in a Radiation Field

See Bloch and Rojo [2007].
We now show that the sleigh equations can be obtained from

a variational principle as reduced equations of motion after
the system is coupled to an environment described by an U(1)
infinite field of the form a(z, t) ≡ [cosα(z, t), sinα(z, t)]. For the
Lagrangian of the free field we choose

LF =
K

2

∫

d2z ȧ2, (0.1)

and we couple the sleigh and the field with a term of the form

L1 =

∫

d2z δ(z − x) [γẋ · a + µ cos (α(z, t) − θ)] . (0.2)



The first term in square brackets corresponds to a minimal
coupling that favors ẋ in the direction of a; the second has the
form of a potential coupling that favors an alignment of the
internal variable θ with the local direction of a.
The total action is S =

∫

dt(L0 + LF + L1) where L0 is the La-
grangian of the free sleigh

L0 =
m

2

[

(

ẋ− aθ̇ sin θ
)2

+
(

ẏ + aθ̇ cos θ
)2
]

+
I

2
θ̇2, (0.3)

and can be regarded as a full “microscopic” theory of the sleigh
coupled to an environment.



At this point we take the limit µ → ∞ in the third equation
above. This limit can be understood from the singular pertur-
bation theory. We do similar for K.
As a result of taking both limits we have

ẋ sinα(x, t) − ẏ cosα(x, t) = ẋ sin θ − ẏ cos θ = 0, (0.4)

which means that the constraint is satisfied. Replacing the
constraint (and sin[α(x, t) − θ] = 0) in the first three equations
we obtain the same flow as the nonholonomic equations.
The calculation shows that we have succeeded in deriving the

nonholonomic equations for a system with one internal (com-
pact) variable from a pure Lagrangian formalism. The classical
trayectories are obtained from a variational principle and quan-
tization can be introduced through the Path integral formalism:
the propagator is eiS/~, where S is the complete action.
Details are in Bloch and Rojo [2007]


