Controllability of the Schrödinger Equation via Intersection of Eigenvalues

Ugo Boscain CNRS, Le2i, Université de Bourgogne

and

SISSA-ISAS, Trieste (Italy)

joint work with

Riccardo Adami

Dipartimento di Matematica, Università "Bicocca" Milano (Italy) Plan of the talk

- the controllability question in quantum mechanics (finite and infinite dim)
- A technique for infinite dim. systems based on adiabatic approximation ("try not to use brackets")
- two toy models

The controllability question

(roughly) Given a system coupled with some external fields, can we design the external fields so that to reach every point of the state space? A Quantum mechanical system in interaction with external fields

$$i\dot{\psi}(t) = (H_0 + \sum_{j=1}^m u_m(t)H_J)\psi$$

- for every $t, \ \psi(t) \in$ Hilbert space (finite or infinite dimensional)
- H_0 is the "drift Hamiltonian" (discrete spectrum)
- $u_j(t)$ are the external fields (controls) belonging to some functional space (L^{∞})
- H_j are the the " coupling Hamiltonian"

 H_0, \dots, H_m are (essentially) self adjoint operators $\Rightarrow \psi(t) \in \mathsf{Hilbert}$ sphere

The finite dimensional case

 $\psi(t) \in \mathbf{C}^n$, $iH_0, ..., iH_m \in su(n)$.

example the infinite dimensional case

$$i\frac{\partial\psi(x,t)}{\partial t} = \underbrace{\left(\underbrace{-\frac{d^2}{dx^2} + V(x)}_{H_0 \ (drift)} + \underbrace{\sum_{j=1}^m u_j(t)H_i}_{control \ term}\right)}_{H(u_1(t),\dots,u_m(t))}\psi(x,t)$$

- $x \in \mathbf{R}$,
- fixed t, $\psi(.,t) \in H^1(\mathbf{R})$, $\int_R |\psi(x,t)|^2 dx = 1$

- $V(x) \in L^1_{loc}$, s.t. H_0 has discr. spectr.
- H_i are essentially self-adjoint operators

Notions of Controllability

Fix a functional class for the controls (e.g essentially bounded) and an Hilbert space for ψ .

• We have exact controllability if for every ψ_0 , ψ_1 , there exist controls $u_1(.), ..., u_m(.)$ steering the system from ψ_0 to ψ_1 in ψ_1

• we have approximate controllability if for every ψ_0 , ψ_1 , $\varepsilon > 0$, there exist T > 0, controls $u_1(.), ..., u_m(.)$ defined in [0, T]

 $\psi(T)$

 $\widehat{\Psi}(t)$

Р 0

ψ(0)

Ψ

8

such that $\psi(0) = \psi_0$, $\|\psi(T) - \psi_1\| \leq \varepsilon$.

ψ(0)

- we have exact state to state controllability if we have exact controllability for every pairs of eigenstates of H_0 (here I am assuming that they are not degenerate)
- we have approximate state to state controllability \rightarrow similarly

Finite dimensional case → completely understood

generically we have exact controllability

(generically $Lie\{iH_0, iH_1, ..., iH_m\} = su(n)$ +compactness)

(Jurdjevic, Kupka, Sussmann, Gauthier, see the review by Yuri Sachkov)

Infinite dimensional case \rightarrow few results

- in general one does not expect exact controllability for an infinite dim. systems with a finite number of controls.
- up to 2003 the community believed that in general the Schrödinger equation is not controllable. Many noncontrollability results: linearization, harmonic oscillator, non exact controllability (Rouchon).
- (surprise) in 2003 Beauchard Coron proved exact controllability for a 1d well of potential controlled by u(t)x

$$i\frac{\partial}{\partial t}\psi(x,t) = \left(-\frac{d^2}{dx^2} + V(x) + u(t)x\right)\psi(x,t)$$
$$V(x) = 0$$
$$V(x) = 0$$

 \rightarrow for every initial and final state in H^7 . (L^2 functions with seven derivatives in L^2).

 \rightarrow by density \Rightarrow approximate controllability in H^1

 \rightarrow but eigenstates are analitic. There is exact state to state-exact controllability.

Very recent results

- Mirrahimi: approximate controllability between eigenstates for systems having a continuous part of the spectrum
- approximate controllability for generic systems by Thomas Chambrion, Mario Sigalotti, Paolo Mason (Agrachev School)

In all these results controls are

- not explicit
- even if in principle it is possible to find them, they are highly oscillating (unusable)

A Method based on Intersection of Eigenvalues and Adiabatic Theory (using slow varying controls)

- it works only in some special cases (eigenvalues intersections, at least two controls)
- it provides approximate state to state controllability
- it provides **explicit expressions** of controls, that are nice and easy to implement
- it is a NON-BRACKET method

Consider an Hamiltonian depending on one control: H(u(t)). Assume that $\psi(x, 0) = \Phi_n$

• Adiabatic Theory asserts that if we use slow varying controls then $\psi(x,t) \sim \Phi_n(u(t))$ (in the L^2 norm, up to phases)

• if eigenvalues intersects as functions of of controls, in some cases it is possible to jump to the intersected state.

3 Difficulties

- 1. Existence of Eigenvalues intersections (in dim 1 if $V(x) + \sum_{j=1}^{m} u_j(t)H_i(x) \in L^1_{loc}$ then the spectrum is never degenerate) (in dim d if $V(x) + \sum_{j=1}^{m} u_j(t)H_i(x) \in L^1_{loc}$ then the ground state is never degenerate) \rightarrow Relax the Hp. that $V(x) + \sum_{j=1}^{m} u_j(t)H_i(x) \in L^1_{loc}$ or use a d dim model with d > 1 and forget about the ground state
- 2. for reversibility reason: number of controls must be > dim. of intersections +1

 \rightarrow not a problem, using two controls, generically, intersections are CONICAL (codimension 2)

generically if $H_0 + u_1H_1 + u_2H_2$ has an eigenvalue inters., then

(conical inters. have been studied by Hagedorn, Teufel, Lasser, for other purposes)

- 3. Adiabatic Theory need the gap condition
- \rightarrow the Adiabatic Theorem must be rewritten in a neighborhood of a singularity

Theorem 1 Consider a family H(t) of self adjoint operators on a Hilbert space \mathcal{H} , with t in the possibly unbounded interval (t_1, t_2) . Suppose that:

• all H(t)'s have a common dense domain \mathcal{D} .

• $H(\cdot) \in \mathcal{C}_b^2((t_1, t_2), \mathcal{L}(\mathcal{D}, \mathcal{H})).$

• for every t, the spectrum $\sigma(H(t))$ of H(t) is discrete and non degenerate, i.e. $\sigma(H(t)) = \{\lambda_j(t), j = 0, ..., n, ..., \lambda_i(t) < \lambda_k(t) \text{ if } i < k\}.$

• Fixed $j \in N$, the following gap condition is satisfied:

$$g := \inf_{t \in (t_1, t_2)} \min \left(\lambda_{j+1}(t) - \lambda_j(t), \lambda_j(t) - \lambda_{j-1}(t) \right) > 0$$

• at time $t_0 \in (t_1, t_2)$ the system lies in an eigenstate of $H(\varepsilon t_0)$ associated to the eigenvalue $\lambda_j(t_0)$.

Then, for any t and t_0 in (t_1, t_2) ,

$$\|\psi_{\varepsilon}(t) - \psi_{a}^{\varepsilon}(t)\| < C\varepsilon \left(1 + \varepsilon |t - t_{0}|\right)$$
(1)

where $\psi_{\varepsilon}(t)$ represents the actual state of the system and $\psi_a^{\varepsilon}(t)$ is eigenvector of $H(\varepsilon t)$ relative to the eigenvalue $\lambda_j(\varepsilon t)$.

Notice that the constant C diverges for vanishing g.

 \rightarrow passing inside the singularities the adiabatic approximation does not work, but it is possible to show the existence of a path, along which we have the transition at the same order of the adiabatic approximation.

 \rightarrow inspired by works in finite dimension by Jauslin, Guérin, Yatsenko (for STIRAP process)

I will present two toy models that show how 1,2,3 can be solved

The first toy model

- \rightarrow already in the base of eigenvectors of H_0 .
- \rightarrow generalization of 3-level problems used for STIRAP

 $\alpha_j, \beta_j > 0$ coupling constants

Assume that: E_j 's diverges and $\alpha_j/|E_{2j}|^{\mu}$ and $\beta_j/|E_{2j}|^{\mu}$ vanish as j goes to infinity for some $0 < \mu < 1$. Then H(u, v) defines a self adjoint operator with purely discrete spectrum on ℓ^2 .

 \rightarrow in this case it is very easy to prove exact-SSC using classical control theory (but I will try to implement our method).

Problems:

1. Classification of Eigenvalues intersections

2. Check that number of controls is > than dim of singularities+1

3. Application of adiabatic theory

Classification of Eigenvalues Intersections

• if $u \neq 0$ and $v \neq 0$ then all eigenvalues are not degenerate

 \rightarrow Eigenvalues intersections has dim zero

 \rightarrow Ground State can become degenerate \Rightarrow this model cannot be in the form: $H(u,v) = -\Delta + V(x) + uB_1(x) + vB_2(x)$ with $V, B_1, B_2 \in L^1_{loc}$.

The Adiabatic Theory

This happens because when u=0, E_0 is decoupled and E_1 is coupled only with E_2 There are two kind of decoupling: 1) far from singularities (adiabatic decoupling) 2) close to the singularities (due to the symmet.)

Definition 1 Consider a map $\gamma(\cdot) := (u(\cdot), v(\cdot), p(\cdot)) : [0, \tau] \rightarrow S \subset \mathbb{R}^3$. We say that this map is a <u>climbing path</u> if:

• it is a C^2 map from $[0, \tau]$ to \mathbb{R}^3 ;

• $\gamma(0) = (u(0), v(0), p(0)) = (0, 0, E_A)$ and $\gamma(\tau) = (u(\tau), v(\tau), p(\tau)) = (0, 0, E_B)$ for some $A, B \in \mathbb{N}$;

• it passes through a finite number of singularities. i.e. $Supp(\gamma) \cap \mathcal{Z}$ is finite.

• if $\tau_1, ..., \tau_n$ are the values of the parameter at which the singularities are met, namely $\gamma(\tau_i) \in \mathbb{Z}$ for any i, then there exist intervals $[a_i, b_i]$ such that $\tau_i \in]a_i, b_i[$ and u or v constantly vanishes on $[a_i, b_i]$.

Theorem 2 Consider the family of Hamiltonians H(u, v) and a climbing path γ . Given $\varepsilon \ll 1$ consider the following parametrization of γ : $\gamma(\varepsilon t) = (u(\varepsilon t), v(\varepsilon t), p(\varepsilon t))$, with $t \in [0,T]$ and $T := \varepsilon^{-1}\tau$. Let $\Phi_j(u,v)$ be the eigenvector corresponding to the eigenvalue $\lambda_j(u,v)$. Let $t_1, ..., t_n$ be the times at which the singularities are met, namely $\gamma(\varepsilon t_i) \in \mathcal{Z}$ for any i. Let j_i be defined by $p(\varepsilon t) = \lambda_{j_i}(u(\varepsilon t), v(\varepsilon t)), t \in]t_i, t_{i+1}]$. Then, for every $t \in]t_i, t_{i+1}]$, we have

$$\| \exp\left(i \int_{0}^{\varepsilon t} ds \,\lambda_{j_{i}}(u(s), v(s))\right) \Phi_{j_{i}}(u(\varepsilon t), v(\varepsilon t)) - \psi(\varepsilon t) \| \\ < C\varepsilon(1 + \varepsilon |t|) \le C\varepsilon(1 + \tau)$$

where $\psi(t)$ is the solution of the Schrödinger equation

$$i\partial_t\psi(t) = H(u(\varepsilon t), v(\varepsilon t))\psi(t), \quad \psi(0) = \Phi_{j_i}(0, 0).$$
 (3)

The second model

A model with potential $\notin L^1_{loc}$, having a similar behavior.

$$H(u, v, w) := -\partial_x^2 + u\delta(x - \pi/2) + v\delta'(x - \pi/2) + w\theta(x - \pi/2)$$
(4)

 ∂_x^2 is the partial derivative with respect to x with Dirichlet boundary conditions $u, v: \mathbf{R} \to \mathbf{R} \cup \{\infty\}$

 $egin{aligned} & u,v: \mathbf{R}
ightarrow \mathbf{R} \cup \{\infty\} \ & w: \mathbf{R}
ightarrow [0,1] \end{aligned}$

From the ground state to the first excited v=0

Conclusions:

this method:

- \rightarrow provides explicit expression for controls
- \rightarrow is very robust

 \rightarrow can be applied to many other situations (e.g. to symmetric potentials)