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Physical model: the controlled Schrödinger equation

Schrödinger equation

iψ̇ = −∆ψ + Vψ + uWψ

Ω domain of Rd

ψ(t, x) wave function
V : Ω→ R potential of the Schrödinger operator
u = u(t) real-valued control
W : Ω→ R controlled potential

Two cases:

Ω ⊂ Rd bounded regular domain,

ψ|∂Ω ≡ 0,

Ω = Rd .
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Eigenvalues of the Schrödinger operator

Theorem

Let Ω be bounded and smooth and V ∈ L∞(Ω). Then −∆ + V
admits a family of eigenfunctions in H2(Ω) ∩H1

0 (Ω) which form an
orthonormal basis of L2(Ω)

Theorem

Let Ω = Rd and V ∈ L1
loc be bounded from below and such that

lim
|x |→∞

V (x) = +∞.

Then −∆ + V admits a family of eigenfunctions in H2(Rd) which
form an orthonormal basis of L2(Rd).
If V ≥ 0 then all eigenfunctions have exponential decay at infinity
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Mathematical framework

We will consider control systems of the form

dψ

dt
= A(ψ) + uB(ψ), u ∈ U (A,B,U)

with the following ingredients

H complex Hilbert space;

U ⊂ R;

A,B skew-adjoint operators on H possibly unbounded;

D(A),D(B) domains of A,B;

(φn)n∈N orthonormal basis of H made of eigenvectors of A;

φn ∈ D(B) for every n ∈ N.

The hypotheses above guarantee that

∀u ∈ U,∃ et(A+uB) : H → H group of unitary transformations
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Approximate controllability

We call etk (A+ukB) ◦ · · · ◦ et1(A+u1B)(ψ0) the solution of the control
system (A,B,U) starting from ψ0 associated to the piecewise
constant control u1χ[0,t1] + u2χ[t1,t1+t2] + · · ·

We say that (A,B,U) is approximatively controllable if for every
ψ0, ψ1 ∈ S and every ε > 0 there exist k ∈ N, t1, . . . , tk > 0 and
u1, . . . , uk ∈ U such that

‖ψ1 − etk (A+ukB) ◦ · · · ◦ et1(A+u1B)(ψ0)‖ < ε.

Ball–Marsden–Slemrod [1982] (adapted by Turinici to the
skew-symmetric case) proved that exact controllability (in
S ∩ H2 ∩ H1

0 ) does not hold in infinite dimension.

We look for conditions that guarantee the approximate
controllability.
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Main result

(λn)n∈N eigenvalues of A corresponding to (φn)n∈N.

Theorem

If (λn+1 − λn)n∈N are Q-linearly independent and if
〈Bφj , φj+1〉 6= 0 for every j ∈ N, then (A,B, (0, δ)) is
approximatively controllable for every δ > 0.

Recall that (λn+1 − λn)n∈N is Q-linearly independent (or
non-resonant) if for every N ∈ N and (q1, . . . , qN) ∈ QN r {0} one
has

N∑
n=1

qn(λn+1 − λn) 6= 0.



Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of
Navier-Stokes equation, we follow the following pattern

time reparameterization;

controllability of the Galerkyn approximations;

controllability in observed projections;

approximate controllability of the original system.
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Time reparameterization

For u 6= 0, clearly,

et(A+uB) = etu(( 1
u )A+B).

Theorem 3 is therefore equivalent (under the same hypotheses) to

∀δ, ε > 0, ∀ψ0, ψ1 ∈ S, there exist k ∈ N, t1, . . . , tk > 0
and u1, . . . , uk > δ such that

‖ψ1 − etk (ukA+B) ◦ · · · ◦ et1(u1A+B)(ψ0)‖ < ε.

I.e., the system

dψ

dt
= u(t)A(ψ) + B(ψ), u ∈ U (Σ)

is approximatively controllable provided that the control set U
contains a half-line.
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Galerkyn approximations

η > 0 small constant to be chosen later.
Πn : H → H orthogonal projection on span(φ1, . . . , φn).

Choose n such that ‖ψj − Πn(ψj)‖ < η for j = 1, 2.

For j , k ∈ N, let ajk and bjk be the components of A and B in the
base (φm)m∈N.
Galerkyn approximation of order n:

dx

dt
= uA(n)x + B(n)x , x ∈ Sn, u > δ, (Σn)

where Sn denotes the unit sphere of Cn.
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Controllability of the Galerkyn approximations

λ2 − λ1, . . . , λn − λn−1 Q-linearly independent + bj ,j+1 6= 0

⇓

the Lie algebra generated by A(n) and B(n) has max. dimension

⇓

(Σn) is controllable. (see Jurdjevic, Sussmann, Sachkov,...)

Let u : [0,T ]→ (δ,∞) be a piecewise constant control driving
ξ0/‖ξ0‖ to ξ1/‖ξ1‖ where

ξj = Πn(ψj), j = 1, 2

and
Πn : H → Cn

associates the first n coordinates.
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Higher-order Galerkyn approximation and elimination of
the drift

µ > 0 small constant to be chosen later (depending on T )
φj ∈ D(B) =⇒ (bjk)k∈N is in l2

Choose N ≥ n such that
∑

k>N |bjk |2 < µ for every j = 1, . . . , n

ELIMINATION OF THE DRIFT
If t 7→ X (t) is a solution of (ΣN) corresponding to a control

function U, then t 7→ e−V (t)A(N)
X (t) = Y (t), where

V (t) =
∫ t

0 U(τ)dτ , is a solution of

Ẏ = e−V (t)A(N)
B(N)eV (t)A(N)

Y . (ΘN)

We want to track the solution of (Θn) corresponding to u (chosen
above) by a solution of (ΘN).



Higher-order Galerkyn approximation and elimination of
the drift

µ > 0 small constant to be chosen later (depending on T )
φj ∈ D(B) =⇒ (bjk)k∈N is in l2

Choose N ≥ n such that
∑

k>N |bjk |2 < µ for every j = 1, . . . , n

ELIMINATION OF THE DRIFT
If t 7→ X (t) is a solution of (ΣN) corresponding to a control

function U, then t 7→ e−V (t)A(N)
X (t) = Y (t), where

V (t) =
∫ t

0 U(τ)dτ , is a solution of
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The tracking procedure

Claim

There exists a sequence uk : [0,T ]→ (δ,∞) piecewise constants
such that the sequence

t 7→ Mk(t) = e−vk (t)A(N)
B(N)evk (t)A(N)

,

where vk(t) =
∫ t

0 uk(τ)dτ , converges to

t 7→ M(t) =

(
e−v(t)A(n)

B(n)ev(t)A(n)
0n×(N−n)

0(N−n)×n G (t)

)
,

where v(t) =
∫ t

0 u(τ)dτ , G (t) is continuous and Mk → M in the
following integral sense,∫ t

0
Mk(τ)dτ →

∫ t

0
M(τ)dτ

as k →∞ uniformly with respect to t ∈ [0,T ].



The tracking procedure

Therefore, the resolvent Rk(t, s) : CN → CN of the linear
time-varying equation

Ẏ = Mk(t)Y ,

converges, uniformly with respect to (t, s), to the resolvent
R(t, s) : CN → CN of

Ẏ = M(t)Y .

Notice that R(t, s) preserves the norm of both the vector formed
by the first n coordinates and the one formed by the last N − n.

time
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Controllability in observed projections

Let ψk is the solution of (Σ) corresponding to uk

qk(t) = e−ivk (t)A ψk(t)

The curves Pk(t) = (qk
1 (t), . . . , qk

n (t))T and
Qk(t) = (qk

n+1(t), . . . , qk
N(t))T satisfy(

Ṗk(t)

Q̇k(t)

)
= Mk(t)

(
Pk(t)
Qk(t)

)
+

(
Hk(t)
I k(t)

)
with ‖Hk‖∞ <

√
nµ and ‖I k‖∞ ≤ C for C = C (N) large enough.

Hence(
Pk(t)
Qk(t)

)
= Rk(t, 0)ΠN(ψ0) +

∫ t

0
Rk(s, t)

(
Hk(s)
I k(s)

)
ds.
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Approximate controllability

Therefore, suitably choosing η and µ, Pk converges to a trajectory
as close as needed to P, the solution of (θn) corresponding to u

Therefore,

‖Πn(e−ivk (T )Aψk(T ))− Πn(e−iv(T )Aψ1)‖ < ε

100

and the components of ψk(T ) are in modulus ε/2-close to those of
ψ1.

Claim

For every ε > 0 and v1 ∈ R there exist τ > 0 and a positive control
function u : [0, τ ]→ R such that a trajectory ψ(·) corresponding to
u(·) satisfies ‖Πn(ψ(τ))− Πn(e iv1Aψ(0))‖ ≤ ε.
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Example 1: 1-D box (I)

Ω =]− 1
2 ,

1
2 [, V = 0, W : x 7→ x

Eigenvalues of the Laplacian: {k2π2, k ∈ N}
We can not apply our result.
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Example 1: 1-D box (II)

Fix a small ν, define ũ = u − ν and consider the new system
with Vν : x 7→ νx .

The second derivative of the kth eigenvalue of ∆ + νV with
respect to ν at 0 is Ckπ

k , and π is transcendental (Lindeman,
1882).

Use analyticity of the eigenvalues to show that for a dense set
of ν, −∆ + Vν has the desired properties.

apply the result for a good ν.
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Example 2: Harmonic oscilator

Ω = R, V : x 7→ x2, W : x 7→ eπx

Use the same trick as for the 1-D box of potential:

The first derivative of the kth eigenvalue is Ckπ
3 + Dkeπk .

π and eπ are algebraically independent (Nesterenko, 1996)
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π and eπ are algebraically independent (Nesterenko, 1996)
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