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Motivation: Quantum Control of Spin Systems

N-Level Quantum Systems

N -level quantum systems are described by their density

operators ρ satisfying

(a) ρ ∈ CN×N , ρ = ρ†

(b) Tr(ρ) = 1

(c) ρ ≥ 0

Fact: The set P of all density operators forms a convex set.

Example : n spin- 1

2
systems are 2n-level systems.
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Motivation: Quantum Control of Spin Systems

Completely positive operators

A linear map Φ : P → P is completely positive if and only if

IN ⊗ Φ is positivity preserving.

The set CP of completely positive operators is a semialgebraic
Lie-semigroup of GL(N2).

CP operates transitively on P.

The Lindblad-Kossakowski operators are infinitesimal generators of

one-parameter semigroups in CP .
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Motivation: Quantum Control of Spin Systems

Dynamics of N-Level Open Quantum Systems

Lindblad Master Equation

ρ̇ = −i
[
Hd +

m∑

k=1

uk(t)Hk, ρ
]

+ L(ρ), ρ(0) = ρ0 ∈ P

The Lindblad term L models relaxation / dissipation,

L(ρ) =

p∑

k=1

[
λkρ, λ

†
k

]
+
[
λk, ρλ

†
k

]
.

The Lindblad term L is unital iff L(I) = 0, e.g. when

λkλ
†
k = λ†kλk.
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Motivation: Quantum Control of Spin Systems

Optimal Control Problem : Maximize the trace function

tr(C†ρ(T))

subject to the Lindblad Master Equation

ρ̇ = −i
[
Hd +

r∑

k=1

uk(t)Hk, ρ
]

+

p∑

k=1

[
λkρ, λ

†
k

]
+
[
λk, ρλ

†
k

]

Goals:

Characterize the reachable sets R(ρ0)!

Optimize tr(C†ρ) on reachable sets R(ρ0)!

Solve the optimal control problem with terminal constraints!
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Motivation: Quantum Control of Spin Systems

Basic Structural Questions:

Is the system semigroup of the Lindblad-Kossakowski equation a

semialgebraic Lie semigroup?

Are the reachable sets of the Lindblad-Kossakowski equation

semialgebraic?

When is the system semigroup dense in CP?
Answer: Never.

When is the Lindblad equation controllable?
Answer: Never.
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Motivation: Quantum Control of Spin Systems

Different Notions of Controllability / Accessibility

Unit Sphere / Projective Space: Pure State Controllability

(Σ′) ψ̇ = −i
(
Hd +

m∑

k=1

uk(t)Hk

)
ψ, ψ(0) = ψ0 ∈ S2N−1

Unitary Orbit: Density Operator Controllability

(Σ̂) ρ̇ = −i
[
Hd +

m∑

k=1

uk(t)Hk, ρ
]
, ρ(0) = ρ0 ∈ P

Special Unitary Group: Operator Controllability

(Σ) U̇ = −i
(
Hd +

m∑

k=1

uk(t)Hk

)
U, U(0) = IN
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Motivation: Quantum Control of Spin Systems

Known Results: Liouville Equation

ρ̇ = −i
[
Hd +

m∑

k=1

uk(t)Hk, ρ
]
.

Characterization of pure state controllability (spheres/projective

spaces) : Allesandro, Albertini, et al.

Characterization of reachable sets!
• Specific n-level systems:

(operator controllability: S.-Herbrüggen, Brockett-Khaneja;

general case: Albertini, Allesandro)

Riemannian optimization algorithms for the trace function
(Dirr, He, Morar, Schulte-Herbrüggen)

Connections: Brockett’s work; gen. C-numerical ranges; tensor SVD

BEDLEWO-07 – p.9/50



Motivation: Quantum Control of Spin Systems

Controllability of Liouville Equation

The Liouville Master equation for n spin- 1

2
systems

ρ̇ = −i
[
Hd +

m∑

j=1

uj(t)Hj , ρ
]

is controllable on each isospectral set {UρU ∗|U ∈ SU(2n)}, iff

the spin-spin coupling graph is connected.

Controllability on rank 1 projection operators holds if and only if

the system Lie algebra is isomorphic to su(2n) or to sp(2n)

(Albertini, D’Alessandro 2003).
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Motivation: Quantum Control of Spin Systems

Known Results: Lindblad Equation

ρ̇ = −i
[
Hd +

m∑

k=1

uk(t)Hk, ρ
]

+

p∑

k=1

[
λkρ, λ

†
k

]
+
[
λk, ρλ

†
k

]
.

Characterization of accessibility: unknown!

Wrong Claims: Reachable sets form annulus (Altafini 04)

In general meaningless except perhaps

• for 2-level systems (the simplest case),

• with additional assumption of “fast-controllability” on the

Hamiltonian part (without Lindblad and drift term).

Optimization problem: unsolved!
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Example: Spin-1

2
System
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Example: One-Spin System

Example : two-level systems, Bloch vector equation
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δ : drift γk ≥ 0 : Lindblad relaxation

Due to relaxation, the system is never controllable!

Accessibility holds if and only if δ 6= 0, (γ1, γ2, γ3) 6= 0.

Generalization: Khaneja/Stefanatos

Special Case: Sugny, Kontz, Jauslin (2007)

BEDLEWO-07 – p.13/50



Example: One-Spin System

Slice through the reachable set for a single spin system.
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Reachable set is not an annulus!!
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Example: One-Spin System

Instantaneous Reachable Sets
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left : γ1 = γ2 = γ3 = δ, γ0 = 0 (unital)

center : γ1 = γ2 = γ3 = 0.1δ, γ0 = 0 (unital)

right : γ0 = γ1 = γ2 = 2γ3 = δ, γ0 6= 0 (nonunital)
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Example: One-Spin System

Optimal Control Problem

Bloch vector equation, v = [x y z]>
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Optimal control task : given initial condition v(0) and fixed

terminal time T , maximize the function

fT = c>v(T ) , c = [0 0 1]>

via an optimal control u(t).
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Motivation: Quantum Control of Spin Systems

Numerical optimization for non-unital case

γ0 = γ1 = γ2 = γ3 = 0.2, δ = 1, v(0) = [− 1
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Red : Optimal, fixed T = 1.8

Green : Without Control, T −−> inf

The value fT = 85% can be achieved at T = 2

fT = 1 only as T → ∞ (even with optimal control)
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Example: One-Spin System

Numerical optimization for unital case

γ0 = 0, γ1 = γ2 = γ3 = 0.2, δ = 1, v(0) = [− 4
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Red : Optimal, fixed  T = 1
Blue : Optimal, fixed T = 5
Green : Without Control, T −−> inf

The maximum value fT = 80% can only be achieved at T = 1

When T 6= 1, the maximum value fT < 80%
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Controllability on

Homogeneous Spaces
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Controllability on Homogeneous Spaces

History

Nonlinear Control Theory: Controllability, observability, ...

(Brockett, Krener, Kupka, Sussmann, Jurdjevic, ...)

Lie Theory of Semigroups: Lie wedges; cones in Lie algebras, ...

(Hilgert, Hoffmann, Lawson, Ol’shanskii, ...)

Transformation Groups: Classification of transitive actions

(Montgomery/Samelson, Boothby/Wilson, Völklein, Kramer)
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Controllability on Homogeneous Spaces

Bilinear Control System

G connected matrix Lie group with Lie algebra g.

Bilinear control system on G

(Σ) Ẋ =

(
Ad +

r∑

k=1

uk(t)Ak

)
X, X(0) = I,

where Ad, A1, ..., Ar ∈ g and uk(t) ∈ R for k = 1, . . . , r.

Reachable set

RΣ(I) = {X ∈ G | ∃T ≥ 0 and u1, ..., ur : X(T ) = X}
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Controllability on Homogeneous Spaces

Controllability and Accessibility:

Accessibility: The reachable set RΣ(I) has an interior point.

Controllability:
RΣ(I) = G.

System Lie Algebra:

LΣ is the smallest Lie subalgebra of g containing A1, ..., Ar, Ad, i.e.

the smallest subspace containing all the iterated Lie brackets

Ad, A1, ..., Ar, [Ad, Ai], [Ai, Aj ], [Ad, [Ai, Aj ]], ...

System Group:

GΣ is the smallest Lie subgroup of G containing all one-parameter

subgroups eAt, A ∈ LΣ, i.e. GΣ :=
〈
exp(LΣ)

〉
.
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Controllability on Homogeneous Spaces

Controllability and Accessibility:

Theorem.(Jurdjevic/Sussmann)

(Σ) is accessible if and only if the system Lie algebra is LΣ = g.

If G is compact, than controllability of (Σ) is equivalnet to

accessibility.
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Controllability on Homogeneous Spaces

Definition A homogeneous space is a manifold M on which G acts

transitively via α : (X, p) 7→ X · p. The homogeneous spaces are thus the

quotient spaces

G/H

by a closed Lie subgroup H ⊂ G.

Example: Grassmannian
The complex Grassmannian is the unitary orbit

Grass(k, n) := {ρ ∈ C
n×n|ρ = ρ∗, ρ2 = ρ, tr(ρ) = k}.

Can be identified with manifold of k-dimensional complex subspaces of Cn.
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Controllability on Homogeneous Spaces

Lie Group Actions and Induced / Lifted Systems

Induced Control System on G/H:

ṗ = D1α(I, p)

(
Ad +

r∑

k=1

uk(t)Ak

)
, p(0) = p0.

Fact: Each solution X(t) of the bilinear system yields a solution p(t)

of the induced system via

p(t) := X(t) · p0

and vice versa.
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Controllability on Homogeneous Spaces

Transitive Group Actions and Accessibility

Theorem.

(a) If the system is controllable on G, then the induced system is

controllable on G/H.

(b) The system group GΣ acts transitively on G/H if and only if the

induced system is is accessible on G/H.

Two Cases of Interest:

G/H = P
n−1 := Grass(1, n) projective space

G/H = Grass(k, n), k ≥ 2, Grassmannian
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Controllability on Homogeneous Spaces

Sufficient Condition for Controllability

Theorem. The induced bilinear system is controllable on G/H, provided

(a) The induced system is is accessible on G/H.

(b) There exist constant controls such that the induced system is

weakly Poisson stable on G/H.

Corollary. Let G be a compact connected Lie group and H a closed Lie

subgroup. Then the induced bilinear system is controllable on G/H if and

only if the system group G ⊂ G acts transitively on G/H.
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Classification of Transitive
Lie Group Actions
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Classification of Transitive Lie Groups Actions

Transitive Lie Group Actions on Rm \ {0}

Theorem. (Boothby/Wilson; Tits; Kramer) Let Ad, A1, ..., Ar ∈ gl(m,R)

with m ≥ 2. The bilinear system

(Σ) ẋ =
(
Ad +

r∑

k=1

uk(t)Ak

)
x, x(0) = x0

is accessible on R
m \ {0} if and only if the system Lie algebra LΣ ⊂

gl(m,R) is conjugate to one of the following types:

(1) so(m) ⊕ R, if m ≥ 3.

(2) su(m/2) ⊕ eiα
R and su(m/2) ⊕ C, if m is even and m ≥ 3.

(3) sp(m/4) ⊕ eiαR, sp(m/4) ⊕ C and sp(m/4) ⊕ H, if m = 4k.

(4) g2 ⊕ R, if m = 7.

(5) spin(7) ⊕ R, if m = 8.

(6) spin(9) ⊕ R, if m = 16.
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Classification of Transitive Lie Groups Actions

Transitive Lie Group Actions on Rm \ {0} (cont’d)

(7) sl(m,R) and gl(m,R), if m ≥ 2.

(8) sl(m/2,C), sl(m/2,C) ⊕ eiβ
R and gl(m/2,C), if m is even and

m ≥ 2.

(9) sl(m/4,H), sl(m/4,H) ⊕ eiβR and sl(m/4,H) ⊕ C, if m = 4k.

(10) sl(m/4,H) ⊕ sp(1) and sl(m/4,H) ⊕ H, if m = 4k.

(11) sp(m/2,R) and sp(m/2,R) ⊕ R, if m is even and m ≥ 3.

(12) sp(m/4,C), sp(m/4,C) ⊕ eiβ
R and sp(m/4,C) ⊕ C, if m = 4k.

(13) spin(9, 1,R) and spin(9, 1,R) ⊕ R, if m = 16.

Comments

Boothby/Wilson: spin(9, 1,R) and spin(9, 1,R) ⊕ R missing.

Complete proof: L. Kramer (2003) .
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Transitive Lie Groups Actions

Transitive Lie Group Actions on Projective Space

Theorem (compact case). Let Ad, A1, ..., Am ∈ so(N,R) with N ≥ 2.

The bilinear system

ρ̇ =
[
Ad +

r∑

k=1

uk(t)Ak, ρ
]

is controllable on projective space P
N−1(R) if and only if the system Lie

algebra L ⊂ so(N,R) is conjugate to one of the following types:

(1) so(N,R)

(2) su(N/2) or u(N/2), if N is even.

(3) sp(N/4), sp(N/4) ⊕ u(1) or sp(N/4) ⊕ sp(1), if N = 4k.

(4) g2, if N = 7.

(5) spin(7), if N = 8.

(6) spin(9), if N = 16.
BEDLEWO-07 – p.31/50



Transitive Lie Groups Actions

Transitive Lie Group Actions on odd-dimensional Spheres

Corollary (compact case). Let Ad, A1, ..., Am ∈ so(2n,R), n > 1. The

bilinear system

ẋ =
(
Ad +

m∑

k=1

uk(t)Ak

)
x, x(0) = x0 ∈ S2n−1

is controllable on the sphere S
2n−1 of odd dimension 2n− 1 if and only if

the system Lie algebra L ⊂ so(2n) is conjugate to one of the following

types:

(1) so(2n)

(2) su(n) or u(n).

(3) sp(n/2), sp(n/2) ⊕ u(1) or sp(n/2) ⊕ sp(1), if n = 2k.

(4) spin(7), if n = 4.

(5) spin(9), if n = 8.
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Transitive Lie Groups Actions

Comments

Conjugate can not be replaced by isomorphic! Counterexample:

so(3), su(2) ⊂ so(4) are isomorphic, but not conjugate to each

other. so(3) does not act transitively on S3!

Montgomery/Samelson: Classification of transitive compact group

actions on spheres. The above result does not appear there.

Brockett: incomplete characterization; sp(N/4) ⊕ u(1) and

sp(N/4) ⊕ sp(1) missing.
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Transitive Lie Groups Actions

Transitive Lie Group Actions on projective space

Theorem (arbitrary complex case). Let Ad, A1, ..., Am ∈ sl(N,C) with

N ≥ 2. The linear induced bilinear system is controllable on complex

projective space P
N−1(C) if and only if the system Lie algebra

L ⊂ sl(N,C) is conjugate to one of the following types:

(1) sl(N,C)

(2) su(N).

(3) sp(N/2,C), sp(N/2) for N even.

(4) sl(N/2,H) for N even.
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Transitive Lie Groups Actions

Transitive Lie Group Actions on Grassmannians

Theorem (arbitrary complex case). Let Ad, A1, ..., Am ∈ sl(N,C) with

N ≥ 2. The linear induced bilinear system is controllable on complex
Grassmann manifold Grass(k,N), k ≥ 2 if and only if the system Lie

algebra L ⊂ sl(N,C) is conjugate to one of the following types:

(1) sl(N,C).

(2) su(N)

The same classification holds true for an arbitrary complex flag manifold!
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Transitive Lie Groups Actions

Applications: Generalization of Albertini-Alessandro result

Corollary. The Liouville Master equation

ρ̇ = −i
[
Hd +

r∑

k=1

uk(t)Hk, ρ
]

is controllable on

Grass(k,N) := {ρ ∈ C
N×N|ρ = ρ∗, ρ2 = ρ, tr(ρ) = k}.

if and only if the system Lie algebra L ⊂ su(N,C) is conjugate to one of

the following types:

k = 1 or N − 1. L = sp(N/2), for N even, or L = su(N).

L = su(N) for 1 < k < N − 1.
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Transitive Lie Groups Actions

Comments. k=1

Proof: trivial consequence of Theorem (arbitrary complex case).

Alessandro-Albertini proof:

• gap in the proof, as sp(N/4) ⊕ sp(1) case is not discussed.

• complicated proof, using representation theoretic arguments,

and weak version of Corollary (compact case)–only necessary;

isomorphic instead conjugate.

• prove equivalence of pure state and projective state
controllability of quantum systems. Follows also immediately

by combining our proof with theirs.
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Transitive Lie Groups Actions

Alternative Proof.

(1) so(2n): too high dimension

(2) u(n): too high dimension

(3) sp(n/2) ⊕ u(1), sp(n/2) ⊕ sp(1): no Lie algebra strictly between

sp(n/2) and su(n) (sp(n/2) = Cartan-summand of su(n))

(4) spin(7): too high dimension

(5) spin(9): extra argument
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Main Results A :
Accessibility of Quantum Systems
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Main Results: Accessibility of Quantum Systems

N-level Systems:

Theorem A (N-level systems).

The (unital) N -level Lindblad Master Equation

ρ̇ = −i
[
Hd +

r∑

k=1

uk(t)Hk, ρ
]

+ L(ρ), ρ(0) = ρ0 ∈ P

is accessible if and only if the system Lie algebra LΣ is conjugate to

• For N > 2 even: gl(m,R)

• For N odd: gl(m,R), gl(m/2,C), sl(m/2,C) ⊕ eiβR,

sl(m/4,H) ⊕ eiβR, sl(m/4,H) ⊕ C, sl(m/4,H) ⊕ H,

sp(m/2,R) ⊕ R, sp(m/4,C) ⊕ eiβR, sp(m/4,C) ⊕ C
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Main Results: Accessibility of Quantum Systems

Spin- 1

2
Systems: m = 22n − 1

Theorem B (special case : spin- 1

2
systems).

(a) For arbitrary n spin-1

2
systems, n ≥ 2, the (unital) Lindblad Master

Equation is accessible if and only if LΣ = gl(22n − 1,R)

(b) Exceptional case (n = 1 , N = 2) : a 2-level system is accessible if

and only if

• LΣ = gl(3,R)

• LΣ = so(3) ⊕ R I3
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Main Results: Accessibility of Quantum Systems

Spin- 1

2
Systems: m = 22n − 1

Sketch of the proof.

For n spin- 1

2
systems, the dimension m = (2n)2 − 1 is odd. Thus,

the only transitive algebras left on previous list are so(m) ⊕ R I3,

sl(m,R) and gl(m,R).

sl(m,R) can be excluded due to the condition Tr(L) < 0.

so(3) ⊕ R is only possible for 2-level systems due to the Lie algebra

isomorphism between su(2) and so(3).

Comment:

(Altafini’03) states incorrectly that LΣ = gl(m,R) is necessary and

sufficient for accessibility for arbitrary N -level systems.
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Generalized
Double Bracket Flow
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Controllability of Double Bracket Equation

Generalized Double Bracket Flow:

A Hermitian, B skew-Hermitian.

Controlled Isospectral Flow

Ẋ =
[[
A(u), X

]
, X
]

+
[
B(u), X

]

on Hermitian matrices.

Generalizes Brockett’s double bracket flow.

Generalizes Matrix Riccati Differential Equation.

Lie -algebraic generalization: Mittenhuber.

BEDLEWO-07 – p.44/50



Controllability of Riccati Equation

Generalized double bracket flow on projection operators is
equivalent to Riccati differential equation:

K̇ = −KM11(u) +M22(u)K −KM12(u)K +M21(u)

Associated “Hamiltonian” matrix:

M(u) := A(u) +B(u) =

[
M11(u) M12(u)

M21(u) M22(u)

]

System Lie algebra LΣ, generated by M(u), u ∈ Rm.
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Controllability of Riccati Equation

Riccati Equation:

Theorem The Riccati equation is accessible if and only if one of the

following conditions is satisfied for the system Lie algebra:

(a) n is odd or 1 < k < n− 1. LΣ is conjugate to sln(C) or sun(C).

(b) n is even and k=1 or k=n− 1. LΣ is conjugate to sln(C), sun(C),

sln/2(H), spn/2(C) or spn/2.

Theorem Let M(u) ∈ spn(C) be skew-Hermitian and Hamiltonian.

The Riccati equation is accessible if and only if the system Lie algebra LΣ

is conjugate to spn(C) or to spn.
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Controllability of Double Bracket Flows

Generalized Double Bracket Flow:

When is the Generalized Double Bracket Flow

Ṗ =
[
[A(u), P ], P

]
+ [B(u), P ]

accessible?

Isospectral Projection operator:

P :=

[
Ik

K

](
Ik +K∗K

)−1 [
Ik K∗

]
,

BEDLEWO-07 – p.47/50



Controllability of Double Bracket Flow

Theorem The generalized double bracket equation is accessible on
constant rank projection operators if and only if one of the following

conditions is satisfied:

(a) n is odd or 1 < k < n− 1. The Lie algebra LΣ is conjugate to

sln(C) or sun(C).

(b) n is even and k=1 or k=n− 1. The Lie algebra LΣ is conjugate to

sln(C), sun(C), sln/2(H), spn/2(C) or spn/2.
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Controllability of Double Bracket Flow

Accessibility of GDBE does not imply controllability:
Counter example B = 0, A0 + uA1 exists.

Bedlewo Conjecture:
accessibility implies controllability, provided the Lie algebra of B(u)

equals su(n).
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Controllability of Double Bracket Flow

Conclusions:

Showed how to derive controllability results from the theory of

transitive Lie group actions.

Application 1: Characterized controllability of the Liouville Master

Equation for N -coupled spin 1/2 systems. (New proof of results by

Altafini, Schirmer, Brockett and others.)

Application 2: A necessary and sufficient condition for accessibility

of the generalized double flow on Grassmann manifolds.

Application 3: A necessary and sufficient condition for accessibility

of the controlled Riccati differential equation

K̇ = A11(u)K +KA22(u) −KA12(u)K +A21(u)

on symmetric matrices K.

Application 4: Generalizations for nested Riccati differential

equations are possible. BEDLEWO-07 – p.50/50
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