Controllability of finite-dimensional quantum systems

G. Dirr, U. Helmke and I. Kurniawan

Institute of Mathematics
University of Würzburg, Germany
http://www2.mathematik.uni-wuerzburg.de

Supported by :
Elite Network of Bavaria (ENB)
Identification, Optimization and Control with Applications in Modern Technologies

Outline

- Motivation: Quantum Control of Spin Systems
- Example: Two-level, spin- $\frac{1}{2}$ system
- Controllability on Homogeneous Spaces
- Classification of Transitive Lie Group Actions
- Main Results A : Accessibility of Quantum Systems
- Main Results B : Accessibility of Double Bracket Flows

Motivation: Quantum Control of Spin Systems

N-Level Quantum Systems

- N-level quantum systems are described by their density operators ρ satisfying
(a) $\rho \in \mathbb{C}^{N \times N}, \quad \rho=\rho^{\dagger}$
(b) $\operatorname{Tr}(\rho)=1$
(c) $\rho \geq 0$
- Fact: The set \mathcal{P} of all density operators forms a convex set.
- Example : n spin- $\frac{1}{2}$ systems are 2^{n}-level systems.

Motivation: Quantum Control of Spin Systems

Completely positive operators

- A linear map $\Phi: \mathcal{P} \rightarrow \mathcal{P}$ is completely positive if and only if $I_{N} \otimes \Phi$ is positivity preserving.
- The set $C P$ of completely positive operators is a semialgebraic Lie-semigroup of $G L\left(N^{2}\right)$.
- $C P$ operates transitively on \mathcal{P}.
- The Lindblad-Kossakowski operators are infinitesimal generators of one-parameter semigroups in $C P$.

Motivation: Quantum Control of Spin Systems

Dynamics of N-Level Open Quantum Systems

- Lindblad Master Equation

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{m} u_{k}(t) H_{k}, \rho\right]+\mathcal{L}(\rho), \quad \rho(0)=\rho_{0} \in \mathcal{P}
$$

- The Lindblad term \mathcal{L} models relaxation / dissipation,

$$
\mathcal{L}(\rho)=\sum_{k=1}^{p}\left[\lambda_{k} \rho, \lambda_{k}^{\dagger}\right]+\left[\lambda_{k}, \rho \lambda_{k}^{\dagger}\right] .
$$

- The Lindblad term \mathcal{L} is unital iff $\mathcal{L}(I)=0$, e.g. when

$$
\lambda_{k} \lambda_{k}^{\dagger}=\lambda_{k}^{\dagger} \lambda_{k} .
$$

Motivation: Quantum Control of Spin Systems

- Optimal Control Problem : Maximize the trace function

$$
\operatorname{tr}\left(\mathrm{C}^{\dagger} \rho(\mathrm{T})\right)
$$

subject to the Lindblad Master Equation

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{r} u_{k}(t) H_{k}, \rho\right]+\sum_{k=1}^{p}\left[\lambda_{k} \rho, \lambda_{k}^{\dagger}\right]+\left[\lambda_{k}, \rho \lambda_{k}^{\dagger}\right]
$$

Goals:

- Characterize the reachable sets $\mathcal{R}\left(\rho_{0}\right)$!
- Optimize $\operatorname{tr}\left(\mathrm{C}^{\dagger} \rho\right)$ on reachable sets $\mathcal{R}\left(\rho_{0}\right)$!
- Solve the optimal control problem with terminal constraints!

Motivation: Quantum Control of Spin Systems

Basic Structural Questions:

- Is the system semigroup of the Lindblad-Kossakowski equation a semialgebraic Lie semigroup?
- Are the reachable sets of the Lindblad-Kossakowski equation semialgebraic?
- When is the system semigroup dense in $C P$?

Answer: Never.

- When is the Lindblad equation controllable?

Answer: Never.

Motivation: Quantum Control of Spin Systems

Different Notions of Controllability / Accessibility

- Unit Sphere / Projective Space: Pure State Controllability

$$
\left(\Sigma^{\prime}\right) \quad \dot{\psi}=-\mathrm{i}\left(H_{d}+\sum_{k=1}^{m} u_{k}(t) H_{k}\right) \psi, \quad \psi(0)=\psi_{0} \in S^{2 N-1}
$$

- Unitary Orbit: Density Operator Controllability

$$
(\widehat{\Sigma}) \quad \dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{m} u_{k}(t) H_{k}, \rho\right], \quad \rho(0)=\rho_{0} \in \mathcal{P}
$$

- Special Unitary Group: Operator Controllability

$$
\text { (} \Sigma) \quad \dot{U}=-\mathrm{i}\left(H_{d}+\sum_{k=1}^{m} u_{k}(t) H_{k}\right) U, \quad U(0)=I_{N}
$$

Motivation: Quantum Control of Spin Systems

Known Results: Liouville Equation

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{m} u_{k}(t) H_{k}, \rho\right]
$$

- Characterization of pure state controllability (spheres/projective spaces) : Allesandro, Albertini, et al.
- Characterization of reachable sets!
- Specific n-level systems:
(operator controllability: S.-Herbrüggen, Brockett-Khaneja; general case: Albertini, Allesandro)
- Riemannian optimization algorithms for the trace function (Dirr, He, Morar, Schulte-Herbrüggen)

Connections: Brockett's work; gen. C-numerical ranges; tensor SVD

Motivation: Quantum Control of Spin Systems

Controllability of Liouville Equation

- The Liouville Master equation for n spin- $\frac{1}{2}$ systems

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{j=1}^{m} u_{j}(t) H_{j}, \rho\right]
$$

is controllable on each isospectral set $\left\{U \rho U^{*} \mid U \in S U\left(2^{n}\right)\right\}$, iff the spin-spin coupling graph is connected.

- Controllability on rank 1 projection operators holds if and only if the system Lie algebra is isomorphic to $\mathfrak{s u}\left(2^{n}\right)$ or to $\mathfrak{s p}\left(2^{n}\right)$ (Albertini, D'Alessandro 2003).

Motivation: Quantum Control of Spin Systems

Known Results: Lindblad Equation

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{m} u_{k}(t) H_{k}, \rho\right]+\sum_{k=1}^{p}\left[\lambda_{k} \rho, \lambda_{k}^{\dagger}\right]+\left[\lambda_{k}, \rho \lambda_{k}^{\dagger}\right] .
$$

- Characterization of accessibility: unknown!
- Wrong Claims: Reachable sets form annulus (Altafini 04)

In general meaningless except perhaps

- for 2-level systems (the simplest case),
- with additional assumption of "fast-controllability" on the Hamiltonian part (without Lindblad and drift term).
- Optimization problem: unsolved!

Example: Spin- $\frac{1}{2}$ System

Example: One-Spin System

Example : two-level systems, Bloch vector equation

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{ccc}
-\gamma_{1} & -\delta & u(t) \\
\delta & -\gamma_{2} & 0 \\
-u(t) & 0 & -\gamma_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\gamma_{0}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
\delta: \operatorname{drift} \quad \gamma_{k} \geq 0 \text { : Lindblad relaxation }
\end{gathered}
$$

- Due to relaxation, the system is never controllable!
- Accessibility holds if and only if $\delta \neq 0,\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \neq 0$.
- Generalization: Khaneja/Stefanatos
- Special Case: Sugny, Kontz, Jauslin (2007)

Example: One-Spin System

Slice through the reachable set for a single spin system.

Reachable set is not an annulus!!

Example: One-Spin System

Instantaneous Reachable Sets

Example: One-Spin System

Optimal Control Problem

- Bloch vector equation, $v=\left[\begin{array}{ll}x & y \\ z\end{array}\right]^{\top}$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{ccc}
-\gamma_{1} & -\delta & u(t) \\
\delta & -\gamma_{2} & 0 \\
-u(t) & 0 & -\gamma_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\gamma_{0}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Optimal control task : given initial condition $v(0)$ and fixed terminal time T, maximize the function

$$
f_{T}=c^{\top} v(T) \quad, \quad c=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{\top}
$$

via an optimal control $u(t)$.

Motivation: Quantum Control of Spin Systems

Numerical optimization for non-unital case

- $\gamma_{0}=\gamma_{1}=\gamma_{2}=\gamma_{3}=0.2, \delta=1, v(0)=\left[\begin{array}{lll}-\frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2}\end{array}\right]^{\top}$

- The value $f_{T}=85 \%$ can be achieved at $T=2$ $f_{T}=1$ only as $T \rightarrow \infty$ (even with optimal control)

Example: One-Spin System

Numerical optimization for unital case

- $\gamma_{0}=0, \gamma_{1}=\gamma_{2}=\gamma_{3}=0.2, \delta=1, v(0)=\left[\begin{array}{lll}-\frac{4}{10} & \frac{9}{10} & -\frac{\sqrt{3}}{10}\end{array}\right]^{\top}$

- The maximum value $f_{T}=80 \%$ can only be achieved at $T=1$ When $T \neq 1$, the maximum value $f_{T}<80 \%$

Homogeneous Spaces

Controllability on Homogeneous Spaces

History

- Nonlinear Control Theory: Controllability, observability, ... (Brockett, Krener, Kupka, Sussmann, Jurdjevic, ...)
- Lie Theory of Semigroups: Lie wedges; cones in Lie algebras, ... (Hilgert, Hoffmann, Lawson, Ol'shanskii, ...)
- Transformation Groups: Classification of transitive actions (Montgomery/Samelson, Boothby/Wilson, Völklein, Kramer)

Controllability on Homogeneous Spaces

Bilinear Control System

- G connected matrix Lie group with Lie algebra \mathfrak{g}.
- Bilinear control system on G

$$
(\Sigma) \quad \dot{X}=\left(A_{d}+\sum_{k=1}^{r} u_{k}(t) A_{k}\right) X, \quad X(0)=I
$$

where $A_{d}, A_{1}, \ldots, A_{r} \in \mathfrak{g}$ and $u_{k}(t) \in \mathbb{R}$ for $k=1, \ldots, r$.

- Reachable set

$$
\mathcal{R}_{\Sigma}(I)=\left\{X \in G \mid \exists T \geq 0 \text { and } u_{1}, \ldots, u_{r}: X(T)=X\right\}
$$

Controllability on Homogeneous Spaces

Controllability and Accessibility:

- Accessibility: The reachable set $\mathcal{R}_{\Sigma}(I)$ has an interior point.
- Controllability:

$$
\mathcal{R}_{\Sigma}(I)=G .
$$

- System Lie Algebra:
\mathcal{L}_{Σ} is the smallest Lie subalgebra of \mathfrak{g} containing $A_{1}, \ldots, A_{r}, A_{d}$, i.e. the smallest subspace containing all the iterated Lie brackets

$$
A_{d}, A_{1}, \ldots, A_{r},\left[A_{d}, A_{i}\right],\left[A_{i}, A_{j}\right],\left[A_{d},\left[A_{i}, A_{j}\right]\right], \ldots
$$

- System Group:
\mathcal{G}_{Σ} is the smallest Lie subgroup of G containing all one-parameter subgroups $\mathrm{e}^{A t}, A \in \mathcal{L}_{\Sigma}$, i.e. $\mathcal{G}_{\Sigma}:=\left\langle\exp \left(\mathcal{L}_{\Sigma}\right)\right\rangle$.

Controllability on Homogeneous Spaces

Controllability and Accessibility:

Theorem.(Jurdjevic/Sussmann)

- (Σ) is accessible if and only if the system Lie algebra is $\mathcal{L}_{\Sigma}=\mathfrak{g}$.
- If G is compact, than controllability of (Σ) is equivalnet to accessibility.

Controllability on Homogeneous Spaces

Definition A homogeneous space is a manifold M on which G acts transitively via $\alpha:(X, p) \mapsto X \cdot p$. The homogeneous spaces are thus the quotient spaces

$$
G / H
$$

by a closed Lie subgroup $H \subset G$.

Example: Grassmannian

The complex Grassmannian is the unitary orbit

$$
\operatorname{Grass}(\mathrm{k}, \mathrm{n}):=\left\{\rho \in \mathbb{C}^{\mathrm{n} \times \mathrm{n}} \mid \rho=\rho^{*}, \rho^{2}=\rho, \operatorname{tr}(\rho)=\mathrm{k}\right\}
$$

Can be identified with manifold of k-dimensional complex subspaces of \mathbb{C}^{n}.

Controllability on Homogeneous Spaces

Lie Group Actions and Induced / Lifted Systems

- Induced Control System on G/H:

$$
\dot{p}=\mathrm{D}_{1} \alpha(I, p)\left(A_{d}+\sum_{k=1}^{r} u_{k}(t) A_{k}\right), \quad p(0)=p_{0} .
$$

- Fact: Each solution $X(t)$ of the bilinear system yields a solution $p(t)$ of the induced system via

$$
p(t):=X(t) \cdot p_{0}
$$

and vice versa.

Controllability on Homogeneous Spaces

Transitive Group Actions and Accessibility

Theorem.
(a) If the system is controllable on G, then the induced system is controllable on G / H.
(b) The system group \mathcal{G}_{Σ} acts transitively on G / H if and only if the induced system is is accessible on G / H.

Two Cases of Interest:

- $G / H=\mathbf{P}^{n-1}:=\operatorname{Grass}(1, \mathrm{n})$ projective space
- $G / H=\operatorname{Grass}(\mathrm{k}, \mathrm{n}), \mathrm{k} \geq 2$, Grassmannian

Controllability on Homogeneous Spaces

Sufficient Condition for Controllability

Theorem. The induced bilinear system is controllable on G / H, provided
(a) The induced system is is accessible on G / H.
(b) There exist constant controls such that the induced system is weakly Poisson stable on G / H.

Corollary. Let G be a compact connected Lie group and H a closed Lie subgroup. Then the induced bilinear system is controllable on G / H if and only if the system group $\mathcal{G} \subset G$ acts transitively on G / H.

Classification of Transitive Lie Groups Actions

Transitive Lie Group Actions on $\mathbb{R}^{m} \backslash\{0\}$

Theorem. (Boothby/Wilson; Tits; Kramer) Let $A_{d}, A_{1}, \ldots, A_{r} \in \mathfrak{g l}(m, \mathbb{R})$ with $m \geq 2$. The bilinear system

$$
\text { (} \Sigma \text {) } \quad \dot{x}=\left(A_{d}+\sum_{k=1}^{r} u_{k}(t) A_{k}\right) x, \quad x(0)=x_{0}
$$

is accessible on $\mathbb{R}^{m} \backslash\{0\}$ if and only if the system Lie algebra $\mathcal{L}_{\Sigma} \subset$ $\mathfrak{g l}(m, \mathbb{R})$ is conjugate to one of the following types:
(1) $\mathfrak{s o}(m) \oplus \mathbb{R}$, if $m \geq 3$.
(2) $\mathfrak{s u}(m / 2) \oplus \mathrm{e}^{\mathrm{i} \alpha} \mathbb{R}$ and $\mathfrak{s u}(m / 2) \oplus \mathbb{C}$, if m is even and $m \geq 3$.
(3) $\mathfrak{s p}(m / 4) \oplus \mathrm{e}^{\mathrm{i} \alpha} \mathbb{R}, \mathfrak{s p}(m / 4) \oplus \mathbb{C}$ and $\mathfrak{s p}(m / 4) \oplus \mathbb{H}$, if $m=4 k$.
(4) $\mathfrak{g}_{2} \oplus \mathbb{R}$, if $m=7$.
(5) $\mathfrak{s p i n}(7) \oplus \mathbb{R}$, if $m=8$.
(6) $\mathfrak{s p i n}(9) \oplus \mathbb{R}$, if $m=16$.

Classification of Transitive Lie Groups Actions

Transitive Lie Group Actions on $\mathbb{R}^{m} \backslash\{0\}$ (cont'd)

(7) $\mathfrak{s l}(m, \mathbb{R})$ and $\mathfrak{g l}(m, \mathbb{R})$, if $m \geq 2$.
(8) $\mathfrak{s l}(m / 2, \mathbb{C}), \mathfrak{s l}(m / 2, \mathbb{C}) \oplus \mathrm{e}^{\mathrm{i} \beta} \mathbb{R}$ and $\mathfrak{g l}(m / 2, \mathbb{C})$, if m is even and $m \geq 2$.
(9) $\mathfrak{s l}(m / 4, \mathbb{H}), \mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathrm{e}^{\mathrm{i} \beta} \mathbb{R}$ and $\mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathbb{C}$, if $m=4 k$.
(10) $\mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathfrak{s p}(1)$ and $\mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathbb{H}$, if $m=4 k$.
(11) $\mathfrak{s p}(m / 2, \mathbb{R})$ and $\mathfrak{s p}(m / 2, \mathbb{R}) \oplus \mathbb{R}$, if m is even and $m \geq 3$.
(12) $\mathfrak{s p}(m / 4, \mathbb{C}), \mathfrak{s p}(m / 4, \mathbb{C}) \oplus \mathrm{e}^{\mathrm{i} \beta} \mathbb{R}$ and $\mathfrak{s p}(m / 4, \mathbb{C}) \oplus \mathbb{C}$, if $m=4 k$.
(13) $\mathfrak{s p i n}(9,1, \mathbb{R})$ and $\mathfrak{s p i n}(9,1, \mathbb{R}) \oplus \mathbb{R}$, if $m=16$.

Comments

- Boothby/Wilson: $\mathfrak{s p i n}(9,1, \mathbb{R})$ and $\mathfrak{s p i n}(9,1, \mathbb{R}) \oplus \mathbb{R}$ missing.
- Complete proof: L. Kramer (2003) .
- Open Problem: Affine Systems.

Transitive Lie Groups Actions

Transitive Lie Group Actions on Projective Space

Theorem (compact case). Let $A_{d}, A_{1}, \ldots, A_{m} \in \mathfrak{s o}(N, \mathbb{R})$ with $N \geq 2$.
The bilinear system

$$
\dot{\rho}=\left[A_{d}+\sum_{k=1}^{r} u_{k}(t) A_{k}, \rho\right]
$$

is controllable on projective space $\mathbf{P}^{N-1}(\mathbb{R})$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{s o}(N, \mathbb{R})$ is conjugate to one of the following types:
(1) $\mathfrak{s o}(N, \mathbb{R})$
(2) $\mathfrak{s u}(N / 2)$ or $\mathfrak{u}(N / 2)$, if N is even.
(3) $\mathfrak{s p}(N / 4), \mathfrak{s p}(N / 4) \oplus \mathfrak{u}(1)$ or $\mathfrak{s p}(N / 4) \oplus \mathfrak{s p}(1)$, if $N=4 k$.
(4) \mathfrak{g}_{2}, if $N=7$.
(5) $\mathfrak{s p i n}(7)$, if $N=8$.
(6) $\mathfrak{s p i n}(9)$, if $N=16$.

Transitive Lie Groups Actions

Transitive Lie Group Actions on odd-dimensional Spheres

Corollary (compact case). Let $A_{d}, A_{1}, \ldots, A_{m} \in \mathfrak{s o}(2 n, \mathbb{R}), n>1$. The bilinear system

$$
\dot{x}=\left(A_{d}+\sum_{k=1}^{m} u_{k}(t) A_{k}\right) x, \quad x(0)=x_{0} \in S^{2 n-1}
$$

is controllable on the sphere $\mathbf{S}^{2 n-1}$ of odd dimension $2 n-1$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{s o}(2 n)$ is conjugate to one of the following types:
(1) $\mathfrak{s o}(2 n)$
(2) $\mathfrak{s u}(n)$ or $\mathfrak{u}(n)$.
(3) $\mathfrak{s p}(n / 2), \mathfrak{s p}(n / 2) \oplus \mathfrak{u}(1)$ or $\mathfrak{s p}(n / 2) \oplus \mathfrak{s p}(1)$, if $n=2 k$.
(4) $\mathfrak{s p i n}(7)$, if $n=4$.
(5) $\mathfrak{s p i n}(9)$, if $n=8$.

Transitive Lie Groups Actions

Comments

- Conjugate can not be replaced by isomorphic! Counterexample: $\mathfrak{s o}(3), \mathfrak{s u}(2) \subset \mathfrak{s o}(4)$ are isomorphic, but not conjugate to each other. $\mathfrak{s o}(3)$ does not act transitively on S^{3} !
- Montgomery/Samelson: Classification of transitive compact group actions on spheres. The above result does not appear there.
- Brockett: incomplete characterization; $\mathfrak{s p}(N / 4) \oplus \mathfrak{u}(1)$ and $\mathfrak{s p}(N / 4) \oplus \mathfrak{s p}(1)$ missing.

Transitive Lie Groups Actions

Transitive Lie Group Actions on projective space

Theorem (arbitrary complex case). Let $A_{d}, A_{1}, \ldots, A_{m} \in \mathfrak{s l}(N, \mathbb{C})$ with $N \geq 2$. The linear induced bilinear system is controllable on complex projective space $\mathbf{P}^{N-1}(\mathbb{C})$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{s l}(N, \mathbb{C})$ is conjugate to one of the following types:
(1) $\mathfrak{s l}(N, \mathbb{C})$
(2) $\mathfrak{s u}(N)$.
(3) $\mathfrak{s p}(N / 2, \mathbb{C}), \mathfrak{s p}(N / 2)$ for N even.
(4) $\mathfrak{s l}(N / 2, \mathbb{H})$ for N even.

Transitive Lie Groups Actions

Transitive Lie Group Actions on Grassmannians

Theorem (arbitrary complex case). Let $A_{d}, A_{1}, \ldots, A_{m} \in \mathfrak{s l}(N, \mathbb{C})$ with $N \geq 2$. The linear induced bilinear system is controllable on complex Grassmann manifold Grass $(k, N), k \geq 2$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{s l}(N, \mathbb{C})$ is conjugate to one of the following types:
(1) $\mathfrak{s l}(N, \mathbb{C})$.
(2) $\mathfrak{s u}(N)$

The same classification holds true for an arbitrary complex flag manifold!

Transitive Lie Groups Actions

Applications: Generalization of Albertini-Alessandro result

Corollary. The Liouville Master equation

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{r} u_{k}(t) H_{k}, \rho\right]
$$

is controllable on

$$
\operatorname{Grass}(\mathrm{k}, \mathrm{~N}):=\left\{\rho \in \mathbb{C}^{\mathrm{N} \times \mathrm{N}} \mid \rho=\rho^{*}, \rho^{2}=\rho, \operatorname{tr}(\rho)=\mathrm{k}\right\}
$$

if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{s u}(N, \mathbb{C})$ is conjugate to one of the following types:

- $k=1$ or $N-1$. $\mathcal{L}=\mathfrak{s p}(N / 2)$, for N even, or $\mathcal{L}=\mathfrak{s u}(N)$.
- $\mathcal{L}=\mathfrak{s u}(N)$ for $1<k<N-1$.

Transitive Lie Groups Actions

Comments. $\mathrm{k}=1$

- Proof: trivial consequence of Theorem (arbitrary complex case).
- Alessandro-Albertini proof:
- gap in the proof, as $\mathfrak{s p}(N / 4) \oplus \mathfrak{s p}(1)$ case is not discussed.
- complicated proof, using representation theoretic arguments, and weak version of Corollary (compact case)-only necessary; isomorphic instead conjugate.
- prove equivalence of pure state and projective state controllability of quantum systems. Follows also immediately by combining our proof with theirs.

Transitive Lie Groups Actions

Alternative Proof.

(1) $\mathfrak{s o}(2 n)$: too high dimension
(2) $\mathfrak{u}(n)$: too high dimension
(3) $\mathfrak{s p}(n / 2) \oplus \mathfrak{u}(1), \mathfrak{s p}(n / 2) \oplus \mathfrak{s p}(1)$: no Lie algebra strictly between $\mathfrak{s p}(n / 2)$ and $\mathfrak{s u}(n)(\mathfrak{s p}(n / 2)=$ Cartan-summand of $\mathfrak{s u}(n))$
(4) $\mathfrak{s p i n}(7)$: too high dimension
(5) $\mathfrak{s p i n}(9)$: extra argument

C O Oだ \rightarrow Main Results A : Accessibility of Quantum Systems O a

Main Results: Accessibility of Quantum Systems

N-level Systems:

Theorem A (N -level systems).
The (unital) N-level Lindblad Master Equation

$$
\dot{\rho}=-\mathrm{i}\left[H_{d}+\sum_{k=1}^{r} u_{k}(t) H_{k}, \rho\right]+\mathcal{L}(\rho), \quad \rho(0)=\rho_{0} \in \mathcal{P}
$$

is accessible if and only if the system Lie algebra \mathcal{L}_{Σ} is conjugate to

- For $N>2$ even: $\mathfrak{g l}(m, \mathbb{R})$
- For N odd: $\mathfrak{g l}(m, \mathbb{R}), \mathfrak{g l}(m / 2, \mathbb{C}), \mathfrak{s l}(m / 2, \mathbb{C}) \oplus \mathrm{e}^{\mathrm{i} \beta} \mathbb{R}$, $\mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathrm{e}^{\mathrm{i} \beta} \mathbb{R}, \mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathbb{C}, \mathfrak{s l}(m / 4, \mathbb{H}) \oplus \mathbb{H}$, $\mathfrak{s p}(m / 2, \mathbb{R}) \oplus \mathbb{R}, \mathfrak{s p}(m / 4, \mathbb{C}) \oplus \mathrm{e}^{\mathrm{i} \beta} \mathbb{R}, \mathfrak{s p}(m / 4, \mathbb{C}) \oplus \mathbb{C}$

Main Results: Accessibility of Quantum Systems

Spin- $\frac{1}{2}$ Systems: $m=2^{2 n}-1$

Theorem B (special case : spin- $\frac{1}{2}$ systems).
(a) For arbitrary $\boldsymbol{n} \mathbf{~ s p i n}-\frac{1}{2}$ systems, $n \geq 2$, the (unital) Lindblad Master Equation is accessible if and only if $\mathcal{L}_{\Sigma}=\mathfrak{g l}\left(2^{2 n}-1, \mathbb{R}\right)$
(b) Exceptional case $(n=1, N=2)$: a 2-level system is accessible if and only if

- $\mathcal{L}_{\Sigma}=\mathfrak{g l}(3, \mathbb{R})$
- $\mathcal{L}_{\Sigma}=\mathfrak{s o}(3) \oplus \mathbb{R} I_{3}$

Main Results: Accessibility of Quantum Systems

Spin- $\frac{1}{2}$ Systems: $m=2^{2 n}-1$

Sketch of the proof.

- For n spin- $\frac{1}{2}$ systems, the dimension $m=\left(2^{n}\right)^{2}-1$ is odd. Thus, the only transitive algebras left on previous list are $\mathfrak{s o}(m) \oplus \mathbb{R} I_{3}$, $\mathfrak{s l}(m, \mathbb{R})$ and $\mathfrak{g l}(m, \mathbb{R})$.
- $\mathfrak{s l}(m, \mathbb{R})$ can be excluded due to the condition $\operatorname{Tr}(\mathcal{L})<0$.
- $\mathfrak{s o}(3) \oplus \mathbb{R}$ is only possible for 2-level systems due to the Lie algebra isomorphism between $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$.

Comment:
(Altafini'03) states incorrectly that $\mathcal{L}_{\Sigma}=\mathfrak{g l}(m, \mathbb{R})$ is necessary and sufficient for accessibility for arbitrary N-level systems.

Controllability of Double Bracket Equation

Generalized Double Bracket Flow:

A Hermitian, B skew-Hermitian.

- Controlled Isospectral Flow

$$
\dot{X}=[[A(u), X], X]+[B(u), X]
$$

on Hermitian matrices.

- Generalizes Brockett's double bracket flow.
- Generalizes Matrix Riccati Differential Equation.
- Lie -algebraic generalization: Mittenhuber.

Controllability of Riccati Equation

Generalized double bracket flow on projection operators is equivalent to Riccati differential equation:

$$
\dot{K}=-K M_{11}(u)+M_{22}(u) K-K M_{12}(u) K+M_{21}(u)
$$

- Associated 'Hamiltonian" matrix:

$$
M(u):=A(u)+B(u)=\left[\begin{array}{ll}
M_{11}(u) & M_{12}(u) \\
M_{21}(u) & M_{22}(u)
\end{array}\right]
$$

- System Lie algebra \mathcal{L}_{Σ}, generated by $M(u), u \in \mathbb{R}^{m}$.

Controllability of Riccati Equation

Riccati Equation:

Theorem The Riccati equation is accessible if and only if one of the following conditions is satisfied for the system Lie algebra:
(a) n is odd or $1<k<n-1$. \mathcal{L}_{Σ} is conjugate to $\mathfrak{s l}_{n}(\mathbb{C})$ or $\mathfrak{S u}_{n}(\mathbb{C})$.
(b) n is even and $k=1$ or $k=n-1$. \mathcal{L}_{Σ} is conjugate to $\mathfrak{s l}_{n}(\mathbb{C}), \mathfrak{s u}_{n}(\mathbb{C})$,

$$
\mathfrak{s l}_{n / 2}(\mathbb{H}), \mathfrak{s p}_{n / 2}(\mathbb{C}) \text { or } \mathfrak{s p}_{n / 2}
$$

Theorem Let $M(u) \in \mathfrak{s p}_{n}(\mathbb{C})$ be skew-Hermitian and Hamiltonian. The Riccati equation is accessible if and only if the system Lie algebra \mathcal{L}_{Σ} is conjugate to $\mathfrak{s p}_{n}(\mathbb{C})$ or to $\mathfrak{s p}_{n}$.

Controllability of Double Bracket Flows

Generalized Double Bracket Flow:

- When is the Generalized Double Bracket Flow

$$
\dot{P}=[[A(u), P], P]+[B(u), P]
$$

accessible?

- Isospectral Projection operator:

$$
P:=\left[\begin{array}{l}
I_{k} \\
K
\end{array}\right]\left(I_{k}+K^{*} K\right)^{-1}\left[\begin{array}{ll}
I_{k} & K^{*}
\end{array}\right]
$$

Controllability of Double Bracket Flow

Theorem The generalized double bracket equation is accessible on constant rank projection operators if and only if one of the following conditions is satisfied:
(a) n is odd or $1<k<n-1$. The Lie algebra \mathcal{L}_{Σ} is conjugate to $\mathfrak{s l}_{n}(\mathbb{C})$ or $\mathfrak{s u}_{n}(\mathbb{C})$.
(b) n is even and $k=1$ or $k=n-1$. The Lie algebra \mathcal{L}_{Σ} is conjugate to $\mathfrak{s l}_{n}(\mathbb{C}), \mathfrak{s u}_{n}(\mathbb{C}), \mathfrak{s l}_{n / 2}(\mathbb{H}), \mathfrak{s p}_{n / 2}(\mathbb{C})$ or $\mathfrak{s p}_{n / 2}$.

Controllability of Double Bracket Flow

- Accessibility of GDBE does not imply controllability: Counter example $B=0, A_{0}+u A_{1}$ exists.
- Bedlewo Conjecture: accessibility implies controllability, provided the Lie algebra of $B(u)$ equals $\mathfrak{s u}(n)$.

Controllability of Double Bracket Flow

Conclusions:

- Showed how to derive controllability results from the theory of transitive Lie group actions.
- Application 1: Characterized controllability of the Liouville Master Equation for N-coupled spin $1 / 2$ systems. (New proof of results by Altafini, Schirmer, Brockett and others.)
- Application 2: A necessary and sufficient condition for accessibility of the generalized double flow on Grassmann manifolds.
- Application 3: A necessary and sufficient condition for accessibility of the controlled Riccati differential equation

$$
\dot{K}=A_{11}(u) K+K A_{22}(u)-K A_{12}(u) K+A_{21}(u)
$$

on symmetric matrices K.

- Application 4: Generalizations for nested Riccati differential equations are possible.

