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GEOMETRIC QUANTUM MECHANICS

Usual Quantum Mechanics Geometric QM

ψ ∈ H ψ ∈ HR

dimCH = n dimHR = 2n

〈·, ·〉 Hermitian (g, ω, J) Kähler

A : H → H

8
>>>>><
>>>>>:

TA : (φ, ψ) → (φ,Aψ)

XA : ψ → (ψ,Aψ)

YA : ψ → (ψ, JAψ)

fA(ψ) = 〈ψ,Aψ〉 eA(ψ) =
〈ψ,Aψ〉
〈ψ,ψ〉

AB fA ⋆ fB

AB +BA fAB+BA = G(dfA, dfB)

[A,B] f[A,B] = {fA, fB}
fAfB

Schrödinger eq. Flow of YH

A|ψ〉 = λ|ψ〉 deA(ψ) = 0 eA(ψ) = λ
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CONT

In Geometric Quantum Mechanics observables belong to iu(H). By using the
Killing-Cartan form

〈A,B〉 = TrAB ⇒ 〈A, ·〉 ∈ u
∗(H) ⇒ Poisson

This relation is one-to-one.
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A,B Â, B̂

AB +BA R(dÂ, dB̂)(ξ) = ξ(AB +BA)

[A,B] Λ(dÂ, sB̂)(ξ) = ξ(AB − BA)

AB dAB(ξ) = ξ(AB) = Â ⋆ B̂

Heisenberg eq. ˙̂
A = i

~
{Ĥ, Â}

On u
∗(H) we can consider thus a Jordan product, a Poisson product and a nonlocal

product which translate the properties of the algebra of observables of our quantum
system.
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UNIFYING FRAMEWORKS

Consider the natural action U(N)×H → H and the corresponding momentum mapping

µ : H → u
∗(H) µ(ψ) = |ψ〉〈ψ| = ρψ
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THE SPACE OF DENSITY MATRICES

µ embeds the set of pure states on u
∗(H). We can consider a basis {ρi} of those,

satisfying

ρ2k = ρk ρ
†
k

= ρk Trρk = 1

2007, Control, constraints and quanta – p. 6/15



THE SPACE OF DENSITY MATRICES

µ embeds the set of pure states on u
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satisfying

ρ2k = ρk ρ
†
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= ρk Trρk = 1

We call density states to the set of convex combinations

D(H) =

(
ρ =

X

k
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X

k
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THE SPACE OF DENSITY MATRICES

µ embeds the set of pure states on u
∗(H). We can consider a basis {ρi} of those,

satisfying

ρ2k = ρk ρ
†
k

= ρk Trρk = 1

We call density states to the set of convex combinations

D(H) =

(
ρ =

X

k

pkρk|
X

k

pk = 1

)

LEMMA D(H) inherits the geometric structure from u
∗(H):

The Jordan structure Rξ(XA) = (ξ, [ξ, A]+)

The Poisson structure (which is degenerate) Jξ(XA) = (ξ, [ξ, A])

A (generalized) complex structure J3 = −J
These objects define the corresponding distributions DΛ and DR. From them, we can
define

D0 = DΛ ∩DR D1 = DΛ +DR
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CONT

THEOREM D(H) is a stratified manifold with respect to the GL–action

(T, ρ) → TρT †

Tr(TρT †)
:

D(H) =
[

k

Dk(H) ρ ∈ Dk(H) ⇒ rankρ = k
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CONT

THEOREM D(H) is a stratified manifold with respect to the GL–action

(T, ρ) → TρT †

Tr(TρT †)
:

D(H) =
[

k

Dk(H) ρ ∈ Dk(H) ⇒ rankρ = k

ADVANTAGES

The use of tools borrowed from Classical Mechanics

Simplicity from the algebraic point of view

Formulation of quantum control problems from a classical perspective.
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A SIMPLE PROBLEM

Consider the case of a system of two qubits. The Hilbert space in this case is

H = C
4 D(H) ⊂ u

∗(4)
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4 D(H) ⊂ u

∗(4)

We can consider a natural basis for u(4) (called sometimes Fano basis)

ζ = {I4, iσi ⊗ I2, iI2 ⊗ σi, iσi ⊗ σj |i, j = 1, 2, 3}

where {σi}i=1,2,3 represent the Pauli matrices.
A point ρ ∈ D(C4) ⊂ u

∗(4) will be represented thus by a set {λ0,mi, ni, rij}i,j=1,2,3 of
real numbers:

ρ = iλ0I4 + i
X

i

(miσi ⊗ I2 + niI2 ⊗ σi) + i
X

ij

(minj + rij)σi ⊗ σj

or also

ρ = i
X

k

λkζk
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Consider the case of a system of two qubits. The Hilbert space in this case is

H = C
4 D(H) ⊂ u

∗(4)

We can consider a natural basis for u(4) (called sometimes Fano basis)

ζ = {I4, iσi ⊗ I2, iI2 ⊗ σi, iσi ⊗ σj |i, j = 1, 2, 3}

where {σi}i=1,2,3 represent the Pauli matrices.
A point ρ ∈ D(C4) ⊂ u

∗(4) will be represented thus by a set {λ0,mi, ni, rij}i,j=1,2,3 of
real numbers:

ρ = iλ0I4 + i
X

i

(miσi ⊗ I2 + niI2 ⊗ σi) + i
X

ij

(minj + rij)σi ⊗ σj

or also

ρ = i
X

k

λkζk

On this set we can consider the geometrical structures we defined above: the Jordan
and the Poisson tensors and write them in these coordinates (the dual ones, on u

∗(4))
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CONT

Excluding the y0 coordinate which trivially is a Casimir of the structure we obtain
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ENTROPY AND CONCURRENCE

Consider two functions defined on our set of density matrices D(H):

Von Neumann entropy S(ρ) = Trρ log ρ

concurrence C(ρ) = max(0, 2λmax(ρ̂) − Tr(ρ̂), where ρ̂ is defined as
ρ̂ =

√
ρ

p
ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)

√
ρ.
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Consider two functions defined on our set of density matrices D(H):

Von Neumann entropy S(ρ) = Trρ log ρ

concurrence C(ρ) = max(0, 2λmax(ρ̂) − Tr(ρ̂), where ρ̂ is defined as
ρ̂ =

√
ρ

p
ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)

√
ρ.

From the geometrical point of view they are just functions

S : D(H) → R C : D(H) → R,

thus we can consider the problem of their independence.

DEFINITION : Two functions f1, f2 ∈ F(D(H)) are said to be independent at a point
p ∈M iff

(df1 ∧ df2)(p) 6= 0 ⇔
„
∂f1

∂λi

∂f2

∂λj
− ∂f1

∂λj

∂f2

∂λi

«
(p) 6= 0 ∀i, j

This is the problem we would like to study now.
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CONT

It is quite difficult to study the problem in full generality, because of the dimension of
u
∗(4).
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It is quite difficult to study the problem in full generality, because of the dimension of
u
∗(4). We are going to consider a simpler case by restricting the set of states to those

of the form:

S =

8
>>>>><
>>>>>:

0
BBBBB@

0 0 0 0

0 a 1
2
ceiφ 0

0 1
2
ce−iφ b 0

0 0 0 1 − a− b

1
CCCCCA

; 0 ≤ a+ b ≤ 1 0 ≤ c ≤ 1 4ab ≥ c2

9
>>>>>=
>>>>>;
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CONT

It is quite difficult to study the problem in full generality, because of the dimension of
u
∗(4). We are going to consider a simpler case by restricting the set of states to those

of the form:

S =

8
>>>>><
>>>>>:

0
BBBBB@

0 0 0 0

0 a 1
2
ceiφ 0

0 1
2
ce−iφ b 0

0 0 0 1 − a− b

1
CCCCCA

; 0 ≤ a+ b ≤ 1 0 ≤ c ≤ 1 4ab ≥ c2

9
>>>>>=
>>>>>;

S is clearly a 4–dimensional submanifold of D(H). We can take an adapted basis for S,
considering the matrices

0
BBBBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

1
CCCCCA
,

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

1
CCCCCA
,

0
BBBBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCCCA
,

0
BBBBB@

0 0 0 0

0 0 i 0

0 −i 0 0

0 0 0 0

1
CCCCCA
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CONT

Let us consider now the restriction of S and C to S: take ρ ∈ S and consider the
coordinate system above. Then
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CONT

Let us consider now the restriction of S and C to S: take ρ ∈ S and consider the
coordinate system above. Then

2S(ρ) = − 2(−1 + a+ b) log[1 − a− b]+
„
a+ b−

q
(a− b)2 + c2

«
log

»
1

2

„
a+ b−

q
(a− b)2 + c2

«–
+

„
a+ b+

q
(a− b)2 + c2

«
log

»
1

2

„
a+ b+

q
(a− b)2 + c2

«–
.

C(ρt) = c

2007, Control, constraints and quanta – p. 12/15



CONT

Let us consider now the restriction of S and C to S: take ρ ∈ S and consider the
coordinate system above. Then

2S(ρ) = − 2(−1 + a+ b) log[1 − a− b]+
„
a+ b−

q
(a− b)2 + c2

«
log

»
1

2

„
a+ b−

q
(a− b)2 + c2

«–
+

„
a+ b+

q
(a− b)2 + c2

«
log

»
1

2

„
a+ b+

q
(a− b)2 + c2

«–
.

C(ρt) = c

LEMMA

The concurrence and the von Neumann entropy on S are functionally independent
everywhere but on a submanifold I of dimension 2.

PROOF If we compute the expression (dS ∧ dC)(ρ) for ρ ∈ S we obtain

dS(ρ) =
∂S

∂a
da+

∂S

∂b
db+

∂S

∂c
dc

dC(ρ) =
∂C

∂c
dc
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Thus

(dS ∧ dC)(ρ) = 0 ⇔ ∂S(ρ)

∂a
= 0 =

∂S(ρ)

∂b
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Thus

(dS ∧ dC)(ρ) = 0 ⇔ ∂S(ρ)

∂a
= 0 =

∂S(ρ)

∂b

And these conditions become

2Log[1−a−b]+Log
»
ab− c2

4

–
= 0 Log

ˆ
4ab− c2

˜
−2Log

»
a+ b+

q
(a− b)2 + c2

–
= 0
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Thus

(dS ∧ dC)(ρ) = 0 ⇔ ∂S(ρ)

∂a
= 0 =

∂S(ρ)

∂b

And these conditions become

2Log[1−a−b]+Log
»
ab− c2

4

–
= 0 Log

ˆ
4ab− c2

˜
−2Log

»
a+ b+

q
(a− b)2 + c2

–
= 0

These equations have a solution on

1

3
< a <

1

2
; b = a; c =

p
−4 + 8a− 4a2 + 8b− 4ab− 4b2

If we represent the condition for c as a function of a and b we verify that it is well defined
for all values of a and b (we represent the function
c =

√
−4 + 8a− 4a2 + 8b− 4ab− 4b2 and the function c =

√
−4 + 16a− 12a2, which

corresponds to the evaluation on the submanifold a = b).
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Thus there is a submanifold I (cylinder-like) on S where the two functions are
dependent. Everywhere else, they are independent functions.
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0.0

0.5

1.0

Thus there is a submanifold I (cylinder-like) on S where the two functions are
dependent. Everywhere else, they are independent functions.

LEMMA The two functions C(ρ) and S(ρ) Poisson-commute on S
PROOF: Direct computation.
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FUTURE WORK

Study the relation of this notion of independence with the action of local unitary
transformations

The behavior with respect to the Poisson/Jordan algebra structures.

Simple test for pure states.

2007, Control, constraints and quanta – p. 15/15


	Contents
	Contents
	Contents

	Geometric Quantum Mechanics
	cont
	cont
	cont

	Unifying frameworks
	Unifying frameworks
	Unifying frameworks
	Unifying frameworks

	The space of density matrices
	The space of density matrices
	The space of density matrices
	The space of density matrices

	cont
	cont

	A simple problem
	A simple problem
	A simple problem
	A simple problem

	cont
	Entropy and concurrence
	Entropy and concurrence
	Entropy and concurrence

	cont
	cont
	cont

	cont
	cont
	cont

	Future work

