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Theorem
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Eigenvalues of the Schrodinger operator

Theorem

Let Q be bounded and smooth and V € L*(Q2). Then —A + V
admits a family of eigenfunctions in H*>(2) N H3(QY) which form an
orthonormal basis of L?()

Theorem
Let Q =R and V € L} be bounded from below and such that

loc

lim V(x) = +o0.

x| =00

Then —A + V admits a family of eigenfunctions in H*(R9) which
form an orthonormal basis of L2(R?).
If V > 0 then all eigenfunctions have exponential decay at infinity
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Mathematical framework

We will consider control systems of the form

W Aw) +uB),  ueU (A, B, U)

with the following ingredients

m H complex Hilbert space;
UCR,
A, B skew-adjoint operators on H possibly unbounded;
D(A), D(B) domains of A, B;
(én)nen orthonormal basis of H made of eigenvectors of A;

m ¢, € D(B) for every n € N.
The hypotheses above guarantee that

Vue U,3etAtB) - gy group of unitary transformations
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Approximate controllability

We call et(A+uB) o ... o eti(A+uB) (40 the solution of the control
system (A, B, U) starting from 1o associated to the piecewise
constant control u1X[o,5] + U2X[t,t140] T

We say that (A, B, U) is approximatively controllable if for every
0,11 € S and every € > 0 there exist k € N, t1,...,t, > 0 and
ui,...,ux € U such that

gy — e* At oo et B (yg) | <.

Ball-Marsden-Slemrod [1982] (adapted by Turinici to the
skew-symmetric case) proved that exact controllability (in
SN H?N HE) does not hold in infinite dimension.

We look for conditions that guarantee the approximate
controllability.



Main result

(An)nen eigenvalues of A corresponding to (¢n)nen-

Theorem

If (Ant1 — An)nen are Q-linearly independent and if
(Boj, pj+1) # 0 for every j € N, then (A, B, (0,9)) is
approximatively controllable for every § > 0.

Recall that (Ap+1 — An)nen is Q-linearly independent (or
non-resonant) if for every N € N and (g1, ...,qn) € QN ~ {0} one
has

N
Z Gn(Any1 — An) # 0.
n=1
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Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of
Navier-Stokes equation, we follow the following pattern

m time reparameterization;

m controllability of the Galerkyn approximations;

m controllability in observed projections;

m approximate controllability of the original system.
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Time reparameterization

For u # 0, clearly,

et(A+uB) _ tu((3)A+B)

Theorem 3 is therefore equivalent (under the same hypotheses) to

Vo, >0, Vapg, 1 € S, there exist k € N, t1,...,t >0
and uy, ..., u, > 0 such that

[t = eHAB) oo 4O yg)| <.

l.e., the system

d
W~ WOAW) + B, weU ()
is approximatively controllable provided that the control set U

contains a half-line.
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n > 0 small constant to be chosen later.
M, : H — H orthogonal projection on span(¢1, ..., ¢n).
Choose n such that |[¢); — My(v))|| <7 for j =1,2.

For j,k € N, let aj and bj, be the components of A and B in the
base (¢m)men-
Galerkyn approximation of order n:

dx = uAMx 4+ B, x € Sy, u> 9, (Z,)

dt

where S,, denotes the unit sphere of C".
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Controllability of the Galerkyn approximations

A2 — A1,...; An — Ap—1 Q-linearly independent + bj 11 # 0

4

the Lie algebra generated by A(™ and B(" has max. dimension

4

(X)) is controllable. (see Jurdjevic, Sussmann, Sachkov,...)

Let u: [0, T] — (d,00) be a piecewise constant control driving

&o/|&ol| to &1/||&1]| where
gj = ﬁ”(wj)a J = 172

and
n,:H—C"

associates the first n coordinates.
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Higher-order Galerkyn approximation and elimination of

the drift

> 0 small constant to be chosen later (depending on T)

¢j € D(B) — (bjk)keN is in /2

Choose N > n such that >,y |bj|> < p forevery j=1,...,n
ELIMINATION OF THE DRIFT

If t — X(t) is a solution of (¥y) corresponding to a control
function U, then t — e~ V(DAY X () = Y/(t), where

V(t) = [; U(r)dr, is a solution of

Y = e VDA™ g(N) V(A y (On)

We want to track the solution of (©,) corresponding to u (chosen
above) by a solution of (Oy).



The tracking procedure

Claim

There exists a sequence uy : [0, T] — (J, 00) piecewise constants
such that the sequence

t— My(t) = e_Vk(t)A(N)B(N)evk(t)A(N)’

where vy (t) = fot uk(T)dT, converges to

—v g n) v n)
tom) = [ € OTBO A 0 )
O(N—n)><n G(t)
where v/( fo u(t)dT, G(t) is continuous and My — M in the

following mtegral sense,

/Ot M(7)dr — /ot M(r)dr



The tracking procedure

Therefore, the resolvent Ry (t,s) : CN — CN of the linear

time-varying equation

Y = M(t)Y,

converges, uniformly with respect to (t,s), to the resolvent

R(t,s) : CN — CN of

Y = M(t)Y.

time



The tracking procedure

Therefore, the resolvent Ry (t,s) : CN — CN of the linear
time-varying equation _
Y = M(t)Y,

converges, uniformly with respect to (t,s), to the resolvent
R(t,s): CN — CN of _
Y = M(p)Y.

Notice that R(t,s) preserves the norm of both the vector formed
by the first n coordinates and the one formed by the last N — n.

B R
SV
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Controllability in observed projections

Let ¥ is the solution of (X) corresponding to wj
k(1) = e OA k(1)

The curves P(t) = (gk(t),...,qk(t))T and
Q(t) = (qnpa(t), - ap(t) T satisfy

(&) -0 (50)+ (5))

with ||H || < /At and ||/¥||sc < C for C = C(N) large enough.

Hence

( gigg ) = Ri(t, O)HN(wo)Jr/otRk(s, t)( ’7:((55)) >ds.
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Approximate controllability

Therefore, suitably choosing 7 and 1, P¥ converges to a trajectory
as close as needed to P, the solution of (#,) corresponding to u

Therefore,

—iv —iv €
[Mne e TAGH(T)) = Mp(e DA | < =

and the components of 1/*( T) are in modulus ¢ /2-close to those of

V1.

Claim

For every € > 0 and v1 € R there exist T > 0 and a positive control
function u : [0,7] — R such that a trajectory Y(-) corresponding to
u(-) satisfies ||M,(x(1)) — M,(e™MA(0))| < e.
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Example 1: 1-D box (1)

B Q=]-3 3 V=0 W:x—x
m Eigenvalues of the Laplacian: {k?72, k € N}

m We can not apply our result.
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Example 1: 1-D box (Il)

m Fix a small v, define i = v — v and consider the new system
with V, : x — vx.

m The second derivative of the k" eigenvalue of A + vV with
respect to v at 0 is C,, and 7 is transcendental (Lindeman,
1882).

m Use analyticity of the eigenvalues to show that for a dense set
of v, —A + V), has the desired properties.

m apply the result for a good v.
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Example 2: Harmonic oscilator

Q=R, V:x—x2 W:x— ™
Use the same trick as for the 1-D box of potential:

The first derivative of the ki’ eigenvalue is C,m3 + Dye™ .

7 and e”™ are algebraically independent (Nesterenko, 1996)
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Perspectives

If you know (how to do) something at the level of the group, you
know (how to do) the same thing for the PDE.

m Quantitative results

m Genericity

m Weaken the hypothesis of non-resonance

m Numerical

m Different models



