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Plan of the talk

e the controllability question in quantum mechanics
(finite and infinite dim)

e A technique for infinite dim. systems based on
adiabatic approximation
(“try not to use brackets"”)

e two toy models



T he controllability question

Quantum Mechanical System
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(roughly) Given a system coupled with some external

fields, can we design the external fields so that to
reach every point of the state space?




A Quantum mechanical system in interaction with external fields

W (t) = (Ho + Zum(t)HJ)¢

=1

e for every t, ¥ (t) € Hilbert space (finite or infinite dimen-
sional)

e Hy is the “drift Hamiltonian” (discrete spectrum)

e u;(t) are the external fields (controls) belonging to some
functional space (L)

e H; are the the " coupling Hamiltonian”

Hy,....H,, are (essentially) self adjoint operators = 9 (t) € Hilbert
sphere



The finite dimensional case

Ww(t) eC"”, iHo,...,iH,, € su(n).

example the infinite dimensional case
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O0Y(x,t) d? ik
ZT — \—@ + V(CE)J_F; u;(t) H;
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r € R,

fixed t, ¥(.,t) € HY(R),  [,|(z,t)]?dz =1

V(z) € L} ., s.t. Hghasdiscr. spectr.

V(x)=x 2

P(x,t)

V(x)=C0

V(x)=0

V(x)=00

H; are essentially self-adjoint operators



Notions of Controllability

Fix a functional class for the controls (e.g essentially bounded)
and an Hilbert space for .

We have exact controllability if for every g, 1, there exist
controls ui(.), ..., um(.) steering the system from g to 1 in

l.IJZI.
T R

finite time. P (0)

we have approximate controllability if for every g, ¥1, € > 0O,
there exist T' > 0, controls u1(.),...,un(.) defined in [0,T]

such that $:(0) = g, (1) =] <c. O

we have exact state to state controllability if we have exact
controllability for every pairs of eigenstates of Hp
(here I am assuming that they are not degenerate)

we have approximate state to state controllability — simi-
larly




Finite dimensional case — completely understood
generically we have exact controllability
(generically Lie{iHg,iH1,...,iH,} = su(n) +compactness )

(Jurdjevic, Kupka, Sussmann, Gauthier, see the review by Yuri
Sachkov)



Infinite dimensional case — few results

e in general one does not expect exact controllability for an
infinite dim. systems with a finite number of controls.

e Up to 2003 the community believed that in general the
Schrodinger equation is not controllable. Many noncontrol-
lability results: linearization, harmonic oscillator, non exact
controllability (Rouchon).

e (surprise) in 2003 Beauchard Coron proved exact control-
lability for a 1d well of potential controlled by u(t)x
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V(x)= O V(X)= C<O
V(x)=0

— for every initial and final state in H’. (L? functions with
seven derivatives in L?).

— by density = approximate controllability in H?!

— but eigenstates are analitic. There is exact state to
state-exact controllability.



Very recent results

e Mirrahimi: approximate controllability between eigenstates
for systems having a continuous part of the spectrum

e approximate controllability for generic systems by Thomas
Chambrion, Mario Sigalotti, Paolo Mason
(Agrachev School)

In all these results controls are
e not explicit

e even if in principle it is possible to find them, they are highly
oscillating (unusable)
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A Method based on Intersection of Eigenvalues and
Adiabatic Theory (using slow varying controls)

e it works only in some special cases
(eigenvalues intersections, at least two controls)

e it provides approximate state to state controllability

e it provides explicit expressions of controls, that are nice
and easy to implement

e it is a NON-BRACKET method



Consider an Hamiltonian depending on one control: H(u(t)).
Assume that ¢ (z,0) = $,

e Adiabatic Theory asserts that if we use slow varying controls
then ¢ (x,t) ~ ®,(u(t)) (in the L? norm, up to phases)
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e if eigenvalues intersects as functions of of controls, in some
cases it is possible to jump to the intersected state.
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3 Difficulties

1. Existence of Eigenvalues intersections
(in dim 1if V((z)+ "2, u;(t)Hi(x) € L, then the spectrum
is never degenerate)
(in dim d if V(z) + 377, uw;(¢)H;(x) € Lj,, then the ground
state is never degenerate)
— Relax the Hp. that V(z)+>"7"; u;(t)H;(z) € Lj,, or use a
d dim model with d > 1 and forget about the ground state

2. for reversibility reason:
number of controls must be > dim. of intersections +1
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— not a problem, using two controls, generically, intersec-
tions are CONICAL (codimension 2)

generically if Ho + u1H1 + u>H> has an eigenvalue inters.,
then

(conical inters. have been studied by Hagedorn, Teufel, Lasser,for
other purposes)



3. Adiabatic Theory need the gap condition
— the Adiabatic Theorem must be rewritten in a neighborhood

of a singularity
e

L
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Theorem 1 Consider a family H(t) of self adjoint operators on
a Hilbert space H, with t in the possibly unbounded interval
(t1,t2). Suppose that:

e all H(t)'s have a common dense domain D.

o H(-) € C2((t1,t2), L(D,H)).

e for every t, the spectrum o(H(t)) of H(t) is discrete and
non degenerate, i.e. o(H(t)) = {X\j(t),7 =0,...,n,..., \(t) <
Ae(t) i i<k},

e Fixed j5 € n, the following gap condition is satisfied:

g = inf min (Xj41(t) — X;(8), A1) — Aj—1(t)) > 0

te(ty,tz)

e at time tg € (t1,t2) the system lies in an eigenstate of H(etg)
associated to the eigenvalue \;(to).

Then, for any t and tg in (t1,t2),
[10e(t) — e ()| < Ce (1 + el —to|) (1)

where 1.(t) represents the actual state of the system and y:(t)
is eigenvector of H(et) relative to the eigenvalue \;(et).

Notice that the constant C diverges for vanishing g.

— passing inside the singularities the adiabatic approximation
does not work, but it is possible to show the existence of a
path, along which we have the transition at the same order of
the adiabatic approximation.



— inspired by works in finite dimension by Jauslin,
Guérin, Yatsenko (for STIRAP process)

I will present two toy models that show how 1,2,3 can
be solved



The first toy model
— already in the base of eigenvectors of Hy.
— generalization of 3-level problems used for STIRAP

( Eo aou O 0 o ... \

aou F1 Bov 0 0
. 0 GBov FEr» aju O .-
H(u’ U) _ 0] 0 aru  F3  piv - (2)

N

aj, 3; > 0 coupling constants

Assume that: E;'s diverges and «;/|E»;|* and B;/|E2;|* vanish
as j goes to infinity for some 0 < u < 1. Then H(u,v) defines a
self adjoint operator with purely discrete spectrum on ¢2.

— in this case it is very easy to prove exact-SSC using clas-
sical control theory (but I will try to implement our method).

Problems:

1. Classification of Eigenvalues intersections

2. Check that number of controls is > than dim of singulari-
ties+1

3. Application of adiabatic theory



Classification of Eigenvalues Intersections

e if u =0 and v # 0 then all eigenvalues are not degenerate

e the spectrum of H(u,v) is the same as the spectrum of

H(lul, |v])

If u=0 then:

If v=0 then:
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— Eigenvalues intersections has dim zero
— Ground State can become degenerate = this model cannot

be in the form: H(u,v) = —A 4+ V(z) + uBi1(x) + vB2(z) with
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The Adiabatic Theory

Starting from
the ground state

This happens because when =0, E is decoupled and E is coupled only with

There are two kind of decoupling: 1) far from singularities (adiabatic decoupling)
2) close to the singularities (due to the symmet.)



Definition 1 Consider a map ~(-) := (u(-),v(-),p(-)) : [0,7] —
S C ®3. We say that this map is a climbing path if:

e it is a C> map from [0, 7] to r3;

e v(0) = (u(0),v(0),p(0)) = (0,0, E4) and y(7) = (u(7),v(7),p(7)) =
(0,0, ER) for some A, B € n;

e it passes through a finite number of singularities. i.e. Supp(y)N
Z is finite.

e if m,...,7, are the values of the parameter at which the sin-
gularities are met, namely v(r;) € Z for any i, then there exist
intervals [a;, b;] such that m; €la;, b;[ and u or v constantly vanishes
on [a, b;].

Theorem 2 Consider the family of Hamiltonians H(u,v) and a
climbing path v. Givene < 1 consider the following parametriza-
tion of v: ~(et) = (u(et),v(et),p(et)), with t € [0,T] and T :=
e~ lr. Let ®;(u,v) be the eigenvector corresponding to the eigen-
value A\j(u,v). Let t1,...,t, be the times at which the singulari-
ties are met, namely ~(et;) € Z for any i. Let j; be defined by
p(é‘t) = )\ji(u(et),v(et)), t E]tiati—l—l]- Then, for every t E]t@',tH_l],
we have

exp ( / " ds Am(u(s),v(s))) B, (u(et), v(et)) — w0

0
< Ce(l+¢€lt]) < Ce(1+71)
where 1 (t) is the solution of the Schrbédinger equation

W0 (t) = H(ulet),v(et))y(t), +(0) = ®;(0,0). (3)



The second model
A model with potential ¢ L} , having a similar behavior.

loc?
H(u,v,w) = —0°4ud(x—m/2)+ v8(x—7n/2)
+wl(x — w/2) (4)
a% is the partial derivative with respect to x with Dirichlet bound-
ary conditions
u, v:R—RU{oc0}
w:R— [0, 1]

V(x)=00 V(x)=00
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From the ground state to the first excited v=0
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Conclusions:

this method:

— provides explicit expression for controls
— IS very robust

— can be applied to many other situations (e.g. to symmetric
potentials)



