GeOMETRY OF THE SPACE OF DENSITY STATES

Jesús Clemente Gallardo

jcg@unizar.es

Contents

- Geometric Quantum Mechanics.
- The space of density states.
- A simple problem.

CONTENTS

- Geometric Quantum Mechanics.
- The space of density states.
- A simple problem.
"If I have seen further it is by standing on ye shoulders of Giants."
I. Newton, Letter to R. Hooke, February 5, 1676

CONTENTS

- Geometric Quantum Mechanics.
- The space of density states.
- A simple problem.
"If I have seen further it is by standing on ye shoulders of Giants."
I. Newton, Letter to R. Hooke, February 5, 1676

Collaboration with Giuseppe Marmo.
Results from: J. F. Cariñena, J. Grabowski, M. Kus, V. I. Manko, G. Sudarshan... Based on: Kibble, Ashtekar, Brody and Hughston, Cirelly and co, Benvegnu and co

2007, Control, constraints and quanta - p. 2/1

Geometric Quantum Mechanics

Usual Guantum Mechanics

$\psi \in \mathcal{H}$
$\operatorname{dim}_{\mathbb{C}} \mathcal{H}=n$
$\langle\cdot, \cdot\rangle$ Hermitian
$A: \mathcal{H} \rightarrow \mathcal{H}$
$A B$
$A B+B A$
$[A, B]$

Geometric GM
$\psi \in \mathcal{H}_{\mathbb{R}}$
$\operatorname{dim} \mathcal{H}_{\mathbb{R}}=2 n$
(g, ω, J) Kähler

$$
\left\{\begin{array}{l}
T_{A}:(\phi, \psi) \rightarrow(\phi, A \psi) \\
X_{A}: \psi \rightarrow(\psi, A \psi) \\
Y_{A}: \psi \rightarrow(\psi, J A \psi) \\
f_{A}(\psi)=\langle\psi, A \psi\rangle \quad e_{A}(\psi)=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}
\end{array}\right.
$$

$f_{A} \star f_{B}$
$f_{A B+B A}=G\left(d f_{A}, d f_{B}\right)$
$f_{[A, B]}=\left\{f_{A}, f_{B}\right\}$
$f_{A} f_{B}$

Schrödinger eq.
$A|\psi\rangle=\lambda|\psi\rangle$

Flow of Y_{H}
$d e_{A}(\psi)=0 \quad e_{A}(\psi)=\lambda$

CONT

In Geometric Quantum Mechanics observables belong to $i \mathfrak{u}(\mathcal{H})$. By using the Killing-Cartan form

$$
\langle A, B\rangle=\operatorname{Tr} A B \Rightarrow\langle A, \cdot\rangle \in \mathfrak{u}^{*}(\mathcal{H}) \Rightarrow \text { Poisson }
$$

This relation is one-to-one.

CONT

In Geometric Quantum Mechanics observables belong to $i \mathfrak{u}(\mathcal{H})$. By using the Killing-Cartan form

$$
\langle A, B\rangle=\operatorname{Tr} A B \Rightarrow\langle A, \cdot\rangle \in \mathfrak{u}^{*}(\mathcal{H}) \Rightarrow \text { Poisson }
$$

This relation is one-to-one.

Usual Quantum Mechanics Geometric GM

A, B
$A B+B A$
\hat{A}, \hat{B}
$[A, B]$
$A B$
Heisenberg eq.

CONT

In Geometric Quantum Mechanics observables belong to $i \mathfrak{u}(\mathcal{H})$. By using the Killing-Cartan form

$$
\langle A, B\rangle=\operatorname{Tr} A B \Rightarrow\langle A, \cdot\rangle \in \mathfrak{u}^{*}(\mathcal{H}) \Rightarrow \text { Poisson }
$$

This relation is one-to-one.

Usual Guantum Mechanics Geometric GM

A, B
$A B+B A$
$[A, B]$
$A B$
Heisenberg eq.
\hat{A}, \hat{B}
$R(d \hat{A}, d \hat{B})(\xi)=\xi(A B+B A)$
$\Lambda(d \hat{A}, s \hat{B})(\xi)=\xi(A B-B A)$
$\widehat{A B}(\xi)=\xi(A B)=\hat{A} \star \hat{B}$
$\dot{\hat{A}}=\frac{i}{\hbar}\{\hat{H}, \hat{A}\}$

On $\mathfrak{u}^{*}(\mathcal{H})$ we can consider thus a Jordan product, a Poisson product and a nonlocal product which translate the properties of the algebra of observables of our quantum system.

UNIFYING FRAMEWORKS

Consider the natural action $U(N) \times \mathcal{H} \rightarrow \mathcal{H}$ and the corresponding momentum mapping

$$
\mu: \mathcal{H} \rightarrow \mathfrak{u}^{*}(\mathcal{H}) \quad \mu(\psi)=|\psi\rangle\langle\psi|=\rho_{\psi}
$$

UNIFYING FRAMEWORKS

Consider the natural action $U(N) \times \mathcal{H} \rightarrow \mathcal{H}$ and the corresponding momentum mapping

$$
\mu: \mathcal{H} \rightarrow \mathfrak{u}^{*}(\mathcal{H}) \quad \mu(\psi)=|\psi\rangle\langle\psi|=\rho_{\psi}
$$

This object acts on an operator A as $\mu(\psi)(A)=\operatorname{Tr}\left(\rho_{\psi} A\right)=\langle A\rangle=f_{A}(\psi)$ Lemma:

$$
\mu_{*}\left(Y_{H}\right)=\{\hat{H}, \cdot\}
$$

UNIFYING FRAMEWORKS

Consider the natural action $U(N) \times \mathcal{H} \rightarrow \mathcal{H}$ and the corresponding momentum mapping

$$
\mu: \mathcal{H} \rightarrow \mathfrak{u}^{*}(\mathcal{H}) \quad \mu(\psi)=|\psi\rangle\langle\psi|=\rho_{\psi}
$$

This object acts on an operator A as $\mu(\psi)(A)=\operatorname{Tr}\left(\rho_{\psi} A\right)=\langle A\rangle=f_{A}(\psi)$

Lemma:

$$
\mu_{*}\left(Y_{H}\right)=\{\hat{H}, \cdot\}
$$

PROJECTING

If we consider the complex projective space $\pi: \mathcal{H}_{0} \rightarrow \mathcal{P H}$ everything works

$$
\tilde{\mu}: \mathcal{P H} \rightarrow \mathfrak{u}^{*}(\mathcal{H}) \quad \tilde{\mu}(\psi)=\frac{|\psi\rangle\langle\psi|}{\langle\psi, \psi\rangle}=\rho_{[\psi]}
$$

This object acts on an operator A as $\tilde{\mu}(\psi)(A)=\operatorname{Tr}\left(\rho_{[\psi]} A\right)=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}=e_{A}(\psi)$

UNIFYING FRAMEWORKS

Consider the natural action $U(N) \times \mathcal{H} \rightarrow \mathcal{H}$ and the corresponding momentum mapping

$$
\mu: \mathcal{H} \rightarrow \mathfrak{u}^{*}(\mathcal{H}) \quad \mu(\psi)=|\psi\rangle\langle\psi|=\rho_{\psi}
$$

This object acts on an operator A as $\mu(\psi)(A)=\operatorname{Tr}\left(\rho_{\psi} A\right)=\langle A\rangle=f_{A}(\psi)$

Lemma:

$$
\mu_{*}\left(Y_{H}\right)=\{\hat{H}, \cdot\}
$$

ProJecting

If we consider the complex projective space $\pi: \mathcal{H}_{0} \rightarrow \mathcal{P H}$ everything works

$$
\tilde{\mu}: \mathcal{P H} \rightarrow \mathfrak{u}^{*}(\mathcal{H}) \quad \tilde{\mu}(\psi)=\frac{|\psi\rangle\langle\psi|}{\langle\psi, \psi\rangle}=\rho_{[\psi]}
$$

This object acts on an operator A as $\tilde{\mu}(\psi)(A)=\operatorname{Tr}\left(\rho_{[\psi]} A\right)=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}=e_{A}(\psi)$
Lemma:

$$
\tilde{\mu}_{*}\left(\pi_{*}\left(Y_{H}\right)\right)=\{\hat{H}, \cdot\}
$$

THE SPACE OF DENSITY MATRICES

μ embeds the set of pure states on $\mathfrak{u}^{*}(\mathcal{H})$. We can consider a basis $\left\{\rho_{i}\right\}$ of those, satisfying

$$
\rho_{k}^{2}=\rho_{k} \quad \rho_{k}^{\dagger}=\rho_{k} \quad \operatorname{Tr} \rho_{k}=1
$$

THE SPACE OF DENSITY MATRICES

μ embeds the set of pure states on $\mathfrak{u}^{*}(\mathcal{H})$. We can consider a basis $\left\{\rho_{i}\right\}$ of those, satisfying

$$
\rho_{k}^{2}=\rho_{k} \quad \rho_{k}^{\dagger}=\rho_{k} \quad \operatorname{Tr} \rho_{k}=1
$$

We call density states to the set of convex combinations

$$
\mathcal{D}(\mathcal{H})=\left\{\rho=\sum_{k} p_{k} \rho_{k} \mid \sum_{k} p_{k}=1\right\}
$$

THE SPACE OF DENSITY MATRICES

μ embeds the set of pure states on $\mathfrak{u}^{*}(\mathcal{H})$. We can consider a basis $\left\{\rho_{i}\right\}$ of those, satisfying

$$
\rho_{k}^{2}=\rho_{k} \quad \rho_{k}^{\dagger}=\rho_{k} \quad \operatorname{Tr} \rho_{k}=1
$$

We call density states to the set of convex combinations

$$
\mathcal{D}(\mathcal{H})=\left\{\rho=\sum_{k} p_{k} \rho_{k} \mid \sum_{k} p_{k}=1\right\}
$$

Lemma $\mathcal{D}(\mathcal{H})$ inherits the geometric structure from $\mathfrak{u}^{*}(\mathcal{H})$:

- The Jordan structure $R_{\xi}\left(X_{A}\right)=\left(\xi,[\xi, A]_{+}\right)$
- The Poisson structure (which is degenerate) $J_{\xi}\left(X_{A}\right)=(\xi,[\xi, A])$
- A (generalized) complex structure $J^{3}=-J$

THE SPACE OF DENSITY MATRICES

μ embeds the set of pure states on $\mathfrak{u}^{*}(\mathcal{H})$. We can consider a basis $\left\{\rho_{i}\right\}$ of those, satisfying

$$
\rho_{k}^{2}=\rho_{k} \quad \rho_{k}^{\dagger}=\rho_{k} \quad \operatorname{Tr} \rho_{k}=1
$$

We call density states to the set of convex combinations

$$
\mathcal{D}(\mathcal{H})=\left\{\rho=\sum_{k} p_{k} \rho_{k} \mid \sum_{k} p_{k}=1\right\}
$$

Lemma $\mathcal{D}(\mathcal{H})$ inherits the geometric structure from $\mathfrak{u}^{*}(\mathcal{H})$:

- The Jordan structure $R_{\xi}\left(X_{A}\right)=\left(\xi,[\xi, A]_{+}\right)$
- The Poisson structure (which is degenerate) $J_{\xi}\left(X_{A}\right)=(\xi,[\xi, A])$
- A (generalized) complex structure $J^{3}=-J$

These objects define the corresponding distributions D_{Λ} and D_{R}. From them, we can define

$$
D_{0}=D_{\Lambda} \cap D_{R} \quad D_{1}=D_{\Lambda}+D_{R}
$$

CONT

THEOREM $\mathcal{D}(\mathcal{H})$ is a stratified manifold with respect to the $G L$-action
$(T, \rho) \rightarrow \frac{T \rho T^{\dagger}}{\operatorname{Tr}\left(T \rho T^{\dagger}\right)}:$

$$
\mathcal{D}(\mathcal{H})=\bigcup_{k} \mathcal{D}^{k}(\mathcal{H}) \quad \rho \in \mathcal{D}^{k}(\mathcal{H}) \Rightarrow \operatorname{rank} \rho=k
$$

CONT

THEOREM $\mathcal{D}(\mathcal{H})$ is a stratified manifold with respect to the $G L$-action
$(T, \rho) \rightarrow \frac{T \rho T^{\dagger}}{\operatorname{Tr}\left(T \rho T^{\dagger}\right)}:$

$$
\mathcal{D}(\mathcal{H})=\bigcup_{k} \mathcal{D}^{k}(\mathcal{H}) \quad \rho \in \mathcal{D}^{k}(\mathcal{H}) \Rightarrow \operatorname{rank} \rho=k
$$

ADVANTAGES

- The use of tools borrowed from Classical Mechanics
- Simplicity from the algebraic point of view
- Formulation of quantum control problems from a classical perspective.

A SIMPLE PROBLEM

Consider the case of a system of two qubits. The Hilbert space in this case is

$$
\mathcal{H}=\mathbb{C}^{4} \quad \mathcal{D}(\mathcal{H}) \subset \mathfrak{u}^{*}(4)
$$

A SIMPLE PROBLEM

Consider the case of a system of two qubits. The Hilbert space in this case is

$$
\mathcal{H}=\mathbb{C}^{4} \quad \mathcal{D}(\mathcal{H}) \subset \mathfrak{u}^{*}(4)
$$

We can consider a natural basis for $\mathfrak{u}(4)$ (called sometimes Fano basis)

$$
\zeta=\left\{\mathbb{I}_{4}, i \sigma_{i} \otimes \mathbb{I}_{2}, i \mathbb{I}_{2} \otimes \sigma_{i}, i \sigma_{i} \otimes \sigma_{j} \mid i, j=1,2,3\right\}
$$

where $\left\{\sigma_{i}\right\}_{i=1,2,3}$ represent the Pauli matrices.

A SIMPLE PROBLEM

Consider the case of a system of two qubits. The Hilbert space in this case is

$$
\mathcal{H}=\mathbb{C}^{4} \quad \mathcal{D}(\mathcal{H}) \subset \mathfrak{u}^{*}(4)
$$

We can consider a natural basis for $\mathfrak{u}(4)$ (called sometimes Fano basis)

$$
\zeta=\left\{\mathbb{I}_{4}, i \sigma_{i} \otimes \mathbb{I}_{2}, i \mathbb{I}_{2} \otimes \sigma_{i}, i \sigma_{i} \otimes \sigma_{j} \mid i, j=1,2,3\right\}
$$

where $\left\{\sigma_{i}\right\}_{i=1,2,3}$ represent the Pauli matrices.
A point $\rho \in \mathcal{D}\left(\mathbb{C}^{4}\right) \subset \mathfrak{u}^{*}(4)$ will be represented thus by a set $\left\{\lambda_{0}, m_{i}, n_{i}, r_{i j}\right\}_{i, j=1,2,3}$ of real numbers:

$$
\rho=i \lambda_{0} \mathbb{I}_{4}+i \sum_{i}\left(m_{i} \sigma_{i} \otimes \mathbb{I}_{2}+n_{i} \mathbb{I}_{2} \otimes \sigma_{i}\right)+i \sum_{i j}\left(m_{i} n_{j}+r_{i j}\right) \sigma_{i} \otimes \sigma_{j}
$$

or also

$$
\rho=i \sum_{k} \lambda_{k} \zeta_{k}
$$

A SIMPLE PROBLEM

Consider the case of a system of two qubits. The Hilbert space in this case is

$$
\mathcal{H}=\mathbb{C}^{4} \quad \mathcal{D}(\mathcal{H}) \subset \mathfrak{u}^{*}(4)
$$

We can consider a natural basis for $\mathfrak{u}(4)$ (called sometimes Fano basis)

$$
\zeta=\left\{\mathbb{I}_{4}, i \sigma_{i} \otimes \mathbb{I}_{2}, i \mathbb{I}_{2} \otimes \sigma_{i}, i \sigma_{i} \otimes \sigma_{j} \mid i, j=1,2,3\right\}
$$

where $\left\{\sigma_{i}\right\}_{i=1,2,3}$ represent the Pauli matrices.
A point $\rho \in \mathcal{D}\left(\mathbb{C}^{4}\right) \subset \mathfrak{u}^{*}(4)$ will be represented thus by a set $\left\{\lambda_{0}, m_{i}, n_{i}, r_{i j}\right\}_{i, j=1,2,3}$ of real numbers:

$$
\rho=i \lambda_{0} \mathbb{I}_{4}+i \sum_{i}\left(m_{i} \sigma_{i} \otimes \mathbb{I}_{2}+n_{i} \mathbb{I}_{2} \otimes \sigma_{i}\right)+i \sum_{i j}\left(m_{i} n_{j}+r_{i j}\right) \sigma_{i} \otimes \sigma_{j}
$$

or also

$$
\rho=i \sum_{k} \lambda_{k} \zeta_{k}
$$

On this set we can consider the geometrical structures we defined above: the Jordan and the Poisson tensors and write them in these coordinates (the dual ones, on $\mathfrak{u}^{*}(4)$)

CONT

Excluding the y_{0} coordinate which trivially is a Casimir of the structure we obtain

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}	y_{10}	y_{11}	y_{12}	y_{13}	y_{14}	y_{15}
y_{1}	0	y_{3}	$-y_{2}$	0	0	0	0	0	0	y_{13}	y_{14}	y_{15}	y_{10}	y_{11}	y_{12}
y_{2}	$-y_{3}$	0	y_{1}	0	0	0	y_{13}	y_{14}	y_{15}	0	0	0	y_{7}	y_{8}	y_{9}
y_{3}	y_{2}	$-y_{1}$	0	0	0	0	y_{10}	y_{11}	y_{12}	$-y_{7}$	$-y_{8}$	$-y_{9}$	0	0	0
y_{4}	0	0	0	0	y_{6}	$-y_{5}$	0	y_{9}	y_{8}	0	y_{12}	$-y_{11}$	0	y_{15}	$-y_{14}$
y_{5}	0	0	0	$-y_{6}$	0	y_{4}	$-y_{9}$	0	y_{7}	$-y_{12}$	0	y_{10}	$-y_{15}$	0	y_{13}
y_{6}	0	0	0	y_{5}	$-y_{4}$	0	y_{8}	$-y_{7}$	0	y_{11}	$-y_{10}$	0	y_{14}	$-y_{13}$	0
y_{7}	0	y_{13}	$-y_{10}$	0	y_{9}	$-y_{8}$	0	y_{6}	$-y_{5}$	y_{3}	0	0	$-y_{2}$	0	0
y_{8}	0	y_{14}	$-y_{11}$	$-y_{9}$	0	y_{7}	$-y_{6}$	0	y_{4}	0	y_{9}	0	0	$-y_{2}$	0
y_{9}	0	y_{15}	$-y_{12}$	y_{8}	$-y_{7}$	0	y_{5}	$-y_{4}$	0	0	0	y_{9}	0	0	$-y_{2}$
y_{10}	$-y_{13}$	0	y_{7}	0	y_{12}	$-y_{11}$	$-y_{9}$	0	0	0	y_{6}	$-y_{5}$	y_{1}	0	0
y_{11}	$-y_{14}$	0	y_{8}	$-y_{12}$	0	y_{10}	0	$-y_{9}$	0	$-y_{6}$	0	y_{4}	0	y_{1}	0
y_{12}	$-y_{15}$	0	y_{9}	y_{11}	$-y_{10}$	0	0	0	y_{3}	y_{5}	$-y_{4}$	0	0	0	y_{1}
y_{13}	y_{10}	$-y_{7}$	0	0	y_{15}	$-y_{14}$	y_{2}	0	0	$-y_{1}$	0	0	0	y_{6}	$-y_{5}$
y_{14}	y_{11}	$-y_{8}$	0	$-y_{15}$	0	y_{13}	0	y_{2}	0	0	$-y_{1}$	0	$-y_{6}$	0	y_{4}
y_{15}	y_{12}	$-y_{9}$	0	y_{14}	$-y_{13}$	0	0	0	y_{2}	0	0	$-y_{1}$	y_{5}	$-y_{4}$	0

EnTROPY AND CONCURRENCE

Consider two functions defined on our set of density matrices $\mathcal{D}(\mathcal{H})$:

- Von Neumann entropy $S(\rho)=\operatorname{Tr} \rho \log \rho$
- concurrence $C(\rho)=\max \left(0,2 \lambda_{\max }(\hat{\rho})-\operatorname{Tr}(\hat{\rho})\right.$, where $\hat{\rho}$ is defined as

$$
\hat{\rho}=\sqrt{\rho} \sqrt{\rho\left(\sigma_{2} \otimes \sigma_{2}\right) \rho^{*}\left(\sigma_{2} \otimes \sigma_{2}\right)} \sqrt{\rho}
$$

ENTROPY AND CONCURRENCE

Consider two functions defined on our set of density matrices $\mathcal{D}(\mathcal{H})$:

- Von Neumann entropy $S(\rho)=\operatorname{Tr} \rho \log \rho$
- concurrence $C(\rho)=\max \left(0,2 \lambda_{\max }(\hat{\rho})-\operatorname{Tr}(\hat{\rho})\right.$, where $\hat{\rho}$ is defined as

$$
\hat{\rho}=\sqrt{\rho} \sqrt{\rho\left(\sigma_{2} \otimes \sigma_{2}\right) \rho^{*}\left(\sigma_{2} \otimes \sigma_{2}\right)} \sqrt{\rho} .
$$

From the geometrical point of view they are just functions

$$
S: \mathcal{D}(\mathcal{H}) \rightarrow \mathbb{R} \quad C: \mathcal{D}(\mathcal{H}) \rightarrow \mathbb{R}
$$

thus we can consider the problem of their independence.

ENTROPY AND CONCURRENCE

Consider two functions defined on our set of density matrices $\mathcal{D}(\mathcal{H})$:

- Von Neumann entropy $S(\rho)=\operatorname{Tr} \rho \log \rho$
- concurrence $C(\rho)=\max \left(0,2 \lambda_{\max }(\hat{\rho})-\operatorname{Tr}(\hat{\rho})\right.$, where $\hat{\rho}$ is defined as

$$
\hat{\rho}=\sqrt{\rho} \sqrt{\rho\left(\sigma_{2} \otimes \sigma_{2}\right) \rho^{*}\left(\sigma_{2} \otimes \sigma_{2}\right)} \sqrt{\rho} .
$$

From the geometrical point of view they are just functions

$$
S: \mathcal{D}(\mathcal{H}) \rightarrow \mathbb{R} \quad C: \mathcal{D}(\mathcal{H}) \rightarrow \mathbb{R}
$$

thus we can consider the problem of their independence.
DEFINITION: Two functions $f_{1}, f_{2} \in \mathcal{F}(\mathcal{D}(\mathcal{H}))$ are said to be independent at a point $p \in M$ iff

$$
\left(d f_{1} \wedge d f_{2}\right)(p) \neq 0 \Leftrightarrow\left(\frac{\partial f_{1}}{\partial \lambda_{i}} \frac{\partial f_{2}}{\partial \lambda_{j}}-\frac{\partial f_{1}}{\partial \lambda_{j}} \frac{\partial f_{2}}{\partial \lambda_{i}}\right)(p) \neq 0 \quad \forall i, j
$$

This is the problem we would like to study now.

CONT

It is quite difficult to study the problem in full generality, because of the dimension of $\mathfrak{u}^{*}(4)$.

CONT

It is quite difficult to study the problem in full generality, because of the dimension of $\mathfrak{u}^{*}(4)$. We are going to consider a simpler case by restricting the set of states to those of the form:

$$
\mathcal{S}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & a & \frac{1}{2} c e^{i \phi} & 0 \\
0 & \frac{1}{2} c e^{-i \phi} & b & 0 \\
0 & 0 & 0 & 1-a-b
\end{array}\right) ; 0 \leq a+b \leq 1 \quad 0 \leq c \leq 1 \quad 4 a b \geq c^{2}\right\}
$$

CONT

It is quite difficult to study the problem in full generality, because of the dimension of $\mathfrak{u}^{*}(4)$. We are going to consider a simpler case by restricting the set of states to those of the form:

$$
\mathcal{S}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & a & \frac{1}{2} c e^{i \phi} & 0 \\
0 & \frac{1}{2} c e^{-i \phi} & b & 0 \\
0 & 0 & 0 & 1-a-b
\end{array}\right) ; 0 \leq a+b \leq 1 \quad 0 \leq c \leq 1 \quad 4 a b \geq c^{2}\right\}
$$

\mathcal{S} is clearly a 4-dimensional submanifold of $\mathcal{D}(\mathcal{H})$. We can take an adapted basis for S, considering the matrices

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

CONT

Let us consider now the restriction of S and C to \mathcal{S} : take $\rho \in \mathcal{S}$ and consider the coordinate system above. Then

CONT

Let us consider now the restriction of S and C to \mathcal{S} : take $\rho \in \mathcal{S}$ and consider the coordinate system above. Then

$$
\begin{aligned}
& 2 S(\rho)=-2(-1+a+b) \log [1-a-b]+ \\
&\left(a+b-\sqrt{(a-b)^{2}+c^{2}}\right) \log \left[\frac{1}{2}\left(a+b-\sqrt{(a-b)^{2}+c^{2}}\right)\right]+ \\
&\left(a+b+\sqrt{(a-b)^{2}+c^{2}}\right) \log \left[\frac{1}{2}\left(a+b+\sqrt{(a-b)^{2}+c^{2}}\right)\right] . \\
& C\left(\rho_{t}\right)=c
\end{aligned}
$$

CONT

Let us consider now the restriction of S and C to \mathcal{S} : take $\rho \in \mathcal{S}$ and consider the coordinate system above. Then

$$
\begin{aligned}
& 2 S(\rho)=-2(-1+a+b) \log [1-a-b]+ \\
&\left(a+b-\sqrt{(a-b)^{2}+c^{2}}\right) \log \left[\frac{1}{2}\left(a+b-\sqrt{(a-b)^{2}+c^{2}}\right)\right]+ \\
&\left(a+b+\sqrt{(a-b)^{2}+c^{2}}\right) \log \left[\frac{1}{2}\left(a+b+\sqrt{(a-b)^{2}+c^{2}}\right)\right] . \\
& C\left(\rho_{t}\right)=c
\end{aligned}
$$

LEMMA

The concurrence and the von Neumann entropy on \mathcal{S} are functionally independent everywhere but on a submanifold \mathcal{I} of dimension 2 .

PRoof If we compute the expression $(d S \wedge d C)(\rho)$ for $\rho \in \mathcal{S}$ we obtain

$$
\begin{aligned}
d S(\rho) & =\frac{\partial S}{\partial a} d a+\frac{\partial S}{\partial b} d b+\frac{\partial S}{\partial c} d c \\
d C(\rho) & =\frac{\partial C}{\partial c} d c
\end{aligned}
$$

Thus

$$
(d S \wedge d C)(\rho)=0 \Leftrightarrow \frac{\partial S(\rho)}{\partial a}=0=\frac{\partial S(\rho)}{\partial b}
$$

Thus

$$
(d S \wedge d C)(\rho)=0 \Leftrightarrow \frac{\partial S(\rho)}{\partial a}=0=\frac{\partial S(\rho)}{\partial b}
$$

And these conditions become

$$
2 \log [1-a-b]+\log \left[a b-\frac{c^{2}}{4}\right]=0 \quad \log \left[4 a b-c^{2}\right]-2 \log \left[a+b+\sqrt{(a-b)^{2}+c^{2}}\right]=0
$$

Thus

$$
(d S \wedge d C)(\rho)=0 \Leftrightarrow \frac{\partial S(\rho)}{\partial a}=0=\frac{\partial S(\rho)}{\partial b}
$$

And these conditions become
$2 \log [1-a-b]+\log \left[a b-\frac{c^{2}}{4}\right]=0 \quad \log \left[4 a b-c^{2}\right]-2 \log \left[a+b+\sqrt{(a-b)^{2}+c^{2}}\right]=0$
These equations have a solution on

$$
\frac{1}{3}<a<\frac{1}{2} ; \quad b=a ; \quad c=\sqrt{-4+8 a-4 a^{2}+8 b-4 a b-4 b^{2}}
$$

If we represent the condition for c as a function of a and b we verify that it is well defined for all values of a and b (we represent the function $c=\sqrt{-4+8 a-4 a^{2}+8 b-4 a b-4 b^{2}}$ and the function $c=\sqrt{-4+16 a-12 a^{2}}$, which corresponds to the evaluation on the submanifold $a=b$).

Thus there is a submanifold \mathcal{I} (cylinder-like) on \mathcal{S} where the two functions are dependent. Everywhere else, they are independent functions.

Thus there is a submanifold \mathcal{I} (cylinder-like) on \mathcal{S} where the two functions are dependent. Everywhere else, they are independent functions.

LEMMA The two functions $C(\rho)$ and $S(\rho)$ Poisson-commute on \mathcal{S}
Proof: Direct computation.

FUTURE WORK

- Study the relation of this notion of independence with the action of local unitary transformations
- The behavior with respect to the Poisson/Jordan algebra structures.
- Simple test for pure states.

