
Approximants of generalized minimizers and degree of
singularity of noncoercive optimal control problems

Manuel Guerra∗ and Andrey Sarychev∗∗

∗CEOC and ISEG, TULisbon (Portugal)

∗∗University of Florence (Italy)

CCQ Bedlewo 2007

Guerra and Sarychev ()Approximants of generalized minimizers CCQ Bedlewo 2007 1 / 29



Motivation: coercive optimization problem

Theorem

Consider an Hilbert space H and a functional J : H 7→ R such that:

(1) ∃C1 ∈ R, C2 > 0, J(u) ≥ C1 + C2 ‖u‖2 , ∀u ∈ H;

(2) J is weakly lower semicontinuous.

J has a minimizer in H.
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Motivation: coercive optimization problem

Theorem

Consider an Hilbert space H and a functional J : H 7→ R such that:

(1) ∃C1 ∈ R, C2 > 0, J(u) ≥ C1 + C2 ‖u‖2 , ∀u ∈ H;

(2) J is weakly lower semicontinuous.

J has a minimizer in H.

Optimal control problem

J(u) =
∫ T

0
ℓ(x(t), u(t)) dt → min

ẋ(t) = f (x(t), u(t)), u ∈ U
x(0) = x0, x(T ) = xT
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Optimal control problem

JT (u(·)) =
∫ T

0
x(t)′Px(t)dt → min,

ẋ = f (x) + G (x)u, x(0) = x0, x(T ) = xT .

T ∈]0, +∞[,

P ∈ R
n×n symmetric definite positive,

f smooth vector field,

G = (g1, g2, ..., gk) array of smooth vector fields.
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Optimal control problem

JT (u(·)) =
∫ T

0
x(t)′Px(t)dt → min,

ẋ = f (x) + G (x)u, x(0) = x0, x(T ) = xT .

T ∈]0, +∞[,

P ∈ R
n×n symmetric definite positive,

f smooth vector field,

G = (g1, g2, ..., gk) array of smooth vector fields.

Due to lack of coercivity, ”classical” (L∞) minimizers do not, in
general, exist.
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Minimizing sequences

Generalized solutions = “limits” of minimizing sequences
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Generalized controls typically contain impulses or more complex
singularities.
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Minimizing sequences

Generalized solutions = “limits” of minimizing sequences

Generalized controls typically contain impulses or more complex
singularities.

Quasioptimal controls exhibit high-gain and/or highly-oscillatory
behavior.
(Quasioptimal steering of the system requires “large” controls)
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Minimizing sequences

Generalized solutions = “limits” of minimizing sequences

Generalized controls typically contain impulses or more complex
singularities.

Quasioptimal controls exhibit high-gain and/or highly-oscillatory
behavior.
(Quasioptimal steering of the system requires “large” controls)

Questions:

What is the generalized solution for a given problem?

How “large” must be a control in order to ε−approximate the optimal
solution?
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Minimizing sequences

Remark

The connection between the commutativity/noncommutativity of inputs
and generalized minimizers is an established fact.

See e.g.: Bressan (1987), Orlov (1988), Sarychev (1991), Bressan &
Rampazzo(1994).
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Minimizing sequences

Remark

The connection between the commutativity/noncommutativity of inputs
and generalized minimizers is an established fact.

See e.g.: Bressan (1987), Orlov (1988), Sarychev (1991), Bressan &
Rampazzo(1994).

Definition

µ = lim sup
ε→0+

inf
{

ln ‖u‖L2
: JT (u) ≤ inf JT + ε, |xu(T ) − xT | ≤ ε

}

ln 1
ε

.
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The singular linear-quadratic case

JT (u) =
∫ T

0
x ′
uPxu + 2u′Qxu + u′Ru dτ → min,

ẋ = Ax + Bu, x(0) = x0, x(T ) = xT .

R ∈ R
k×k symmetric nonnegative, ker(R) 6= {0}.
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The singular linear-quadratic case

JT (u) =
∫ T

0
x ′
uPxu + 2u′Qxu + u′Ru dτ → min,

ẋ = Ax + Bu, x(0) = x0, x(T ) = xT .

R ∈ R
k×k symmetric nonnegative, ker(R) 6= {0}.

Theorem (Jurdjevic, 1997)

The generalized optimal trajectory consists of:

An initial ”jump”, x(0+) − x0 ∈ J ;

An analytical arc, x(t), t ∈]0, T [;

A final ”jump”, xT − x(T−) ∈ J .

J : space of jump directions.
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The singular linear-quadratic case

Theorem (Guerra, 2000)

If inf JT > −∞ for some boundary conditions and some T ∈]0, +∞[ then
there exists an integer r ≤ n such that:

the map u 7→ JT (u) admits one unique continuous extension into a
certain subspace U ⊂ H−r [0, T ];

If inf JT > −∞ then the problem admits a minimizer û ∈ U .
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The singular linear-quadratic case

Theorem (Guerra, 2000)

If inf JT > −∞ for some boundary conditions and some T ∈]0, +∞[ then
there exists an integer r ≤ n such that:

the map u 7→ JT (u) admits one unique continuous extension into a
certain subspace U ⊂ H−r [0, T ];

If inf JT > −∞ then the problem admits a minimizer û ∈ U .

Proposition

For generic boundary conditions, the degree of singularity is µ = r − 1
2 .
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The singular linear-quadratic case

Proposition

The possible values of µ are:

−∞, 0,
i + 1/2

2(j − i) − 1
, 0 ≤ i < j ≤ r . (1)

The numbers (1) correspond to a stratification of the space of boundary
conditions R

2n. Lower-dimensional strata correspond to smaller values of
µ.
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The singular linear-quadratic case

Proposition

The possible values of µ are:

−∞, 0,
i + 1/2

2(j − i) − 1
, 0 ≤ i < j ≤ r . (1)

The numbers (1) correspond to a stratification of the space of boundary
conditions R

2n. Lower-dimensional strata correspond to smaller values of
µ.

i = order of Lie brackets between Ax and B;

j = index of Sobolev space H−j .
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The singular linear-quadratic case

Proposition

The possible values of µ are:

−∞, 0,
i + 1/2

2(j − i) − 1
, 0 ≤ i < j ≤ r . (1)

The numbers (1) correspond to a stratification of the space of boundary
conditions R

2n. Lower-dimensional strata correspond to smaller values of
µ.

i = order of Lie brackets between Ax and B;

j = index of Sobolev space H−j .

Remark

If J(u) =
∫ T

0
x ′Px dt, P > 0, then r = 1 and (1) reduces to

{

−∞, 0, 1
2

}

.
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The driftless case

JT (u) =
∫ T

0
x(t)′Px(t)dt → min, P > 0,

ẋ =
r

∑
j=1

gjuj , x(0) = x0, x(T ) = xT , (2)
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The driftless case

JT (u) =
∫ T

0
x(t)′Px(t)dt → min, P > 0,

ẋ =
r

∑
j=1

gjuj , x(0) = x0, x(T ) = xT , (2)

Theorem

Let Ax0 be the orbit of (2) and

α = inf{x ′Px | x ∈ Ax0} (α ≥ 0). (3)

Provided xT ∈ Ax0 :

i) inf JT = αT;

ii) µ ≥ 1
2 unless x ′

0Px0 = x ′
TPxT = α;

iii) if the infimum (3) is attained then µ ≤ 1
2 .
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Sketch of the proof

(Suppose {g1, . . . , g r} has complete Lie rank)
inf JT = 0, the generalized optimal trajectory consists of three ’pieces’:

an initial ’jump’ from x(0) = x0 to x(0+) = 0;

a constant piece x(t) ≡ 0, t ∈]0, T [;

a final ’jump’ from x(T−) = 0 to the end point x(T ) = xT .
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Sketch of the proof

(Suppose {g1, . . . , g r} has complete Lie rank)
inf JT = 0, the generalized optimal trajectory consists of three ’pieces’:

an initial ’jump’ from x(0) = x0 to x(0+) = 0;

a constant piece x(t) ≡ 0, t ∈]0, T [;

a final ’jump’ from x(T−) = 0 to the end point x(T ) = xT .

The jumps can be approximated by describing reference (fixed) trajectories
in arbitrarily small intervals (length= ε) of time. Then

JT (uε) = O(ε), ‖uε‖L2[0,T ] = O

(

1√
ε

)

as ε → 0.
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Sketch of the proof

(Suppose {g1, . . . , g r} has complete Lie rank)
inf JT = 0, the generalized optimal trajectory consists of three ’pieces’:

an initial ’jump’ from x(0) = x0 to x(0+) = 0;

a constant piece x(t) ≡ 0, t ∈]0, T [;

a final ’jump’ from x(T−) = 0 to the end point x(T ) = xT .

The jumps can be approximated by describing reference (fixed) trajectories
in arbitrarily small intervals (length= ε) of time. Then

JT (uε) = O(ε), ‖uε‖L2[0,T ] = O

(

1√
ε

)

as ε → 0.

In order to go from x0 to the set A =
{

x ∈ R
n : x ′Px ≤ 1

2x ′
0Px0

}

in time
t ≤ ε the control must satisfy

‖uε‖L2[0,T ] ≥
d (x0, A)

max
1≤i≤k,|x |≤|x0|

|gi (x)|
1√

ε
.
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Control-affine systems: commuting inputs

JT (u) =
∫ T

0
x(t)′Px(t)dt → min,

ẋ = f (x) + G (x)u, x(0) = x0, x(T ) = xT .

Assumptions

The fields f , gi , i = 1, 2, ..., k are complete and the controlled fields
commute, i.e., [gi , gj ] ≡ 0 holds for all i , j .
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Desingularization

Notation

etF flow generated by the smooth field F

(t 7→ etF x0 is the unique solution of ẋ = F (x), x(0) = x0);

AdPF (x) = (DP(x))−1F (P(x));

φu(t) =
∫ t

0
u(τ) dτ.
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Desingularization

Notation

etF flow generated by the smooth field F

(t 7→ etF x0 is the unique solution of ẋ = F (x), x(0) = x0);

AdPF (x) = (DP(x))−1F (P(x));

φu(t) =
∫ t

0
u(τ) dτ.

Theorem (Agrachev & Sarychev, 1987)

xu(t) = eGφu(t)yφu(t), ∀t ∈ [0, T ], u ∈ L∞[0, T ],

ẋu(t) = f (xu(t)) + G (xu(t))u(t), x(0) = x0,

ẏφu(t) =
(

Ad
(

eGφu(t)
)

f
)

(yφu(t)), y(0) = x0.
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Reduced problem

The substitution x = eGφu(t)y leads to the ’desingularized’ problem

Jr (v) =
∫ T

0

(

eGv (t)y(t)
)′

P
(

eGv (t)y(t)
)

dt → min,

ẏ(t) =
(

Ad
(

eGv (t)
)

f
)

(y(t)),

y(0) = x0, y(T ) = eGV xT , V ∈ R
k .
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Reduced problem

The substitution x = eGφu(t)y leads to the ’desingularized’ problem

Jr (v) =
∫ T

0

(

eGv (t)y(t)
)′

P
(

eGv (t)y(t)
)

dt → min,

ẏ(t) =
(

Ad
(

eGv (t)
)

f
)

(y(t)),

y(0) = x0, y(T ) = eGV xT , V ∈ R
k .

Remark

When gi , i = 1, 2, ..., k are constant we have:

eGvy = y + Gv ,
(

Ad
(

eGv
)

f
)

(y) = f (y + Gv).

Jr (v) =
∫ T

0
y(t)′Py(t) + 2v(t)′G ′PGv(t) + v(t)′G ′PGv(t) dt.
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Nonconvexity of the reduced problem

(

f̃0(y , v), f̃ (y , v)
)

=

(

(

eGvy
)′

P
(

eGvy
)

,
(

Ad
(

eGv
)

f
)

(y)

)

Remark

For generic y ∈ R
n (fixed) the set

Γ(y) =
{

(

y0, f̃ (y , v)
)

: y0 ≥ f̃0(y , v), v ∈ R
k
}

⊂ R × R
n

is nonconvex (even in the case when G is constant).
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Nonconvexity of the reduced problem

(

f̃0(y , v), f̃ (y , v)
)

=

(

(

eGvy
)′

P
(

eGvy
)

,
(

Ad
(

eGv
)

f
)

(y)

)

Remark

For generic y ∈ R
n (fixed) the set

Γ(y) =
{

(

y0, f̃ (y , v)
)

: y0 ≥ f̃0(y , v), v ∈ R
k
}

⊂ R × R
n

is nonconvex (even in the case when G is constant).

Classical minimizers for the reduced problem typically fail to exist.
Instead, existence of relaxed minimizers can be expected.
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Relaxed minimizers

A relaxed control is as a family t 7→ ηt of inner regular probability
measures with compact support in R

k such that t 7→ ηt is
measurable in the weak sense with respect to t ∈ [0, T ].
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A relaxed control is as a family t 7→ ηt of inner regular probability
measures with compact support in R

k such that t 7→ ηt is
measurable in the weak sense with respect to t ∈ [0, T ].

Extension of the reduced problem achieves convexification of the
epigraphs Γ(y), y ∈ R

n.

Guerra and Sarychev ()Approximants of generalized minimizers CCQ Bedlewo 2007 15 / 29



Relaxed minimizers

A relaxed control is as a family t 7→ ηt of inner regular probability
measures with compact support in R

k such that t 7→ ηt is
measurable in the weak sense with respect to t ∈ [0, T ].

Extension of the reduced problem achieves convexification of the
epigraphs Γ(y), y ∈ R

n.

Remark

Extension into the class of relaxed controls does not preserve coercivity.

The convex hulls of the epigraphs

Γ(y) =
{(

y0, f̃ (y , v)
)

: y0 ≥ f̃0(y , v), v ∈ R
m

}

, y ∈ R
n

may fail to be closed.
In that case a ”generalized minimizer” may be achievable only by taking
directions lying in conv (Γ(y)) but not in conv (Γ(y)).
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Existence of relaxed minimizers

Theorem (Cesari, 1983)

(Under suitable growth conditions imposed on |f |, |g1|, |g2|, ..., |gk |)
The reduced problem has a relaxed minimizer.
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Theorem (Cesari, 1983)

(Under suitable growth conditions imposed on |f |, |g1|, |g2|, ..., |gk |)
The reduced problem has a relaxed minimizer.

However:

Cesari’s optimal trajectories are in general non-Lipschitzian with respect
to time!
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Theorem (Cesari, 1983)

(Under suitable growth conditions imposed on |f |, |g1|, |g2|, ..., |gk |)
The reduced problem has a relaxed minimizer.

However:

Cesari’s optimal trajectories are in general non-Lipschitzian with respect
to time!

⇒ Cesari’s minimizers may fail to satisfy the Pontryagin Maximum
Principle.
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Existence of relaxed minimizers

Theorem (Cesari, 1983)

(Under suitable growth conditions imposed on |f |, |g1|, |g2|, ..., |gk |)
The reduced problem has a relaxed minimizer.

However:

Cesari’s optimal trajectories are in general non-Lipschitzian with respect
to time!

⇒ Cesari’s minimizers may fail to satisfy the Pontryagin Maximum
Principle.

⇒ Cesari’s minimizers are very difficult to characterize.
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Existence of relaxed minimizers

Assumptions

For any compact set K ⊂ R
n we have

lim
|v |→+∞

∣

∣

∣
eGv

∣

∣

∣
= +∞ and lim

|v |→+∞

∣

∣

∣

∂
∂x

(

(

eGvx
)′

P
(

eGvx
)

)∣

∣

∣

|eGvx |2
= 0,

uniformly with respect to x ∈ K, and there exists a function
γ : [0, +∞[ 7→ R bounded below, such that:

i) lim
s→+∞

γ(s)
s

= +∞;

ii)
∣

∣eGvx
∣

∣

2 ≥ γ
(

∣

∣

(

Ad
(

eGv
)

f
)

(x)
∣

∣ +
∣

∣

∣

∂
∂x

(

Ad
(

eGv
)

f
)

(x)
∣

∣

∣

)

,

∀(x , v) ∈ K × R
k .
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Existence of relaxed minimizers

Remark

When the fields gi , i = 1, 2, ..., k are constant the assumptions reduce to

rank(G ) = k

|v |2 ≥ γ (|f (x + Gv)| + |Df (x + Gv)|) , ∀(x , v) ∈ K × R
k
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Existence of relaxed minimizers

Remark

When the fields gi , i = 1, 2, ..., k are constant the assumptions reduce to

rank(G ) = k

|v |2 ≥ γ (|f (x + Gv)| + |Df (x + Gv)|) , ∀(x , v) ∈ K × R
k

Remark

It is sufficient to consider Gamkrelidze generalized controls

ηt =
n+2

∑
j=1

pj (t)δv j (t),
n+2

∑
j=1

pj ≡ 1, pj (t) ≥ 0,

ẏ(t) =
n+2

∑
j=1

pj (t)
(

Ad
(

eGv j (t)
)

f
)

(y(t)).
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Existence of relaxed minimizers

Theorem

(under the assumptions above)

The reduced problem has a minimizer in the class of Gamkrelidze
controls.
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Existence of relaxed minimizers

Theorem

(under the assumptions above)

The reduced problem has a minimizer in the class of Gamkrelidze
controls.

All Gamkrelidze minimizers satisfy PMP.
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Existence of relaxed minimizers

Theorem

(under the assumptions above)

The reduced problem has a minimizer in the class of Gamkrelidze
controls.

All Gamkrelidze minimizers satisfy PMP.

All Gamkrelidze minimizers which are not Lipschitzian must
correspond to strictly abnormal extremals.

n+2

∑
j=1

pj (t)
∣

∣

∣

(

Ad
(

eGv j (t)
)

f
)

(yη(t))
∣

∣

∣
< M a.e.t ∈ [0, T ]
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Generalized optimal trajectories

(jumps along curves tangent to {g1, g2, ..., gk})
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Generalized optimal trajectories

x̃(t) = (Jt , x(t))

f̃ (x) = (x ′Px , f (x))

g̃i (x) = (0, gi (x))

q̃ =
(

q0, q
)

, q0 ∈ {0,−1}
H(x̃ , q̃, u) =

〈

q̃, f̃ (x) + G̃ (x)u
〉

HGv (x̃ , q̃) = 〈q,G (x)v〉
〈q, gi 〉 = 0, 0 ≤ i ≤ k
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Generalized optimal trajectories

x̃(t) = (Jt , x(t))

f̃ (x) = (x ′Px , f (x))

g̃i (x) = (0, gi (x))

q̃ =
(

q0, q
)

, q0 ∈ {0,−1}
H(x̃ , q̃, u) =

〈

q̃, f̃ (x) + G̃ (x)u
〉

HGv (x̃ , q̃) = 〈q,G (x)v〉
〈q, gi 〉 = 0, 0 ≤ i ≤ k

(x̃i , q̃i ) = e
−→
H G (vi−vj )(x̃j , q̃j ), H (x̃i , q̃i , 0) = max

v∈Rk
H

(

e
−→
H Gv (x̃j , q̃j ), 0

)

〈

q̃i , [f̃ , g̃s ](xi )
〉

= 0,
(〈

q̃i , [g̃s , [f̃ , g̃m]](xi )
〉)

1≤s≤k,1≤m≤k
≥ 0

( ˙̃xi , ˙̃qi ) =
n+2

∑
j=1

pjAd

(

e
−→
H G (vj−vi )

)−→
H (x̃i , q̃i , u

j )

〈

q̃i , [f + Gui , [f , gs ]](xi )
〉

= 0, 1 ≤ s ≤ k
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Degree of singularity: the commutative case

Theorem

If the generalized optimal trajectory is bounded, then

µ ≤ 3/2.
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Approximation of generalized minimizers

To prove that µ ≤ 3
2 we use two approximation steps:

approximate the relaxed minimizer of the reduced problem by
piecewise continuous controls wε such that the trajectory and the
functional driven by wε, are ε-close to the trajectory and the
functional driven by the relaxed minimizer.

Number of discontinuities of wε: ∼ 1
ε .
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Approximation of generalized minimizers

To prove that µ ≤ 3
2 we use two approximation steps:

approximate the relaxed minimizer of the reduced problem by
piecewise continuous controls wε such that the trajectory and the
functional driven by wε, are ε-close to the trajectory and the
functional driven by the relaxed minimizer.

Number of discontinuities of wε: ∼ 1
ε .

approximate wε by an absolutely continuous control vε(·) such that
the trajectory and the functional driven by vε, is ε-close to the
trajectory and the functional driven by wε.

vε differs from wε at ∼ 1
ε intervals of length ε2.
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Approximation of generalized minimizers

To prove that µ ≤ 3
2 we use two approximation steps:

approximate the relaxed minimizer of the reduced problem by
piecewise continuous controls wε such that the trajectory and the
functional driven by wε, are ε-close to the trajectory and the
functional driven by the relaxed minimizer.

Number of discontinuities of wε: ∼ 1
ε .

approximate wε by an absolutely continuous control vε(·) such that
the trajectory and the functional driven by vε, is ε-close to the
trajectory and the functional driven by wε.

vε differs from wε at ∼ 1
ε intervals of length ε2.

µ ≤ lim
ε→0+

ln ‖v̇ε‖L2[0,T ]

ln 1
ε

.
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Input-commutative control-affine systems: a conjecture

Conjecture

Suppose that:

the fields f , gi , i = 1, 2, ..., k are complete and [gi , gj ] ≡ 0 holds for
all i , j .

the generalized trajectory is bounded.

Then µ ≤ 1.
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Input-commutative control-affine systems: a conjecture

Our two-step approximation procedure can be improved?

there exists a piecewise continuous control wε with ≤ O(ε−1) intervals
of continuity, such that the end-point of the trajectory and the value
of the functional driven by wε are ε2-close to the end-point of the
optimal trajectory and the corresponding value of the functional?

If yes, then by modifying wε in intervals of length ε3 instead of ε2 we
obtain a family of square-integrable controls uε = dvε

dt
satisfying the

estimate ‖uε‖L2 = O(ε−2).
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Input-commutative control-affine systems: a conjecture

Our two-step approximation procedure can be improved?

there exists a piecewise continuous control wε with ≤ O(ε−1) intervals
of continuity, such that the end-point of the trajectory and the value
of the functional driven by wε are ε2-close to the end-point of the
optimal trajectory and the corresponding value of the functional?

If yes, then by modifying wε in intervals of length ε3 instead of ε2 we
obtain a family of square-integrable controls uε = dvε

dt
satisfying the

estimate ‖uε‖L2 = O(ε−2).

Can the second approximation step be improved?
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Input-commutative control-affine systems: a conjecture

Example

J1 =
∫ 1

0
(x2

1 + x2
2 + x2

3 )dt → min,

f (x1, x2, x3) = x1
∂

∂x2
+ γ(x1)(x

2
1 − 1)

∂

∂x3
, g1 =

∂

∂x1

x(0) = 0, x(1) = 0,

γ : R 7→ [0, 1] is smooth, supp(γ) ⊂ [−2, 2] and γ(x) ≡ 1 on
[−3/2, 3/2].

There exists a piecewise continuous control wε with ≤ O(ε−1) intervals of
continuity that ε2-approximate the optimal trajectory and the infimum of
the functional.

Hence µ ≤ 1.
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The non-commutative case

(jumps along curves tangent to L {g1, g2, ..., gk})
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Non-commutative control-affine case: Example 1

Example

J1 =
∫ 1

0

5

∑
i=1

x2
i dt → min,

ẋ = f (x) + g1(x)u1 + g2(x)u2, x = (x1, x2, x3, x4, x5),

f (x) = x5
∂

∂x2
+ γ(x5)(x

2
5 − 1)

∂

∂x3
, g1 (x) =

∂

∂x1
,

g2 (x) =
∂

∂x4
+ x1

∂

∂x5
,

x(0) = 0, x(1) = 0.

spanL (G ) = span {g1, g2, [g1, g2]} = span {e1, e4, e5}

ẏ = f (y + e1w1 + e4w4 + e5w5)

ẏ2 = y5 + w5 ẏ3 = γ (y5 + w5)
(

y2
5 + 2y5w5 + w2

5 − 1
)

.
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Non-commutative control-affine case: Example 2

Example

J(u) =
∫ 1

0

4

∑
i=1

xi (t)
2 dt;

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1, ẋ4 = a1x1 + a2x2 + a3x3,

x(0) = x0, x(1) = xT .

a1, a2, a3 ∈ R.
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Non-commutative control-affine case: Example 2

Example

J(u) =
∫ 1

0

4

∑
i=1

xi (t)
2 dt;

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1, ẋ4 = a1x1 + a2x2 + a3x3,

x(0) = x0, x(1) = xT .

a1, a2, a3 ∈ R.

For both examples we obtain the same estimate: µ ≤ 1!

Guerra and Sarychev ()Approximants of generalized minimizers CCQ Bedlewo 2007 29 / 29


	coercive problems
	coercive problems
	optimal control problem
	optimal control problem
	minimizing sequences
	minimizing sequences
	minimizing sequences
	minimizing sequences
	degree of singularity
	degree of singularity
	singular linear-quadratic case
	singular linear-quadratic case
	The singular linear-quadratic case
	The singular linear-quadratic case
	The singular linear-quadratic case
	The singular linear-quadratic case
	The singular linear-quadratic case
	driftless case
	driftless case
	driftless case
	driftless case
	driftless case
	control-affine systems: commuting inputs
	control-affine systems: desingularization
	control-affine systems: desingularization
	reduced problem
	reduced problem
	nonconvexity
	nonconvexity
	relaxed minimizers
	relaxed minimizers
	relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	existence of relaxed minimizers
	generalized optimal trajectories
	generalized optimal trajectories
	generalized optimal trajectories
	conjecture
	approximation of generalized minimizers
	approximation of generalized minimizers
	approximation of generalized minimizers
	conjecture
	conjecture
	conjecture
	example
	figure
	non-commutative case: example 1
	non-commutative case: example 2
	non-commutative case: example 2

