The XXZ model and applications to quantum computing

Jaideep Mulherkar

University of California Davis Joint work with Nachtergaele, Sims and Starr

October 12th 2007

• In order to make the promise of quantum computing a reality, need to build physical systems that faithfully implement quantum gates.

Introduction

- In order to make the promise of quantum computing a reality, need to build physical systems that faithfully implement quantum gates.
- Basic requirement is that the experimenter has access to two states effectively decoupled from the environment, and transitions between these states controlled to simulate gates.

Introduction

- In order to make the promise of quantum computing a reality, need to build physical systems that faithfully implement quantum gates.
- Basic requirement is that the experimenter has access to two states effectively decoupled from the environment, and transitions between these states controlled to simulate gates.
- We investigate the possibility of using excited states at the interfaces called 'kinks' of one dimensional magnetic systems such as the ferromagnetic XXZ Heisenberg model.

- In order to make the promise of quantum computing a reality, need to build physical systems that faithfully implement quantum gates.
- Basic requirement is that the experimenter has access to two states effectively decoupled from the environment, and transitions between these states controlled to simulate gates.
- We investigate the possibility of using excited states at the interfaces called 'kinks' of one dimensional magnetic systems such as the ferromagnetic XXZ Heisenberg model.
- For spins of magnitude J ≥ 3/2 and with suitable anisotropy such as the ferromagentic XXZ model isolated excitations are possible. If one could build one-dimensional spin J systems like the XXZ model, it would be a good starting point to encode qubits and unitary gates.

< 国 > < 三 > <

Qubit and quantum gates

- A qubit is a(ny) quantum system with a state space ≅ C². The state of a qubit is some basis {|0⟩, |1⟩} is a normalized vector ψ = a|0⟩ + b|1⟩ a, b ∈ C |a|² + |b|² = 1
- A quantum gate represents evolution of a qubit, governed by the Schrodinder equation.

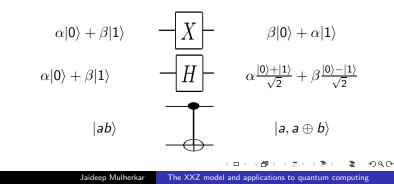
$$\psi(t) = e^{-iHt}\psi(0)$$

Qubit and quantum gates

٩

- A qubit is a(ny) quantum system with a state space ≅ C². The state of a qubit is some basis {|0⟩, |1⟩} is a normalized vector ψ = a|0⟩ + b|1⟩ a, b ∈ C |a|² + |b|² = 1
- A quantum gate represents evolution of a qubit, governed by the Schrodinder equation.

$$\psi(t) = e^{-iHt}\psi(0)$$



The XXZ Model

- The XXZ model, a mathematical model for magnetism. Atoms or ions are fixed at sites of a subset of a discrete lattice (Z).
- State space for a single site α is H_α = C^{2J+1}_α. For the entire system H(Λ, J) = ⊗_{α∈Λ}H_α Λ ⊂ Z |Λ| := number of sites.
- Hamiltonian of the XXZ model with $\Lambda = [-L, L]$ is given by

$$\begin{aligned} H_{L}^{k}(\Delta^{-1}) &= \sum_{\alpha=-L}^{L-1} \left[(J^{2} - S_{\alpha}^{3} S_{\alpha+1}^{3}) - \Delta^{-1} (S_{\alpha}^{1} S_{\alpha+1}^{1} + S_{\alpha}^{2} S_{\alpha+1}^{2}) \right] + \\ &J\sqrt{1 - \Delta^{-2}} (S_{-L}^{3} - S_{L}^{3}) \end{aligned}$$

AQ (A

- Hamiltonian is non negative.
- The XXZ kink Hamiltonian commutes with the operator $S_{tot}^3 = \sum_{\alpha=-L}^{L} S_{\alpha}^3$. We define \mathcal{H}_M to be the eigenspace of S_{tot}^3 with eigenvalue $M \in \{-J(2L+1), \ldots, J(2L+1)\}$. These subspaces are called "sectors", and they are invariant subspaces for $H_L^k(\Delta^{-1})$.

Ground States and spectral gap

- It was discovered (Alcaraz, Salinas, Wrezinski 1995) that under suitable boundary conditions the XXZ model posseses a family of ground states (kink and antikink). Ground state vectors are known in closed form and are unique in each sector.
- The magetization profile of the ground state vectors shows a sharp transition in the magnetization from a fully polarized down at the left to a fully polarized up at the right.

• Koma, Nachtergaele and Starr [2000] proved that there is a non vanishing spectral gap above all the kink ground states for all values of *J*.

Theorem

For suitably large anisotropy Δ the first excited state in each sector of the spin J XXZ model for $J \ge 3/2$ is an isolated eigenvalue i.e. there is a nonvanishing gap that is uniform in L with the rest of the spectrum.

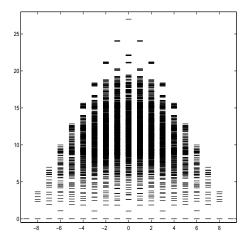


Figure: The Spectrum of the XXZ Model for J = 3/2, chain of length 6

5900

∍

Spectrum

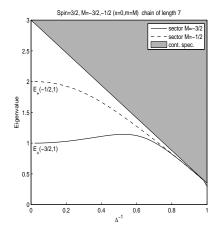


Figure: The Spectrum of the XXZ Model for J = 3/2 chain of length 7

P

-

Э

5990

€

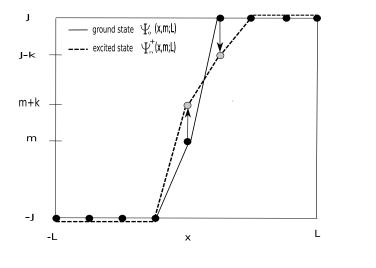
$${\cal H}^{
m k}_{\it L}(\Delta^{-1})\,=\,{\cal H}^{
m k}_{\it L}(0)\,+\,\Delta^{-1}{\cal H}^{(1)}_{\it L}\,+\,\left(1-\sqrt{1-\Delta^{-2}}
ight){\cal H}^{(2)}_{\it L}$$

 $\begin{array}{lll} H_L^k(0) &\equiv & \mbox{Diagonal Hamiltonian (Ising limit)} \\ H_L^{(1)} &\equiv & \mbox{Tridiagonal} \\ H_L^{(2)} &\equiv & \mbox{Boundary term} \end{array}$

Jaideep Mulherkar The XXZ model and applications to quantum computing

5990

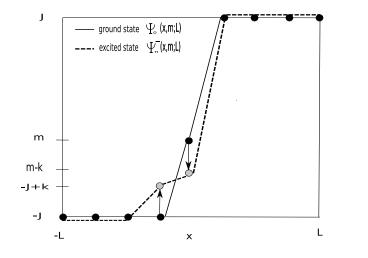
Ising Excitations



5990

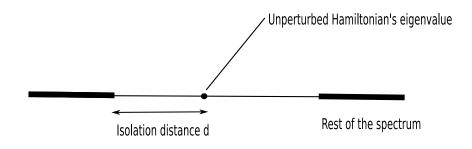
€

Ising Excitations



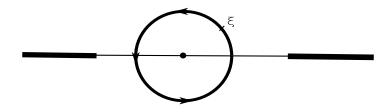
5990

€



5900

∍



A resolvent formula

$$(H_L^k(\Delta^{-1})-\xi)^{-1} = R(\xi)[1 + (\Delta^{-1}H_L^{(1)} + (1 - \sqrt{1 - \Delta^{-2}})H_L^{(2)})R(\xi)]^{-1}$$

where $R(\xi) = (H_L^k(0) - \xi)^{-1}$

< <p>>

æ

-

5990

Ē

=

$$\left\| \left(\Delta^{-1} H_L^{(1)} + \left(1 - \sqrt{1 - \Delta^{-2}} \right) H_L^{(2)} \right) R(\xi) \right\| < 1.$$

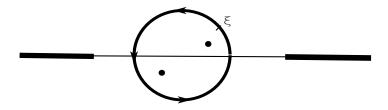
Proving an estimate of this form for Δ large enough, uniformly with respect to $\xi \in \Gamma$ is sufficient to guarantee analyticity of the spectral projections.

$$\left\| \left(\Delta^{-1} H_L^{(1)} + \left(1 - \sqrt{1 - \Delta^{-2}} \right) H_L^{(2)} \right) R(\xi) \right\| < 1.$$

Proving an estimate of this form for Δ large enough, uniformly with respect to $\xi \in \Gamma$ is sufficient to guarantee analyticity of the spectral projections.

XXZ Hamitonian is a relatively bounded perturbation of the Ising limit

$$\begin{split} \left\| H_{L}^{(1)}\psi \right\| &\leq \sqrt{J^{2} + 2J^{3}} \, \| H_{L}^{k}(0)\psi \| \, + \, 2J^{2} \, \sqrt{J^{2} \, + \, 2J^{3}} \, \|\psi\| \\ & \left\| H_{L}^{(2)}\psi \right\| \leq \, 2J^{2} \|\psi\| \end{split}$$



Relative boundedness \Rightarrow existence of resolvent uniformly for all ξ in $\Gamma \Rightarrow$ analyticity of spectral projections \Rightarrow Isolation of eigenvalues

We have been able get good theoretical and numerical approximations to our excitations. We are interested to find an optimal transfer from the ground state ψ_0 to the first excited state ψ_1 using our controls $v'_j s$. The natural canditates for our control parameters would be components of a magnetic field.

$$H = H_L^k(\Delta^{-1}) + \sum_{j=1}^m v_j H_j$$

$$\psi_0 \xrightarrow{\text{optimal transf.}} \psi_1$$

A qubit and a quantum NOT gate

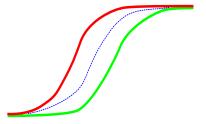


Figure: Magnetization profiles in the z-direction of the ground and of an excited state

Thanks!!

Thanks for your attention!

The XXZ model and applications to quantum computing

Jaideep Mulherkar

University of California Davis Joint work with Nachtergaele, Sims and Starr

October 12th 2007

Jaideep Mulherkar The XXZ model and applications to quantum computing