Controllability of the Schrödinger equation in the case of discrete spectrum

Thomas Chambrion (IECN, Nancy University)

in collaboration with M. Sigalotti, IECN/INRIA, P. Mason, IECN/INRIA and U. Boscain, CNRS

Bedlewo, 10-16/10/2007

Schrödinger equation

$$i\dot{\psi} = -\Delta\psi + V\psi + uW\psi$$

 $\begin{aligned} \Omega & \text{domain of } \mathbf{R}^d \\ \psi(t,x) & \text{wave function} \\ V: \Omega &\to \mathbf{R} \text{ potential of the Schrödinger operator} \\ u &= u(t) \text{ real-valued control} \\ W: \Omega &\to \mathbf{R} \text{ controlled potential} \end{aligned}$

Schrödinger equation

$$i\dot{\psi} = -\Delta\psi + V\psi + uW\psi$$

$$\begin{split} \Omega & \text{domain of } \mathbf{R}^d \\ \psi(t,x) & \text{wave function} \\ V : \Omega &\to \mathbf{R} \text{ potential of the Schrödinger operator} \\ u &= u(t) \text{ real-valued control} \\ W : \Omega &\to \mathbf{R} \text{ controlled potential} \end{split}$$

Two cases:

• $\Omega \subset \mathbf{R}^d$ bounded regular domain,

 $\boldsymbol{\Box} \ \Omega = \mathbf{R}^d.$

Schrödinger equation

$$i\dot{\psi} = -\Delta\psi + V\psi + uW\psi$$

$$\begin{split} \Omega & \text{domain of } \mathbf{R}^d \\ \psi(t,x) & \text{wave function} \\ V : \Omega &\to \mathbf{R} \text{ potential of the Schrödinger operator} \\ u &= u(t) \text{ real-valued control} \\ W : \Omega &\to \mathbf{R} \text{ controlled potential} \end{split}$$

Two cases:

•
$$\Omega \subset \mathbf{R}^d$$
 bounded regular domain, $\psi|_{\partial\Omega} \equiv 0$,

 $\square \ \Omega = \mathbf{R}^d.$

Infinite dimension

- Adami, Boscain
- Beauchard, Coron
- Mirrahimi
- Rouchon
- Turinici
- . . .

Infinite dimension

- Adami, Boscain
- Beauchard, Coron
- Mirrahimi
- Rouchon
- Turinici
- . . .
- Tenenbaum, Tucsnak
- Zuazua
- **.**..

Theorem

Let Ω be bounded and smooth and $V \in L^{\infty}(\Omega)$. Then $-\Delta + V$ admits a family of eigenfunctions in $H^2(\Omega) \cap H^1_0(\Omega)$ which form an orthonormal basis of $L^2(\Omega)$

Theorem

Let Ω be bounded and smooth and $V \in L^{\infty}(\Omega)$. Then $-\Delta + V$ admits a family of eigenfunctions in $H^2(\Omega) \cap H^1_0(\Omega)$ which form an orthonormal basis of $L^2(\Omega)$

Theorem

Let $\Omega = \mathbf{R}^d$ and $V \in L^1_{\mathrm{loc}}$ be bounded from below and such that

$$\lim_{|x|\to\infty}V(x)=+\infty.$$

Then $-\Delta + V$ admits a family of eigenfunctions in $H^2(\mathbf{R}^d)$ which form an orthonormal basis of $L^2(\mathbf{R}^d)$. If V > 0 then all eigenfunctions have exponential decay at infinity

We will consider control systems of the form

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

with the following ingredients

• *H* complex Hilbert space;

$$U \subset \mathbf{R};$$

We will consider control systems of the form

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

- H complex Hilbert space;
- $U \subset \mathbf{R};$
- *A*, *B* skew-adjoint operators on *H* possibly unbounded;

We will consider control systems of the form

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

- H complex Hilbert space;
- \bullet $U \subset \mathbf{R};$
- *A*, *B* skew-adjoint operators on *H* possibly unbounded;
- D(A), D(B) domains of A, B;

We will consider control systems of the form

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

- H complex Hilbert space;
- \bullet $U \subset \mathbf{R};$
- *A*, *B* skew-adjoint operators on *H* possibly unbounded;
- D(A), D(B) domains of A, B;
- $(\phi_n)_{n \in \mathbb{N}}$ orthonormal basis of H made of eigenvectors of A;

We will consider control systems of the form

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

- H complex Hilbert space;
- $U \subset \mathbf{R};$
- *A*, *B* skew-adjoint operators on *H* possibly unbounded;
- D(A), D(B) domains of A, B;
- $(\phi_n)_{n \in \mathbb{N}}$ orthonormal basis of H made of eigenvectors of A;
- $\phi_n \in D(B)$ for every $n \in \mathbf{N}$.

We will consider control systems of the form

$$\frac{d\psi}{dt} = A(\psi) + uB(\psi), \qquad u \in U \qquad (A, B, U)$$

with the following ingredients

- H complex Hilbert space;
- $U \subset \mathbf{R};$
- *A*, *B* skew-adjoint operators on *H* possibly unbounded;
- D(A), D(B) domains of A, B;
- $(\phi_n)_{n \in \mathbb{N}}$ orthonormal basis of H made of eigenvectors of A;
- $\phi_n \in D(B)$ for every $n \in \mathbf{N}$.

The hypotheses above guarantee that

$$\forall u \in U, \exists e^{t(A+uB)} : H \rightarrow H$$
 group of unitary transformations

Approximate controllability

We call $e^{t_k(A+u_kB)} \circ \cdots \circ e^{t_1(A+u_1B)}(\psi_0)$ the solution of the control system (A, B, U) starting from ψ_0 associated to the piecewise constant control $u_1\chi_{[0,t_1]} + u_2\chi_{[t_1,t_1+t_2]} + \cdots$

Approximate controllability

We call $e^{t_k(A+u_kB)} \circ \cdots \circ e^{t_1(A+u_1B)}(\psi_0)$ the solution of the control system (A, B, U) starting from ψ_0 associated to the piecewise constant control $u_1\chi_{[0,t_1]} + u_2\chi_{[t_1,t_1+t_2]} + \cdots$

We say that (A, B, U) is approximatively controllable if for every $\psi_0, \psi_1 \in S$ and every $\varepsilon > 0$ there exist $k \in \mathbb{N}$, $t_1, \ldots, t_k > 0$ and $u_1, \ldots, u_k \in U$ such that

$$\|\psi_1-e^{t_k(A+u_kB)}\circ\cdots\circ e^{t_1(A+u_1B)}(\psi_0)\|<\varepsilon.$$

Approximate controllability

We call $e^{t_k(A+u_kB)} \circ \cdots \circ e^{t_1(A+u_1B)}(\psi_0)$ the solution of the control system (A, B, U) starting from ψ_0 associated to the piecewise constant control $u_1\chi_{[0,t_1]} + u_2\chi_{[t_1,t_1+t_2]} + \cdots$

We say that (A, B, U) is approximatively controllable if for every $\psi_0, \psi_1 \in S$ and every $\varepsilon > 0$ there exist $k \in \mathbf{N}, t_1, \ldots, t_k > 0$ and $u_1, \ldots, u_k \in U$ such that

$$\|\psi_1-e^{t_k(A+u_kB)}\circ\cdots\circ e^{t_1(A+u_1B)}(\psi_0)\|<\varepsilon.$$

Ball–Marsden–Slemrod [1982] (adapted by Turinici to the skew-symmetric case) proved that exact controllability (in $S \cap H^2 \cap H_0^1$) does not hold in infinite dimension.

We look for conditions that guarantee the approximate controllability.

 $(\lambda_n)_{n \in \mathbb{N}}$ eigenvalues of A corresponding to $(\phi_n)_{n \in \mathbb{N}}$.

Theorem

If $(\lambda_{n+1} - \lambda_n)_{n \in \mathbb{N}}$ are **Q**-linearly independent and if $\langle B\phi_j, \phi_{j+1} \rangle \neq 0$ for every $j \in \mathbb{N}$, then $(A, B, (0, \delta))$ is approximatively controllable for every $\delta > 0$.

Recall that $(\lambda_{n+1} - \lambda_n)_{n \in \mathbb{N}}$ is **Q**-linearly independent (or non-resonant) if for every $N \in \mathbb{N}$ and $(q_1, \ldots, q_N) \in \mathbb{Q}^N \setminus \{0\}$ one has

$$\sum_{n=1}^N q_n(\lambda_{n+1}-\lambda_n)\neq 0.$$

controllability of the Galerkyn approximations;

- controllability of the Galerkyn approximations;
- controllability in observed projections;

- controllability of the Galerkyn approximations;
- controllability in observed projections;
- approximate controllability of the original system.

- time reparameterization;
- controllability of the Galerkyn approximations;
- controllability in observed projections;
- approximate controllability of the original system.

Time reparameterization

For $u \neq 0$, clearly,

$$e^{t(A+uB)} = e^{tu\left(\left(\frac{1}{u}\right)A+B\right)}.$$

Theorem 3 is therefore equivalent (under the same hypotheses) to $\forall \delta, \varepsilon > 0, \forall \psi_0, \psi_1 \in S$, there exist $k \in \mathbb{N}$, $t_1, \ldots, t_k > 0$ and $u_1, \ldots, u_k > \delta$ such that

$$\|\psi_1 - e^{t_k(u_kA+B)} \circ \cdots \circ e^{t_1(u_1A+B)}(\psi_0)\| < \varepsilon.$$

Time reparameterization

For $u \neq 0$, clearly,

$$e^{t(A+uB)} = e^{tu\left(\left(\frac{1}{u}\right)A+B\right)}.$$

Theorem 3 is therefore equivalent (under the same hypotheses) to $\forall \delta, \varepsilon > 0, \forall \psi_0, \psi_1 \in S$, there exist $k \in \mathbb{N}$, $t_1, \ldots, t_k > 0$ and $u_1, \ldots, u_k > \delta$ such that

$$\|\psi_1-e^{t_k(u_kA+B)}\circ\cdots\circ e^{t_1(u_1A+B)}(\psi_0)\|<\varepsilon.$$

I.e., the system

$$\frac{d\psi}{dt} = u(t)A(\psi) + B(\psi), \qquad u \in U \qquad (\Sigma)$$

is approximatively controllable provided that the control set U contains a half-line.

 $\eta > 0$ small constant to be chosen later. $\Pi_n : H \to H$ orthogonal projection on $\operatorname{span}(\phi_1, \dots, \phi_n)$. $\eta > 0$ small constant to be chosen later. $\Pi_n : H \to H$ orthogonal projection on $\operatorname{span}(\phi_1, \dots, \phi_n)$. Choose *n* such that $\|\psi_j - \Pi_n(\psi_j)\| < \eta$ for j = 1, 2. $\eta > 0$ small constant to be chosen later. $\Pi_n : H \to H$ orthogonal projection on $\operatorname{span}(\phi_1, \ldots, \phi_n)$. Choose *n* such that $\|\psi_j - \Pi_n(\psi_j)\| < \eta$ for j = 1, 2. For $j, k \in \mathbb{N}$, let a_{jk} and b_{jk} be the components of *A* and *B* in the base $(\phi_m)_{m \in \mathbb{N}}$.

Galerkyn approximation of order n:

$$\frac{dx}{dt} = uA^{(n)}x + B^{(n)}x, \qquad x \in S_n, \qquad u > \delta, \qquad (\Sigma_n)$$

where S_n denotes the unit sphere of \mathbf{C}^n .

Controllability of the Galerkyn approximations

$$\lambda_2 - \lambda_1, \dots, \lambda_n - \lambda_{n-1}$$
 Q-linearly independent $+ b_{j,j+1} \neq 0$

$$\downarrow \downarrow$$

the Lie algebra generated by $A^{(n)}$ and $B^{(n)}$ has max. dimension

∜

 (Σ_n) is controllable. (see Jurdjevic, Sussmann, Sachkov,...)

Controllability of the Galerkyn approximations

$$\lambda_2 - \lambda_1, \dots, \lambda_n - \lambda_{n-1}$$
 Q-linearly independent + $b_{j,j+1} \neq 0$

$$\Downarrow$$

the Lie algebra generated by $A^{(n)}$ and $B^{(n)}$ has max. dimension

 \downarrow

 (Σ_n) is controllable. (see Jurdjevic, Sussmann, Sachkov,...) Let $u : [0, T] \rightarrow (\delta, \infty)$ be a piecewise constant control driving $\xi_0/||\xi_0||$ to $\xi_1/||\xi_1||$ where

$$\xi_j = \overline{\Pi}_n(\psi_j), \ j = 1, 2$$

and

$$\overline{\Pi}_n: H \to \mathbf{C}^n$$

associates the first n coordinates.

Higher-order Galerkyn approximation and elimination of the drift

 $\mu > 0$ small constant to be chosen later (depending on T) $\phi_j \in D(B) \Longrightarrow (b_{jk})_{k \in \mathbb{N}}$ is in l^2 Choose $N \ge n$ such that $\sum_{k>N} |b_{jk}|^2 < \mu$ for every j = 1, ..., n

Higher-order Galerkyn approximation and elimination of the drift

 $\mu > 0$ small constant to be chosen later (depending on T) $\phi_j \in D(B) \Longrightarrow (b_{jk})_{k \in \mathbb{N}}$ is in l^2 Choose $N \ge n$ such that $\sum_{k>N} |b_{jk}|^2 < \mu$ for every j = 1, ..., n

ELIMINATION OF THE DRIFT

If $t \mapsto X(t)$ is a solution of (Σ_N) corresponding to a control function U, then $t \mapsto e^{-V(t)A^{(N)}}X(t) = Y(t)$, where $V(t) = \int_0^t U(\tau)d\tau$, is a solution of

$$\dot{Y} = e^{-V(t)A^{(N)}}B^{(N)}e^{V(t)A^{(N)}}Y.$$
 (Θ_N)

Higher-order Galerkyn approximation and elimination of the drift

 $\mu > 0$ small constant to be chosen later (depending on T) $\phi_j \in D(B) \Longrightarrow (b_{jk})_{k \in \mathbb{N}}$ is in l^2 Choose $N \ge n$ such that $\sum_{k>N} |b_{jk}|^2 < \mu$ for every j = 1, ..., n

ELIMINATION OF THE DRIFT

If $t \mapsto X(t)$ is a solution of (Σ_N) corresponding to a control function U, then $t \mapsto e^{-V(t)A^{(N)}}X(t) = Y(t)$, where $V(t) = \int_0^t U(\tau)d\tau$, is a solution of

$$\dot{Y} = e^{-V(t)A^{(N)}}B^{(N)}e^{V(t)A^{(N)}}Y.$$
 (Θ_N)

We want to track the solution of (Θ_n) corresponding to u (chosen above) by a solution of (Θ_N) .

The tracking procedure

Claim

There exists a sequence $u_k : [0, T] \to (\delta, \infty)$ piecewise constants such that the sequence

$$t\mapsto M_k(t)=e^{-v_k(t)A^{(N)}}B^{(N)}e^{v_k(t)A^{(N)}},$$

where $v_k(t) = \int_0^t u_k(\tau) d\tau$, converges to

$$t\mapsto M(t)=\left(\begin{array}{cc} e^{-v(t)A^{(n)}}B^{(n)}e^{v(t)A^{(n)}} & 0_{n\times(N-n)}\\ 0_{(N-n)\times n} & G(t) \end{array}\right).$$

where $v(t) = \int_0^t u(\tau) d\tau$, G(t) is continuous and $M_k \to M$ in the following integral sense,

$$\int_0^t M_k(\tau) d\tau \to \int_0^t M(\tau) d\tau$$

The tracking procedure

Therefore, the resolvent $R_k(t,s) : \mathbf{C}^N \to \mathbf{C}^N$ of the linear time-varying equation

$$\dot{Y}=M_k(t)Y,$$

converges, uniformly with respect to (t, s), to the resolvent $R(t, s) : \mathbf{C}^N \to \mathbf{C}^N$ of $\dot{Y} = M(t)Y$.

The tracking procedure

Therefore, the resolvent $R_k(t,s) : \mathbf{C}^N \to \mathbf{C}^N$ of the linear time-varying equation

 $\dot{Y} = M_k(t)Y,$

converges, uniformly with respect to (t, s), to the resolvent $R(t, s) : \mathbf{C}^N \to \mathbf{C}^N$ of $\dot{Y} = M(t)Y$.

Notice that R(t, s) preserves the norm of both the vector formed by the first *n* coordinates and the one formed by the last N - n.

Controllability in observed projections

Let
$$\psi^k$$
 is the solution of (Σ) corresponding to u_k
 $q^k(t) = e^{-iv_k(t)A} \psi^k(t)$

Let
$$\psi^k$$
 is the solution of (Σ) corresponding to u_k
 $q^k(t) = e^{-iv_k(t)A} \psi^k(t)$

The curves
$$P^k(t) = (q_1^k(t), \dots, q_n^k(t))^T$$
 and $Q^k(t) = (q_{n+1}^k(t), \dots, q_N^k(t))^T$ satisfy

$$\begin{pmatrix} \dot{P}^{k}(t) \\ \dot{Q}^{k}(t) \end{pmatrix} = M_{k}(t) \begin{pmatrix} P^{k}(t) \\ Q^{k}(t) \end{pmatrix} + \begin{pmatrix} H^{k}(t) \\ I^{k}(t) \end{pmatrix}$$

with $\|H^k\|_{\infty} < \sqrt{n\mu}$ and $\|I^k\|_{\infty} \le C$ for C = C(N) large enough. Hence

$$\begin{pmatrix} P^{k}(t) \\ Q^{k}(t) \end{pmatrix} = R_{k}(t,0)\overline{\Pi}_{N}(\psi_{0}) + \int_{0}^{t} R_{k}(s,t) \begin{pmatrix} H^{k}(s) \\ I^{k}(s) \end{pmatrix} ds.$$

Therefore, suitably choosing η and μ , P^k converges to a trajectory as close as needed to P, the solution of (θ_n) corresponding to u

Therefore, suitably choosing η and μ , P^k converges to a trajectory as close as needed to P, the solution of (θ_n) corresponding to uTherefore,

$$\|\Pi_n(e^{-i\nu_k(T)A}\psi^k(T)) - \Pi_n(e^{-i\nu(T)A}\psi_1)\| < \frac{\varepsilon}{100}$$

and the components of $\psi^k(T)$ are in modulus $\varepsilon/2$ -close to those of ψ_1 .

Therefore, suitably choosing η and μ , P^k converges to a trajectory as close as needed to P, the solution of (θ_n) corresponding to uTherefore,

$$\|\Pi_n(e^{-i\nu_k(T)A}\psi^k(T)) - \Pi_n(e^{-i\nu(T)A}\psi_1)\| < \frac{\varepsilon}{100}$$

and the components of $\psi^k(T)$ are in modulus $\varepsilon/2$ -close to those of ψ_1 .

Claim

For every $\varepsilon > 0$ and $v_1 \in \mathbf{R}$ there exist $\tau > 0$ and a positive control function $u : [0, \tau] \to \mathbf{R}$ such that a trajectory $\psi(\cdot)$ corresponding to $u(\cdot)$ satisfies $\|\prod_n(\psi(\tau)) - \prod_n(e^{iv_1A}\psi(0))\| \le \varepsilon$.

•
$$\Omega =] - \frac{1}{2}, \frac{1}{2}[, V = 0, W : x \mapsto x$$

•
$$\Omega =] - \frac{1}{2}, \frac{1}{2}[, V = 0, W : x \mapsto x$$

• Eigenvalues of the Laplacian: $\{k^2 \pi^2, k \in \mathbf{N}\}$

•
$$\Omega =] - \frac{1}{2}, \frac{1}{2}[, V = 0, W : x \mapsto x$$

• Eigenvalues of the Laplacian: $\{k^2\pi^2, k \in \mathbf{N}\}$

• We can not apply our result.

Fix a small ν , define $\tilde{u} = u - \nu$ and consider the new system with $V_{\nu} : x \mapsto \nu x$.

- Fix a small ν , define $\tilde{u} = u \nu$ and consider the new system with $V_{\nu} : x \mapsto \nu x$.
- The second derivative of the kth eigenvalue of $\Delta + \nu V$ with respect to ν at 0 is $C_k \pi^k$, and π is transcendental (Lindeman, 1882).

- Fix a small ν , define $\tilde{u} = u \nu$ and consider the new system with $V_{\nu} : x \mapsto \nu x$.
- The second derivative of the kth eigenvalue of $\Delta + \nu V$ with respect to ν at 0 is $C_k \pi^k$, and π is transcendental (Lindeman, 1882).
- Use analyticity of the eigenvalues to show that for a dense set of ν , $-\Delta + V_{\nu}$ has the desired properties.

- Fix a small ν , define $\tilde{u} = u \nu$ and consider the new system with $V_{\nu} : x \mapsto \nu x$.
- The second derivative of the kth eigenvalue of $\Delta + \nu V$ with respect to ν at 0 is $C_k \pi^k$, and π is transcendental (Lindeman, 1882).
- Use analyticity of the eigenvalues to show that for a dense set of ν , $-\Delta + V_{\nu}$ has the desired properties.
- apply the result for a good ν .

•
$$\Omega = \mathbf{R}, \ V : x \mapsto x^2, \ W : x \mapsto e^{\pi x}$$

•
$$\Omega = \mathbf{R}, \ V : x \mapsto x^2, \ W : x \mapsto e^{\pi x}$$

• Use the same trick as for the 1-D box of potential:

- $\Omega = \mathbf{R}, \ V : x \mapsto x^2, \ W : x \mapsto e^{\pi x}$
- Use the same trick as for the 1-D box of potential:
- The first derivative of the k^{th} eigenvalue is $C_k \pi^3 + D_k e^{\pi k}$.

- $\Omega = \mathbf{R}, \ V : x \mapsto x^2, \ W : x \mapsto e^{\pi x}$
- Use the same trick as for the 1-D box of potential:
- The first derivative of the kth eigenvalue is $C_k \pi^3 + D_k e^{\pi k}$.
- π and e^{π} are algebraically independent (Nesterenko, 1996)

Quantitative results

- Quantitative results
- Genericity

- Quantitative results
- Genericity
- Weaken the hypothesis of non-resonance

- Quantitative results
- Genericity
- Weaken the hypothesis of non-resonance
- Numerical

- Quantitative results
- Genericity
- Weaken the hypothesis of non-resonance
- Numerical
- Different models