Controllability of the Schrödinger equation in the case of discrete spectrum

Thomas Chambrion (IECN, Nancy University)
in collaboration with M. Sigalotti, IECN/INRIA,
P. Mason, IECN/INRIA and U. Boscain, CNRS

Bedlewo, 10-16/10/2007

Physical model: the controlled Schrödinger equation

Schrödinger equation

$$
i \dot{\psi}=-\Delta \psi+V \psi+u W \psi
$$

Ω domain of \mathbf{R}^{d}
$\psi(t, x)$ wave function
$V: \Omega \rightarrow \mathbf{R}$ potential of the Schrödinger operator
$u=u(t)$ real-valued control
$W: \Omega \rightarrow \mathbf{R}$ controlled potential

Physical model: the controlled Schrödinger equation

Schrödinger equation

$$
i \dot{\psi}=-\Delta \psi+V \psi+u W \psi
$$

Ω domain of \mathbf{R}^{d}
$\psi(t, x)$ wave function
$V: \Omega \rightarrow \mathbf{R}$ potential of the Schrödinger operator
$u=u(t)$ real-valued control
$W: \Omega \rightarrow \mathbf{R}$ controlled potential

Two cases:

■ $\Omega \subset \mathbf{R}^{d}$ bounded regular domain,

- $\Omega=\mathbf{R}^{d}$.

Physical model: the controlled Schrödinger equation

Schrödinger equation

$$
i \dot{\psi}=-\Delta \psi+V \psi+u W \psi
$$

Ω domain of \mathbf{R}^{d}
$\psi(t, x)$ wave function
$V: \Omega \rightarrow \mathbf{R}$ potential of the Schrödinger operator
$u=u(t)$ real-valued control
$W: \Omega \rightarrow \mathbf{R}$ controlled potential
Two cases:
■ $\Omega \subset \mathbf{R}^{d}$ bounded regular domain, $\left.\psi\right|_{\partial \Omega} \equiv 0$,

- $\Omega=\mathbf{R}^{d}$.

Controllability results for the Schrödinger equation

Infinite dimension

- Adami, Boscain
- Beauchard, Coron
- Mirrahimi
- Rouchon
- Turinici

Controllability results for the Schrödinger equation

Infinite dimension

- Adami, Boscain
- Beauchard, Coron
- Mirrahimi
- Rouchon
- Turinici

■ Tenenbaum, Tucsnak

- Zuazua

Eigenvalues of the Schrödinger operator

Theorem
Let Ω be bounded and smooth and $V \in L^{\infty}(\Omega)$. Then $-\Delta+V$admits a family of eigenfunctions in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ which form anorthonormal basis of $L^{2}(\Omega)$

Eigenvalues of the Schrödinger operator

Theorem

Let Ω be bounded and smooth and $V \in L^{\infty}(\Omega)$. Then $-\Delta+V$ admits a family of eigenfunctions in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ which form an orthonormal basis of $L^{2}(\Omega)$

Theorem

Let $\Omega=\mathbf{R}^{d}$ and $V \in L_{\text {loc }}^{1}$ be bounded from below and such that

$$
\lim _{|x| \rightarrow \infty} V(x)=+\infty
$$

Then $-\Delta+V$ admits a family of eigenfunctions in $H^{2}\left(\mathbf{R}^{d}\right)$ which form an orthonormal basis of $L^{2}\left(\mathbf{R}^{d}\right)$.
If $V \geq 0$ then all eigenfunctions have exponential decay at infinity

Mathematical framework

We will consider control systems of the form

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the following ingredients
■ H complex Hilbert space;

- $U \subset \mathbf{R}$;

Mathematical framework

We will consider control systems of the form

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the following ingredients
■ H complex Hilbert space;

- $U \subset \mathbf{R}$;

■ A, B skew-adjoint operators on H possibly unbounded;

Mathematical framework

We will consider control systems of the form

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the following ingredients
■ H complex Hilbert space;

- $U \subset \mathbf{R}$;

■ A, B skew-adjoint operators on H possibly unbounded;

- $D(A), D(B)$ domains of A, B;

Mathematical framework

We will consider control systems of the form

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the following ingredients
■ H complex Hilbert space;

- $U \subset \mathbf{R}$;

■ A, B skew-adjoint operators on H possibly unbounded;

- $D(A), D(B)$ domains of A, B;
- $\left(\phi_{n}\right)_{n \in \mathbf{N}}$ orthonormal basis of H made of eigenvectors of A;

Mathematical framework

We will consider control systems of the form

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the following ingredients
■ H complex Hilbert space;

- $U \subset \mathbf{R}$;

■ A, B skew-adjoint operators on H possibly unbounded;

- $D(A), D(B)$ domains of A, B;
- $\left(\phi_{n}\right)_{n \in \mathbf{N}}$ orthonormal basis of H made of eigenvectors of A;
- $\phi_{n} \in D(B)$ for every $n \in \mathbf{N}$.

Mathematical framework

We will consider control systems of the form

$$
\begin{equation*}
\frac{d \psi}{d t}=A(\psi)+u B(\psi), \quad u \in U \tag{A,B,U}
\end{equation*}
$$

with the following ingredients
■ H complex Hilbert space;

- $U \subset \mathbf{R}$;

■ A, B skew-adjoint operators on H possibly unbounded;

- $D(A), D(B)$ domains of A, B;

■ $\left(\phi_{n}\right)_{n \in \mathbf{N}}$ orthonormal basis of H made of eigenvectors of A;

- $\phi_{n} \in D(B)$ for every $n \in \mathbf{N}$.

The hypotheses above guarantee that

$$
\forall u \in U, \exists e^{t(A+u B)}: H \rightarrow H \text { group of unitary transformations }
$$

Approximate controllability

We call $e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)$ the solution of the control system (A, B, U) starting from ψ_{0} associated to the piecewise constant control $u_{1} \chi_{\left[0, t_{1}\right]}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right]}+\cdots$

Approximate controllability

We call $e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)$ the solution of the control system (A, B, U) starting from ψ_{0} associated to the piecewise constant control $u_{1} \chi_{\left[0, t_{1}\right]}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right]}+\cdots$

We say that (A, B, U) is approximatively controllable if for every $\psi_{0}, \psi_{1} \in \mathcal{S}$ and every $\varepsilon>0$ there exist $k \in \mathbf{N}, t_{1}, \ldots, t_{k}>0$ and $u_{1}, \ldots, u_{k} \in U$ such that

$$
\left\|\psi_{1}-e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)\right\|<\varepsilon
$$

Approximate controllability

We call $e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)$ the solution of the control system (A, B, U) starting from ψ_{0} associated to the piecewise constant control $u_{1} \chi_{\left[0, t_{1}\right]}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right]}+\cdots$
We say that (A, B, U) is approximatively controllable if for every $\psi_{0}, \psi_{1} \in \mathcal{S}$ and every $\varepsilon>0$ there exist $k \in \mathbf{N}, t_{1}, \ldots, t_{k}>0$ and $u_{1}, \ldots, u_{k} \in U$ such that

$$
\left\|\psi_{1}-e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)\right\|<\varepsilon
$$

Ball-Marsden-Slemrod [1982] (adapted by Turinici to the skew-symmetric case) proved that exact controllability (in
$\mathcal{S} \cap H^{2} \cap H_{0}^{1}$) does not hold in infinite dimension.
We look for conditions that guarantee the approximate controllability.

Main result

$\left(\lambda_{n}\right)_{n \in \mathbf{N}}$ eigenvalues of A corresponding to $\left(\phi_{n}\right)_{n \in \mathbf{N}}$.

Theorem

If $\left(\lambda_{n+1}-\lambda_{n}\right)_{n \in \mathbf{N}}$ are \mathbf{Q}-linearly independent and if $\left\langle B \phi_{j}, \phi_{j+1}\right\rangle \neq 0$ for every $j \in \mathbf{N}$, then $(A, B,(0, \delta))$ is approximatively controllable for every $\delta>0$.

Recall that $\left(\lambda_{n+1}-\lambda_{n}\right)_{n \in \mathbf{N}}$ is \mathbf{Q}-linearly independent (or non-resonant) if for every $N \in \mathbf{N}$ and $\left(q_{1}, \ldots, q_{N}\right) \in \mathbf{Q}^{N} \backslash\{0\}$ one has

$$
\sum_{n=1}^{N} q_{n}\left(\lambda_{n+1}-\lambda_{n}\right) \neq 0
$$

Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of Navier-Stokes equation, we follow the following pattern

Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of Navier-Stokes equation, we follow the following pattern

- controllability of the Galerkyn approximations;

Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of Navier-Stokes equation, we follow the following pattern

- controllability of the Galerkyn approximations;
- controllability in observed projections;

Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of Navier-Stokes equation, we follow the following pattern

- controllability of the Galerkyn approximations;
- controllability in observed projections;
- approximate controllability of the original system.

Main result: scheme of the proof

As in works by Agrachev, Sarychev and Rodrigues on the control of Navier-Stokes equation, we follow the following pattern

- time reparameterization;
- controllability of the Galerkyn approximations;
- controllability in observed projections;
- approximate controllability of the original system.

Time reparameterization

For $u \neq 0$, clearly,

$$
e^{t(A+u B)}=e^{t u\left(\left(\frac{1}{u}\right) A+B\right)}
$$

Theorem 3 is therefore equivalent (under the same hypotheses) to $\forall \delta, \varepsilon>0, \forall \psi_{0}, \psi_{1} \in \mathcal{S}$, there exist $k \in \mathbf{N}, t_{1}, \ldots, t_{k}>0$ and $u_{1}, \ldots, u_{k}>\delta$ such that

$$
\left\|\psi_{1}-e^{t_{k}\left(u_{k} A+B\right)} \circ \cdots \circ e^{t_{1}\left(u_{1} A+B\right)}\left(\psi_{0}\right)\right\|<\varepsilon
$$

Time reparameterization

For $u \neq 0$, clearly,

$$
e^{t(A+u B)}=e^{t u\left(\left(\frac{1}{u}\right) A+B\right)}
$$

Theorem 3 is therefore equivalent (under the same hypotheses) to $\forall \delta, \varepsilon>0, \forall \psi_{0}, \psi_{1} \in \mathcal{S}$, there exist $k \in \mathbf{N}, t_{1}, \ldots, t_{k}>0$ and $u_{1}, \ldots, u_{k}>\delta$ such that

$$
\left\|\psi_{1}-e^{t_{k}\left(u_{k} A+B\right)} \circ \cdots \circ e^{t_{1}\left(u_{1} A+B\right)}\left(\psi_{0}\right)\right\|<\varepsilon
$$

I.e., the system

$$
\frac{d \psi}{d t}=u(t) A(\psi)+B(\psi), \quad u \in U
$$

is approximatively controllable provided that the control set U contains a half-line.

Galerkyn approximations

$\eta>0$ small constant to be chosen later.
$\Pi_{n}: H \rightarrow H$ orthogonal projection on $\operatorname{span}\left(\phi_{1}, \ldots, \phi_{n}\right)$.

Galerkyn approximations

$\eta>0$ small constant to be chosen later.
$\Pi_{n}: H \rightarrow H$ orthogonal projection on $\operatorname{span}\left(\phi_{1}, \ldots, \phi_{n}\right)$.
Choose n such that $\left\|\psi_{j}-\Pi_{n}\left(\psi_{j}\right)\right\|<\eta$ for $j=1,2$.

Galerkyn approximations

$\eta>0$ small constant to be chosen later.
$\Pi_{n}: H \rightarrow H$ orthogonal projection on $\operatorname{span}\left(\phi_{1}, \ldots, \phi_{n}\right)$.
Choose n such that $\left\|\psi_{j}-\Pi_{n}\left(\psi_{j}\right)\right\|<\eta$ for $j=1,2$.
For $j, k \in \mathbf{N}$, let $a_{j k}$ and $b_{j k}$ be the components of A and B in the base $\left(\phi_{m}\right)_{m \in \mathbf{N}}$.
Galerkyn approximation of order n :

$$
\begin{equation*}
\frac{d x}{d t}=u A^{(n)} x+B^{(n)} x, \quad x \in \mathcal{S}_{n}, \quad u>\delta, \tag{n}
\end{equation*}
$$

where \mathcal{S}_{n} denotes the unit sphere of \mathbf{C}^{n}.

Controllability of the Galerkyn approximations

$\lambda_{2}-\lambda_{1}, \ldots, \lambda_{n}-\lambda_{n-1} \mathbf{Q}$-linearly independent $+b_{j, j+1} \neq 0$
\Downarrow
the Lie algebra generated by $A^{(n)}$ and $B^{(n)}$ has max. dimension \Downarrow
$\left(\Sigma_{n}\right)$ is controllable. (see Jurdjevic, Sussmann, Sachkov, ...)

Controllability of the Galerkyn approximations

$\lambda_{2}-\lambda_{1}, \ldots, \lambda_{n}-\lambda_{n-1} \mathbf{Q}$-linearly independent $+b_{j, j+1} \neq 0$

$$
\Downarrow
$$

the Lie algebra generated by $A^{(n)}$ and $B^{(n)}$ has max. dimension

$$
\Downarrow
$$

$\left(\Sigma_{n}\right)$ is controllable. (see Jurdjevic, Sussmann, Sachkov,...)
Let $u:[0, T] \rightarrow(\delta, \infty)$ be a piecewise constant control driving $\xi_{0} /\left\|\xi_{0}\right\|$ to $\xi_{1} /\left\|\xi_{1}\right\|$ where

$$
\xi_{j}=\bar{\Pi}_{n}\left(\psi_{j}\right), \quad j=1,2
$$

and

$$
\bar{\Pi}_{n}: H \rightarrow \mathbf{C}^{n}
$$

associates the first n coordinates.

Higher-order Galerkyn approximation and elimination of the drift

$\mu>0$ small constant to be chosen later (depending on T)
$\phi_{j} \in D(B) \Longrightarrow\left(b_{j k}\right)_{k \in \mathbf{N}}$ is in I^{2}
Choose $N \geq n$ such that $\sum_{k>N}\left|b_{j k}\right|^{2}<\mu$ for every $j=1, \ldots, n$

Higher-order Galerkyn approximation and elimination of the drift
$\mu>0$ small constant to be chosen later (depending on T)
$\phi_{j} \in D(B) \Longrightarrow\left(b_{j k}\right)_{k \in \mathbf{N}}$ is in I^{2}
Choose $N \geq n$ such that $\sum_{k>N}\left|b_{j k}\right|^{2}<\mu$ for every $j=1, \ldots, n$

ELIMINATION OF THE DRIFT

If $t \mapsto X(t)$ is a solution of $\left(\Sigma_{N}\right)$ corresponding to a control function U, then $t \mapsto e^{-V(t) A^{(N)}} X(t)=Y(t)$, where $V(t)=\int_{0}^{t} U(\tau) d \tau$, is a solution of

$$
\dot{Y}=e^{-V(t) A^{(N)}} B^{(N)} e^{V(t) A^{(N)}} Y
$$ the drift

$\mu>0$ small constant to be chosen later (depending on T)
$\phi_{j} \in D(B) \Longrightarrow\left(b_{j k}\right)_{k \in \mathbf{N}}$ is in I^{2}
Choose $N \geq n$ such that $\sum_{k>N}\left|b_{j k}\right|^{2}<\mu$ for every $j=1, \ldots, n$

ELIMINATION OF THE DRIFT

If $t \mapsto X(t)$ is a solution of $\left(\Sigma_{N}\right)$ corresponding to a control function U, then $t \mapsto e^{-V(t) A^{(N)}} X(t)=Y(t)$, where $V(t)=\int_{0}^{t} U(\tau) d \tau$, is a solution of

$$
\begin{equation*}
\dot{Y}=e^{-V(t) A^{(N)}} B^{(N)} e^{V(t) A^{(N)}} Y \tag{N}
\end{equation*}
$$

We want to track the solution of $\left(\Theta_{n}\right)$ corresponding to u (chosen above) by a solution of $\left(\Theta_{N}\right)$.

The tracking procedure

Claim

There exists a sequence $u_{k}:[0, T] \rightarrow(\delta, \infty)$ piecewise constants such that the sequence

$$
t \mapsto M_{k}(t)=e^{-v_{k}(t) A^{(N)}} B^{(N)} e^{v_{k}(t) A^{(N)}},
$$

where $v_{k}(t)=\int_{0}^{t} u_{k}(\tau) d \tau$, converges to

$$
t \mapsto M(t)=\left(\begin{array}{cc}
e^{-v(t) A^{(n)}} B^{(n)} e^{v(t) A^{(n)}} & 0_{n \times(N-n)} \\
0_{(N-n) \times n} & G(t)
\end{array}\right)
$$

where $v(t)=\int_{0}^{t} u(\tau) d \tau, G(t)$ is continuous and $M_{k} \rightarrow M$ in the following integral sense,

$$
\int_{0}^{t} M_{k}(\tau) d \tau \rightarrow \int_{0}^{t} M(\tau) d \tau
$$

The tracking procedure

Therefore, the resolvent $R_{k}(t, s): \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ of the linear time-varying equation

$$
\dot{Y}=M_{k}(t) Y
$$

converges, uniformly with respect to (t, s), to the resolvent $R(t, s): \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ of

$$
\dot{Y}=M(t) Y
$$

The tracking procedure

Therefore, the resolvent $R_{k}(t, s): \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ of the linear time-varying equation

$$
\dot{Y}=M_{k}(t) Y
$$

converges, uniformly with respect to (t, s), to the resolvent $R(t, s): \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ of

$$
\dot{Y}=M(t) Y
$$

Notice that $R(t, s)$ preserves the norm of both the vector formed by the first n coordinates and the one formed by the last $N-n$.

Controllability in observed projections

$$
\begin{aligned}
& \text { Let } \psi^{k} \text { is the solution of }(\Sigma) \text { corresponding to } u_{k} \\
& q^{k}(t)=e^{-i v_{k}(t) A} \psi^{k}(t)
\end{aligned}
$$

Controllability in observed projections

Let ψ^{k} is the solution of (Σ) corresponding to u_{k} $q^{k}(t)=e^{-i v_{k}(t) A} \psi^{k}(t)$

The curves $P^{k}(t)=\left(q_{1}^{k}(t), \ldots, q_{n}^{k}(t)\right)^{T}$ and $Q^{k}(t)=\left(q_{n+1}^{k}(t), \ldots, q_{N}^{k}(t)\right)^{T}$ satisfy

$$
\binom{\dot{P}^{k}(t)}{\dot{Q}^{k}(t)}=M_{k}(t)\binom{P^{k}(t)}{Q^{k}(t)}+\binom{H^{k}(t)}{I^{k}(t)}
$$

with $\left\|H^{k}\right\|_{\infty}<\sqrt{n \mu}$ and $\left\|I^{k}\right\|_{\infty} \leq C$ for $C=C(N)$ large enough. Hence

$$
\binom{P^{k}(t)}{Q^{k}(t)}=R_{k}(t, 0) \bar{\Pi}_{N}\left(\psi_{0}\right)+\int_{0}^{t} R_{k}(s, t)\binom{H^{k}(s)}{I^{k}(s)} d s
$$

Approximate controllability

Therefore, suitably choosing η and μ, P^{k} converges to a trajectory as close as needed to P, the solution of $\left(\theta_{n}\right)$ corresponding to u

Approximate controllability

Therefore, suitably choosing η and μ, P^{k} converges to a trajectory as close as needed to P, the solution of $\left(\theta_{n}\right)$ corresponding to u

Therefore,

$$
\left\|\Pi_{n}\left(e^{-i v_{k}(T) A} \psi^{k}(T)\right)-\Pi_{n}\left(e^{-i v(T) A} \psi_{1}\right)\right\|<\frac{\varepsilon}{100}
$$

and the components of $\psi^{k}(T)$ are in modulus $\varepsilon / 2$-close to those of ψ_{1}.

Approximate controllability

Therefore, suitably choosing η and μ, P^{k} converges to a trajectory as close as needed to P, the solution of $\left(\theta_{n}\right)$ corresponding to u

Therefore,

$$
\left\|\Pi_{n}\left(e^{-i v_{k}(T) A} \psi^{k}(T)\right)-\Pi_{n}\left(e^{-i v(T) A} \psi_{1}\right)\right\|<\frac{\varepsilon}{100}
$$

and the components of $\psi^{k}(T)$ are in modulus $\varepsilon / 2$-close to those of ψ_{1}.

Claim

For every $\varepsilon>0$ and $v_{1} \in \mathbf{R}$ there exist $\tau>0$ and a positive control function $u:[0, \tau] \rightarrow \mathbf{R}$ such that a trajectory $\psi(\cdot)$ corresponding to $u(\cdot)$ satisfies $\left\|\Pi_{n}(\psi(\tau))-\Pi_{n}\left(e^{i v_{1} A} \psi(0)\right)\right\| \leq \varepsilon$.

Example 1: 1-D box (I)

- $\Omega=]-\frac{1}{2}, \frac{1}{2}[, V=0, W: x \mapsto x$

Example 1: 1-D box (I)

- $\Omega=]-\frac{1}{2}, \frac{1}{2}[, V=0, W: x \mapsto x$

■ Eigenvalues of the Laplacian: $\left\{k^{2} \pi^{2}, k \in \mathbf{N}\right\}$

Example 1: 1-D box (I)

- $\Omega=]-\frac{1}{2}, \frac{1}{2}[, V=0, W: x \mapsto x$

■ Eigenvalues of the Laplacian: $\left\{k^{2} \pi^{2}, k \in \mathbf{N}\right\}$

- We can not apply our result.

Example 1: 1-D box (II)

■ Fix a small ν, define $\tilde{u}=u-\nu$ and consider the new system with $V_{\nu}: x \mapsto \nu x$.

Example 1: 1-D box (II)

■ Fix a small ν, define $\tilde{u}=u-\nu$ and consider the new system with $V_{\nu}: x \mapsto \nu x$.

- The second derivative of the $\mathrm{k}^{\text {th }}$ eigenvalue of $\Delta+\nu V$ with respect to ν at 0 is $C_{k} \pi^{k}$, and π is transcendental (Lindeman, 1882).

Example 1: 1-D box (II)

■ Fix a small ν, define $\tilde{u}=u-\nu$ and consider the new system with $V_{\nu}: x \mapsto \nu x$.
■ The second derivative of the $\mathrm{k}^{\text {th }}$ eigenvalue of $\Delta+\nu V$ with respect to ν at 0 is $C_{k} \pi^{k}$, and π is transcendental (Lindeman, 1882).

■ Use analyticity of the eigenvalues to show that for a dense set of $\nu,-\Delta+V_{\nu}$ has the desired properties.

Example 1: 1-D box (II)

■ Fix a small ν, define $\tilde{u}=u-\nu$ and consider the new system with $V_{\nu}: x \mapsto \nu x$.

- The second derivative of the $k^{t h}$ eigenvalue of $\Delta+\nu V$ with respect to ν at 0 is $C_{k} \pi^{k}$, and π is transcendental (Lindeman, 1882).
- Use analyticity of the eigenvalues to show that for a dense set of $\nu,-\Delta+V_{\nu}$ has the desired properties.
- apply the result for a good ν.

Example 2: Harmonic oscilator

■ $\Omega=\mathbf{R}, V: x \mapsto x^{2}, W: x \mapsto e^{\pi x}$

Example 2: Harmonic oscilator

■ $\Omega=\mathbf{R}, V: x \mapsto x^{2}, W: x \mapsto e^{\pi x}$
■ Use the same trick as for the 1-D box of potential:

Example 2: Harmonic oscilator

■ $\Omega=\mathbf{R}, V: x \mapsto x^{2}, W: x \mapsto e^{\pi x}$

- Use the same trick as for the 1-D box of potential:
- The first derivative of the $\mathrm{k}^{t h}$ eigenvalue is $C_{k} \pi^{3}+D_{k} e^{\pi k}$.

Example 2: Harmonic oscilator

■ $\Omega=\mathbf{R}, V: x \mapsto x^{2}, W: x \mapsto e^{\pi x}$

- Use the same trick as for the 1-D box of potential:
- The first derivative of the $k^{t h}$ eigenvalue is $C_{k} \pi^{3}+D_{k} e^{\pi k}$.

■ π and e^{π} are algebraically independent (Nesterenko, 1996)

Perspectives

If you know (how to do) something at the level of the group, you know (how to do) the same thing for the PDE.

- Quantitative results

Perspectives

If you know (how to do) something at the level of the group, you know (how to do) the same thing for the PDE.

- Quantitative results
- Genericity

Perspectives

If you know (how to do) something at the level of the group, you know (how to do) the same thing for the PDE.

- Quantitative results
- Genericity
- Weaken the hypothesis of non-resonance

Perspectives

If you know (how to do) something at the level of the group, you know (how to do) the same thing for the PDE.

- Quantitative results
- Genericity

■ Weaken the hypothesis of non-resonance
■ Numerical

Perspectives

If you know (how to do) something at the level of the group, you know (how to do) the same thing for the PDE.

- Quantitative results
- Genericity
- Weaken the hypothesis of non-resonance

■ Numerical

- Different models

