

Controllability of finite-dimensional quantum systems

G. Dirr, U. Helmke and I. Kurniawan

Institute of Mathematics University of Würzburg, Germany

http://www2.mathematik.uni-wuerzburg.de

Supported by : Elite Network of Bavaria (ENB) Identification, Optimization and Control with Applications

in Modern Technologies

Outline

- Motivation: Quantum Control of Spin Systems
- Example: Two-level, spin- $\frac{1}{2}$ system
- Controllability on Homogeneous Spaces
- Classification of Transitive Lie Group Actions
- Main Results A : Accessibility of Quantum Systems
- Main Results B : Accessibility of Double Bracket Flows

N-Level Quantum Systems

• N-level quantum systems are described by their density operators ρ satisfying

(a)
$$ho \in \mathbb{C}^{N imes N}$$
 , $ho =
ho^{\dagger}$

(b)
$$\operatorname{Tr}(\rho) = 1$$

- (c) $\rho \ge 0$
- Fact: The set \mathcal{P} of all density operators forms a convex set.
- Example : $n \operatorname{spin} \frac{1}{2}$ systems are 2^n -level systems.

Completely positive operators

- A linear map $\Phi : \mathcal{P} \to \mathcal{P}$ is **completely positive** if and only if $I_N \otimes \Phi$ is positivity preserving.
- The set CP of completely positive operators is a **semialgebraic Lie-semigroup** of $GL(N^2)$.
- CP operates **transitively** on \mathcal{P} .
- The Lindblad-Kossakowski operators are infinitesimal generators of one-parameter semigroups in CP.

Motivation: Quantum Control of Spin Systems

Dynamics of N-Level Open Quantum Systems

Lindblad Master Equation

$$\dot{\rho} = -i \Big[H_d + \sum_{k=1}^m u_k(t) H_k, \rho \Big] + \mathcal{L}(\rho), \quad \rho(0) = \rho_0 \in \mathcal{P}$$



$$\mathcal{L}(\rho) = \sum_{k=1}^{p} \left[\lambda_k \rho, \lambda_k^{\dagger} \right] + \left[\lambda_k, \rho \lambda_k^{\dagger} \right].$$

• The Lindblad term \mathcal{L} is **unital** iff $\mathcal{L}(I) = 0$, e.g. when

$$\lambda_k \lambda_k^{\dagger} = \lambda_k^{\dagger} \lambda_k.$$

Optimal Control Problem : Maximize the trace function

$\mathrm{tr}(\mathbf{C}^\dagger\rho(\mathbf{T}))$

subject to the Lindblad Master Equation

$$\dot{\rho} = -i \Big[H_d + \sum_{k=1}^r u_k(t) H_k, \rho \Big] + \sum_{k=1}^p \big[\lambda_k \rho, \lambda_k^{\dagger} \big] + \big[\lambda_k, \rho \lambda_k^{\dagger} \big]$$

Goals:

- Characterize the reachable sets $\mathcal{R}(\rho_0)!$
- Optimize $tr(C^{\dagger}\rho)$ on reachable sets $\mathcal{R}(\rho_0)!$
- Solve the optimal control problem with terminal constraints!

Basic Structural Questions:

- Is the system semigroup of the Lindblad-Kossakowski equation a semialgebraic Lie semigroup?
- Are the reachable sets of the Lindblad-Kossakowski equation semialgebraic?
- When is the system semigroup dense in *CP*? Answer: Never.
- When is the Lindblad equation controllable? Answer: Never.

Different Notions of Controllability / Accessibility

Unit Sphere / Projective Space: Pure State Controllability

$$(\Sigma')$$
 $\dot{\psi} = -i(H_d + \sum_{k=1}^m u_k(t)H_k)\psi, \quad \psi(0) = \psi_0 \in S^{2N-1}$

• Unitary Orbit: Density Operator Controllability

$$(\widehat{\Sigma}) \qquad \dot{\rho} = -\mathrm{i} \Big[H_d + \sum_{k=1}^m u_k(t) H_k, \rho \Big], \quad \rho(0) = \rho_0 \in \mathcal{P}$$

Special Unitary Group: Operator Controllability

(
$$\Sigma$$
) $\dot{U} = -i \left(H_d + \sum_{k=1}^m u_k(t) H_k \right) U, \quad U(0) = I_N$

Known Results: Liouville Equation

$$\dot{\rho} = -\mathrm{i} \Big[H_d + \sum_{k=1}^m u_k(t) H_k, \rho \Big].$$

- Characterization of pure state controllability (spheres/projective spaces) : Allesandro, Albertini, et al.
- Characterization of reachable sets!
 - Specific *n*-level systems: (operator controllability: S.-Herbrüggen, Brockett-Khaneja; general case: Albertini, Allesandro)
- Riemannian optimization algorithms for the trace function (Dirr, He, Morar, Schulte-Herbrüggen)

Connections: Brockett's work; gen. C-numerical ranges; tensor SVD

Controllability of Liouville Equation

• The Liouville Master equation for n spin- $\frac{1}{2}$ systems

$$\dot{\rho} = -\mathrm{i} \Big[H_d + \sum_{j=1}^m u_j(t) H_j, \rho \Big]$$

is controllable on each isospectral set $\{U\rho U^* | U \in SU(2^n)\}$, iff the spin-spin coupling graph is connected.

 Controllability on rank 1 projection operators holds if and only if the system Lie algebra is isomorphic to su(2ⁿ) or to sp(2ⁿ) (Albertini, D'Alessandro 2003).

Known Results: Lindblad Equation

$$\dot{\rho} = -\mathrm{i}\Big[H_d + \sum_{k=1}^m u_k(t)H_k, \rho\Big] + \sum_{k=1}^p \big[\lambda_k\rho, \lambda_k^{\dagger}\big] + \big[\lambda_k, \rho\lambda_k^{\dagger}\big].$$

Wrong Claims: Reachable sets form annulus (Altafini 04)

In general meaningless except perhaps

- for 2-level systems (the simplest case),
- with additional assumption of "fast-controllability" on the Hamiltonian part (without Lindblad and drift term).
- Optimization problem: unsolved!

6

Example: Spin- $\frac{1}{2}$ System

BEDLEWO-07 - p.12/50

Example: One-Spin System

Example : two-level systems, Bloch vector equation

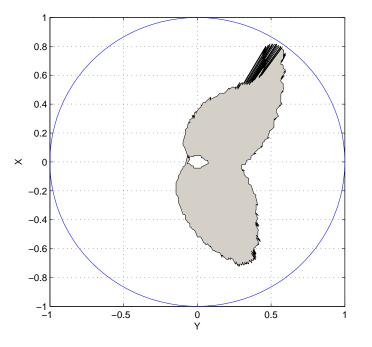
$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -\gamma_1 & -\delta & u(t) \\ \delta & -\gamma_2 & 0 \\ -u(t) & 0 & -\gamma_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \gamma_0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 δ : drift $\gamma_k \ge 0$: Lindblad relaxation

- Due to relaxation, the system is never controllable!
- Accessibility holds if and only if $\delta \neq 0, (\gamma_1, \gamma_2, \gamma_3) \neq 0$.
- Generalization: Khaneja/Stefanatos
- Special Case: Sugny, Kontz, Jauslin (2007)

Example: One-Spin System

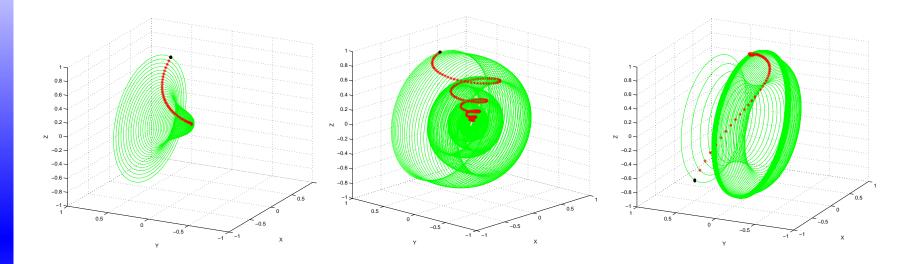
Slice through the reachable set for a single spin system.



Reachable set is not an annulus!!

Example: One-Spin System

Instantaneous Reachable Sets



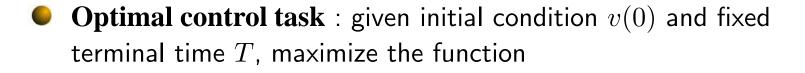
- left : $\gamma_1 = \gamma_2 = \gamma_3 = \delta$, $\gamma_0 = 0$ (unital) • center : $\gamma_1 = \gamma_2 = \gamma_3 = 0.1\delta$, $\gamma_0 = 0$ (unital)
- right : $\gamma_0 = \gamma_1 = \gamma_2 = 2\gamma_3 = \delta$, $\gamma_0 \neq 0$ (nonunital)

Example: One-Spin System

Optimal Control Problem

• Bloch vector equation, $v = [x \ y \ z]^{\top}$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -\gamma_1 & -\delta & u(t) \\ \delta & -\gamma_2 & 0 \\ -u(t) & 0 & -\gamma_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \gamma_0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

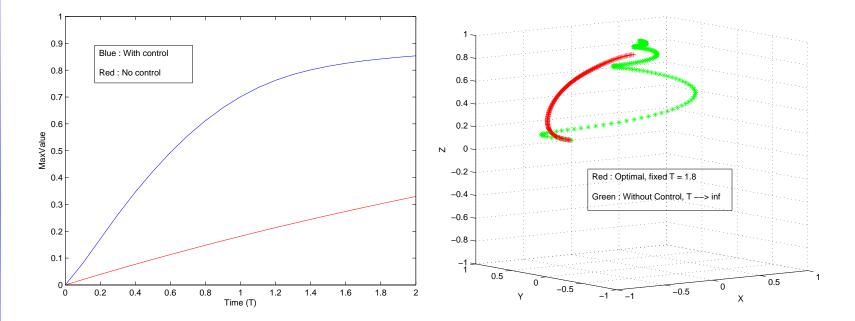


$$f_T = c^{\top} v(T) \quad , \quad c = [0 \ 0 \ 1]^{\top}$$

via an optimal control u(t).

Numerical optimization for non-unital case

• $\gamma_0 = \gamma_1 = \gamma_2 = \gamma_3 = 0.2, \ \delta = 1, \ v(0) = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}^\top$

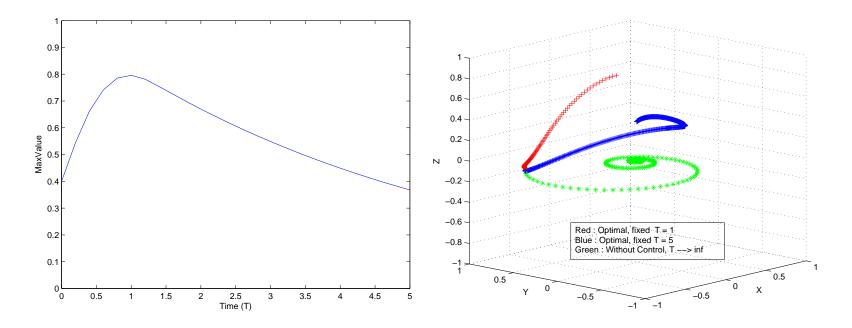


• The value $f_T = 85\%$ can be achieved at T = 2 $f_T = 1$ only as $T \to \infty$ (even with optimal control)

Example: One-Spin System

Numerical optimization for unital case

•
$$\gamma_0 = 0$$
, $\gamma_1 = \gamma_2 = \gamma_3 = 0.2$, $\delta = 1$, $v(0) = [-rac{4}{10} \quad rac{9}{10} \quad -rac{\sqrt{3}}{10}]^ op$



• The maximum value $f_T = 80\%$ can only be achieved at T = 1When $T \neq 1$, the maximum value $f_T < 80\%$

Controllability on Homogeneous Spaces

History

- Nonlinear Control Theory: Controllability, observability, ...
 (Brockett, Krener, Kupka, Sussmann, Jurdjevic, ...)
- Lie Theory of Semigroups: Lie wedges; cones in Lie algebras, ... (Hilgert, Hoffmann, Lawson, Ol'shanskii, ...)
- Transformation Groups: Classification of transitive actions (Montgomery/Samelson, Boothby/Wilson, Völklein, Kramer)

Bilinear Control System

• G connected matrix Lie group with Lie algebra \mathfrak{g} .

Bilinear control system on G

$$(\Sigma) \quad \dot{X} = \left(A_d + \sum_{k=1}^r u_k(t)A_k\right)X, \quad X(0) = I,$$

where $A_d, A_1, ..., A_r \in \mathfrak{g}$ and $u_k(t) \in \mathbb{R}$ for k = 1, ..., r.

Reachable set

$$\mathcal{R}_{\Sigma}(I) = \{ X \in G \mid \exists T \ge 0 \text{ and } u_1, ..., u_r : X(T) = X \}$$

Controllability and Accessibility:

- Accessibility: The reachable set $\mathcal{R}_{\Sigma}(I)$ has an interior point.
- **Controllability:**

$$\mathcal{R}_{\Sigma}(I) = G.$$

System Lie Algebra:

 \mathcal{L}_{Σ} is the smallest Lie subalgebra of \mathfrak{g} containing $A_1, ..., A_r, A_d$, i.e. the smallest subspace containing all the iterated Lie brackets

$$A_d, A_1, \dots, A_r, [A_d, A_i], [A_i, A_j], [A_d, [A_i, A_j]], \dots$$

• System Group:

 \mathcal{G}_{Σ} is the smallest Lie subgroup of G containing all one-parameter subgroups e^{At} , $A \in \mathcal{L}_{\Sigma}$, i.e. $\mathcal{G}_{\Sigma} := \langle \exp(\mathcal{L}_{\Sigma}) \rangle$.

Controllability and Accessibility:

Theorem.(Jurdjevic/Sussmann)

- (Σ) is **accessible** if and only if the system Lie algebra is $\mathcal{L}_{\Sigma} = \mathfrak{g}$.
- If G is compact, than **controllability** of (Σ) is equivalent to **accessibility**.

Definition A homogeneous space is a manifold M on which G acts transitively via $\alpha : (X, p) \mapsto X \cdot p$. The homogeneous spaces are thus the quotient spaces

G/H

by a closed Lie subgroup $H \subset G$.

Example: Grassmannian

The complex Grassmannian is the unitary orbit

$$Grass(k,n) := \{ \rho \in \mathbb{C}^{n \times n} | \rho = \rho^*, \rho^2 = \rho, tr(\rho) = k \}.$$

Can be identified with manifold of k-dimensional complex subspaces of \mathbb{C}^n .

Controllability on Homogeneous Spaces

Lie Group Actions and Induced / Lifted Systems

Induced Control System on G/H:

$$\dot{p} = D_1 \alpha(I, p) \left(A_d + \sum_{k=1}^r u_k(t) A_k \right), \quad p(0) = p_0.$$

• Fact: Each solution X(t) of the bilinear system yields a solution p(t) of the induced system via

$$p(t) := X(t) \cdot p_0$$

and vice versa.

Controllability on Homogeneous Spaces

Transitive Group Actions and Accessibility

Theorem.

- (a) If the system is **controllable** on G, then the induced system is **controllable** on G/H.
- (b) The system group \mathcal{G}_{Σ} acts **transitively** on G/H if and only if the induced system is is **accessible** on G/H.

Two Cases of Interest:

- $G/H = \mathbf{P}^{n-1} := \operatorname{Grass}(1, n)$ projective space
- $G/H = Grass(k, n), k \ge 2$, Grassmannian

Sufficient Condition for Controllability

Theorem. The induced bilinear system is **controllable** on G/H, provided

- (a) The induced system is is **accessible** on G/H.
- (b) There exist constant controls such that the induced system is weakly Poisson stable on G/H.

Corollary. Let *G* be a **compact** connected Lie group and *H* a closed Lie subgroup. Then the induced bilinear system is **controllable on** G/H **if and only if the system group** $\mathcal{G} \subset G$ **acts transitively on** G/H.

Classification of Transitive Lie Group Actions

Classification of Transitive Lie Groups Actions

Transitive Lie Group Actions on $\mathbb{R}^m \setminus \{0\}$

Theorem. (Boothby/Wilson; Tits; Kramer) Let $A_d, A_1, ..., A_r \in \mathfrak{gl}(m, \mathbb{R})$ with $m \geq 2$. The bilinear system

$$(\Sigma) \qquad \dot{x} = \left(A_d + \sum_{k=1}^r u_k(t)A_k\right)x, \quad x(0) = x_0$$

is accessible on $\mathbb{R}^m \setminus \{0\}$ if and only if the system Lie algebra $\mathcal{L}_{\Sigma} \subset \mathfrak{gl}(m, \mathbb{R})$ is conjugate to one of the following types:

- (1) $\mathfrak{so}(m) \oplus \mathbb{R}$, if $m \geq 3$.
- (2) $\mathfrak{su}(m/2) \oplus e^{i\alpha}\mathbb{R}$ and $\mathfrak{su}(m/2) \oplus \mathbb{C}$, if m is even and $m \ge 3$.
- (3) $\mathfrak{sp}(m/4) \oplus e^{i\alpha}\mathbb{R}$, $\mathfrak{sp}(m/4) \oplus \mathbb{C}$ and $\mathfrak{sp}(m/4) \oplus \mathbb{H}$, if m = 4k.
- (4) $\mathfrak{g}_2\oplus\mathbb{R}$, if m=7.
- (5) $\mathfrak{spin}(7) \oplus \mathbb{R}$, if m = 8.
- (6) $\mathfrak{spin}(9) \oplus \mathbb{R}$, if m = 16.

Classification of Transitive Lie Groups Actions

Transitive Lie Group Actions on $\mathbb{R}^m \setminus \{0\}$ (cont'd)

- (7) $\mathfrak{sl}(m,\mathbb{R})$ and $\mathfrak{gl}(m,\mathbb{R})$, if $m \geq 2$.
- (8) $\mathfrak{sl}(m/2,\mathbb{C})$, $\mathfrak{sl}(m/2,\mathbb{C}) \oplus e^{i\beta}\mathbb{R}$ and $\mathfrak{gl}(m/2,\mathbb{C})$, if m is even and $m \ge 2$.
- (9) $\mathfrak{sl}(m/4,\mathbb{H}), \mathfrak{sl}(m/4,\mathbb{H}) \oplus e^{i\beta}\mathbb{R} \text{ and } \mathfrak{sl}(m/4,\mathbb{H}) \oplus \mathbb{C}, \text{ if } m = 4k.$
- (10) $\mathfrak{sl}(m/4,\mathbb{H}) \oplus \mathfrak{sp}(1)$ and $\mathfrak{sl}(m/4,\mathbb{H}) \oplus \mathbb{H}$, if m = 4k.
- (11) $\mathfrak{sp}(m/2,\mathbb{R})$ and $\mathfrak{sp}(m/2,\mathbb{R})\oplus\mathbb{R}$, if m is even and $m\geq 3$.
- (12) $\mathfrak{sp}(m/4,\mathbb{C})$, $\mathfrak{sp}(m/4,\mathbb{C}) \oplus e^{i\beta}\mathbb{R}$ and $\mathfrak{sp}(m/4,\mathbb{C}) \oplus \mathbb{C}$, if m = 4k.
- (13) $\mathfrak{spin}(9,1,\mathbb{R})$ and $\mathfrak{spin}(9,1,\mathbb{R}) \oplus \mathbb{R}$, if m = 16.

Comments

- Boothby/Wilson: $\mathfrak{spin}(9,1,\mathbb{R})$ and $\mathfrak{spin}(9,1,\mathbb{R}) \oplus \mathbb{R}$ missing.
- Complete proof: L. Kramer (2003) .
- Open Problem: Affine Systems.

Transitive Lie Groups Actions

Transitive Lie Group Actions on Projective Space

Theorem (compact case). Let $A_d, A_1, ..., A_m \in \mathfrak{so}(N, \mathbb{R})$ with $N \ge 2$. The bilinear system

$$\dot{\rho} = \left[A_d + \sum_{k=1}^r u_k(t)A_k, \rho\right]$$

is controllable on projective space $\mathbf{P}^{N-1}(\mathbb{R})$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{so}(N, \mathbb{R})$ is conjugate to one of the following types:

- (1) $\mathfrak{so}(N,\mathbb{R})$
- (2) $\mathfrak{su}(N/2)$ or $\mathfrak{u}(N/2)$, if N is even.
- (3) $\mathfrak{sp}(N/4)$, $\mathfrak{sp}(N/4) \oplus \mathfrak{u}(1)$ or $\mathfrak{sp}(N/4) \oplus \mathfrak{sp}(1)$, if N = 4k.
- (4) g_2 , if N = 7.
- (5) $\mathfrak{spin}(7)$, if N = 8.
- (6) $\mathfrak{spin}(9)$, if N = 16.

Transitive Lie Groups Actions

Transitive Lie Group Actions on odd-dimensional Spheres

Corollary (compact case). Let $A_d, A_1, ..., A_m \in \mathfrak{so}(2n, \mathbb{R})$, n > 1. The bilinear system

$$\dot{x} = \left(A_d + \sum_{k=1}^m u_k(t)A_k\right)x, \quad x(0) = x_0 \in S^{2n-1}$$

is controllable on the sphere S^{2n-1} of odd dimension 2n-1 if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{so}(2n)$ is **conjugate** to one of the following types:

- (1) $\mathfrak{so}(2n)$
- (2) $\mathfrak{su}(n)$ or $\mathfrak{u}(n)$.
- (3) $\mathfrak{sp}(n/2)$, $\mathfrak{sp}(n/2) \oplus \mathfrak{u}(1)$ or $\mathfrak{sp}(n/2) \oplus \mathfrak{sp}(1)$, if n = 2k.
- (4) spin(7), if n = 4.
- (5) spin(9), if n = 8.

Transitive Lie Groups Actions

Comments

- Conjugate can not be replaced by isomorphic! Counterexample: so(3), su(2) ⊂ so(4) are isomorphic, but not conjugate to each other. so(3) does not act transitively on S³!
- Montgomery/Samelson: Classification of transitive compact group actions on spheres. The above result does not appear there.
- Brockett: incomplete characterization; $\mathfrak{sp}(N/4) \oplus \mathfrak{u}(1)$ and $\mathfrak{sp}(N/4) \oplus \mathfrak{sp}(1)$ missing.

Transitive Lie Groups Actions

Transitive Lie Group Actions on projective space

Theorem (arbitrary complex case). Let $A_d, A_1, ..., A_m \in \mathfrak{sl}(N, \mathbb{C})$ with $N \geq 2$. The linear induced bilinear system is controllable on complex projective space $\mathbf{P}^{N-1}(\mathbb{C})$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{sl}(N, \mathbb{C})$ is conjugate to one of the following types:

- (1) $\mathfrak{sl}(N,\mathbb{C})$
- (2) $\mathfrak{su}(N)$.
- (3) $\mathfrak{sp}(N/2,\mathbb{C})$, $\mathfrak{sp}(N/2)$ for N even.
- (4) $\mathfrak{sl}(N/2,\mathbb{H})$ for N even.

Transitive Lie Groups Actions

Transitive Lie Group Actions on Grassmannians

Theorem (arbitrary complex case). Let $A_d, A_1, ..., A_m \in \mathfrak{sl}(N, \mathbb{C})$ with $N \ge 2$. The linear induced bilinear system is controllable on **complex** Grassmann manifold $\operatorname{Grass}(k, N), k \ge 2$ if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{sl}(N, \mathbb{C})$ is conjugate to one of the following types:

- (1) $\mathfrak{sl}(N,\mathbb{C}).$
- (2) $\mathfrak{su}(N)$

The same classification holds true for an arbitrary complex flag manifold!

Transitive Lie Groups Actions

Applications: Generalization of Albertini-Alessandro result

Corollary. The Liouville Master equation

$$\dot{\rho} = -\mathrm{i} \left[H_d + \sum_{k=1}^r u_k(t) H_k, \rho \right]$$

is controllable on

$$Grass(k, N) := \{ \rho \in \mathbb{C}^{N \times N} | \rho = \rho^*, \rho^2 = \rho, tr(\rho) = k \}.$$

if and only if the system Lie algebra $\mathcal{L} \subset \mathfrak{su}(N, \mathbb{C})$ is conjugate to one of the following types:

- k = 1 or N 1. $\mathcal{L} = \mathfrak{sp}(N/2)$, for N even, or $\mathcal{L} = \mathfrak{su}(N)$.
- $\mathcal{L} = \mathfrak{su}(N)$ for 1 < k < N 1.

Transitive Lie Groups Actions

Comments. k=1

- Proof: trivial consequence of Theorem (arbitrary complex case).
- Alessandro-Albertini proof:
 - gap in the proof, as $\mathfrak{sp}(N/4) \oplus \mathfrak{sp}(1)$ case is not discussed.
 - complicated proof, using representation theoretic arguments, and weak version of Corollary (compact case)—only necessary; isomorphic instead conjugate.
 - prove equivalence of pure state and projective state controllability of quantum systems. Follows also immediately by combining our proof with theirs.

Transitive Lie Groups Actions

Alternative Proof.

- (1) $\mathfrak{so}(2n)$: too high dimension
- (2) u(n): too high dimension
- (3) $\mathfrak{sp}(n/2) \oplus \mathfrak{u}(1)$, $\mathfrak{sp}(n/2) \oplus \mathfrak{sp}(1)$: no Lie algebra strictly between $\mathfrak{sp}(n/2)$ and $\mathfrak{su}(n)$ ($\mathfrak{sp}(n/2) =$ Cartan-summand of $\mathfrak{su}(n)$)
- (4) $\mathfrak{spin}(7)$: too high dimension
- (5) $\mathfrak{spin}(9)$: extra argument

Main Results A : Accessibility of Quantum Systems

Main Results: Accessibility of Quantum Systems N-level Systems:

Theorem A (N-level systems).

The (unital) N-level Lindblad Master Equation

$$\dot{\rho} = -i \left[H_d + \sum_{k=1}^r u_k(t) H_k, \rho \right] + \mathcal{L}(\rho), \quad \rho(0) = \rho_0 \in \mathcal{P}$$

is accessible if and only if the system Lie algebra \mathcal{L}_{Σ} is conjugate to

- For N > 2 even: $\mathfrak{gl}(m, \mathbb{R})$
- For N odd: $\mathfrak{gl}(m,\mathbb{R})$, $\mathfrak{gl}(m/2,\mathbb{C})$, $\mathfrak{sl}(m/2,\mathbb{C}) \oplus e^{i\beta}\mathbb{R}$, $\mathfrak{sl}(m/4,\mathbb{H}) \oplus e^{i\beta}\mathbb{R}$, $\mathfrak{sl}(m/4,\mathbb{H}) \oplus \mathbb{C}$, $\mathfrak{sl}(m/4,\mathbb{H}) \oplus \mathbb{H}$, $\mathfrak{sp}(m/2,\mathbb{R}) \oplus \mathbb{R}$, $\mathfrak{sp}(m/4,\mathbb{C}) \oplus e^{i\beta}\mathbb{R}$, $\mathfrak{sp}(m/4,\mathbb{C}) \oplus \mathbb{C}$

Main Results: Accessibility of Quantum Systems

Spin- $\frac{1}{2}$ Systems: $m = 2^{2n} - 1$

Theorem B (special case : spin- $\frac{1}{2}$ systems).

- (a) For arbitrary $n \operatorname{spin} \frac{1}{2}$ systems, $n \ge 2$, the (unital) Lindblad Master Equation is accessible if and only if $\mathcal{L}_{\Sigma} = \mathfrak{gl}(2^{2n} - 1, \mathbb{R})$
- (b) Exceptional case (n = 1, N = 2): a 2-level system is accessible if and only if
 - $\mathcal{L}_{\Sigma} = \mathfrak{gl}(3,\mathbb{R})$
 - $\mathcal{L}_{\Sigma} = \mathfrak{so}(3) \oplus \mathbb{R} I_3$

Main Results: Accessibility of Quantum Systems

Spin- $\frac{1}{2}$ Systems: $m = 2^{2n} - 1$

Sketch of the proof.

- For $n \operatorname{spin} \frac{1}{2}$ systems, the dimension $m = (2^n)^2 1$ is odd. Thus, the only transitive algebras left on previous list are $\mathfrak{so}(m) \oplus \mathbb{R} I_3$, $\mathfrak{sl}(m, \mathbb{R})$ and $\mathfrak{gl}(m, \mathbb{R})$.
- $\mathfrak{sl}(m,\mathbb{R})$ can be excluded due to the condition $Tr(\mathcal{L}) < 0$.
- $\mathfrak{so}(3) \oplus \mathbb{R}$ is only possible for 2-level systems due to the Lie algebra isomorphism between $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$.

Comment:

(Altafini'03) states incorrectly that $\mathcal{L}_{\Sigma} = \mathfrak{gl}(m, \mathbb{R})$ is necessary and sufficient for accessibility for arbitrary *N*-level systems.

BEDLEWO-07 - p.43/50

Controllability of Double Bracket Equation

Generalized Double Bracket Flow:

A Hermitian, B skew-Hermitian.

Controlled Isospectral Flow

$$\dot{X} = \left[\left[A(u), X \right], X \right] + \left[B(u), X \right]$$

on Hermitian matrices.

- Generalizes Brockett's double bracket flow.
- Generalizes Matrix Riccati Differential Equation.
- Lie -algebraic generalization: Mittenhuber.

Controllability of Riccati Equation

Generalized double bracket flow on projection operators is equivalent to Riccati differential equation:

 $\dot{K} = -KM_{11}(u) + M_{22}(u)K - KM_{12}(u)K + M_{21}(u)$

Associated "Hamiltonian" matrix:

$$M(u) := A(u) + B(u) = \begin{bmatrix} M_{11}(u) & M_{12}(u) \\ M_{21}(u) & M_{22}(u) \end{bmatrix}$$

System Lie algebra \mathcal{L}_{Σ} , generated by M(u), $u \in \mathbb{R}^m$.

Controllability of Riccati Equation

Riccati Equation:

Theorem The Riccati equation is **accessible** if and only if one of the following conditions is satisfied for the system Lie algebra:

- (a) n is odd or 1 < k < n 1. \mathcal{L}_{Σ} is conjugate to $\mathfrak{sl}_n(\mathbb{C})$ or $\mathfrak{su}_n(\mathbb{C})$.
- (b) n is even and k=1 or k=n-1. \mathcal{L}_{Σ} is conjugate to $\mathfrak{sl}_n(\mathbb{C})$, $\mathfrak{su}_n(\mathbb{C})$, $\mathfrak{sl}_{n/2}(\mathbb{H})$, $\mathfrak{sp}_{n/2}(\mathbb{C})$ or $\mathfrak{sp}_{n/2}$.

Theorem Let $M(u) \in \mathfrak{sp}_n(\mathbb{C})$ be skew-Hermitian and Hamiltonian. The Riccati equation is **accessible** if and only if the system Lie algebra \mathcal{L}_{Σ} is conjugate to $\mathfrak{sp}_n(\mathbb{C})$ or to \mathfrak{sp}_n .

Controllability of Double Bracket Flows

Generalized Double Bracket Flow:

When is the Generalized Double Bracket Flow

$$\dot{P} = \left[[A(u), P], P \right] + [B(u), P]$$

accessible?

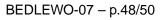
Isospectral Projection operator:

$$P := \begin{bmatrix} I_k \\ K \end{bmatrix} \left(I_k + K^* K \right)^{-1} \begin{bmatrix} I_k & K^* \end{bmatrix},$$

Controllability of Double Bracket Flow

Theorem The generalized double bracket equation is **accessible on constant rank projection operators** if and only if one of the following conditions is satisfied:

- (a) n is odd or 1 < k < n-1. The Lie algebra \mathcal{L}_{Σ} is conjugate to $\mathfrak{sl}_n(\mathbb{C})$ or $\mathfrak{su}_n(\mathbb{C})$.
- (b) n is even and k=1 or k=n-1. The Lie algebra \mathcal{L}_{Σ} is conjugate to $\mathfrak{sl}_n(\mathbb{C}), \mathfrak{su}_n(\mathbb{C}), \mathfrak{sl}_{n/2}(\mathbb{H}), \mathfrak{sp}_{n/2}(\mathbb{C})$ or $\mathfrak{sp}_{n/2}$.



Controllability of Double Bracket Flow

• Accessibility of GDBE does not imply controllability: Counter example $B = 0, A_0 + uA_1$ exists.

Bedlewo Conjecture:

accessibility implies controllability, provided the Lie algebra of B(u) equals $\mathfrak{su}(n).$

Controllability of Double Bracket Flow

Conclusions:

- Showed how to derive controllability results from the theory of transitive Lie group actions.
- Application 1: Characterized controllability of the Liouville Master Equation for N-coupled spin 1/2 systems. (New proof of results by Altafini, Schirmer, Brockett and others.)
- Application 2: A necessary and sufficient condition for accessibility of the generalized double flow on Grassmann manifolds.
- Application 3: A necessary and sufficient condition for accessibility of the controlled Riccati differential equation

$$\dot{K} = A_{11}(u)K + KA_{22}(u) - KA_{12}(u)K + A_{21}(u)$$

on symmetric matrices K.

Application 4: Generalizations for nested Riccati differential equations are possible.
BEDLEWO-07 – p.50/50