Invariant observer and parameter estimation of quantum systems ${ }^{1}$

Pierre Rouchon
Ecole des Mines de Paris
Work in collaboration with
Silvère Bonnabel (University of Liège) and Mazyar Mirrahimi (INRIA)

Control, Constraints and Quanta Mathematical Research and Conference Center Bedlewo Poland 10-16 October 2007

Outline

Nonlinear asymptotic observers and symmetries

An invariant asymptotic observer for a 2-level system

Semi-local convergence proof

Possible extensions

Quantum systems with weak measures

Observer-based parameter estimation

Take $\frac{d}{d t} x=f(x, u(t), p)$ with output $y(t)=h(x)$ and control $u(t)$. The goal is to estimate p (and $x)$ from noisy measures of y. State-parameter asymptotic observer. Can we find g_{1} and g_{2} such that the solution $(\hat{x}(t), \hat{p}(t))$ of

$$
\begin{aligned}
\frac{d}{d t} \hat{x}(t) & =f(\hat{x}, u(t), \hat{p})+g_{1}(\hat{x}, u(t), \hat{p}, y(t)) \\
\frac{d}{d t} \hat{p}(t) & =g_{2}(\hat{x}, u(t), \hat{p}, y(t))
\end{aligned}
$$

with an arbitrary initial state $\left(\hat{x}_{0}, \hat{p}_{0}\right)$ converges towards $(x(t), p)$ as $t \rightarrow \infty$?
Intrinsic or symmetry-preserving asymptotic observers (Thesis of Nasradine Aghanann (2003) and of Silvère Bonnabel (2007)).

Intrinsic observers for mechanical systems (IEEE-AC, 2003)

The locally convergent observer for

$$
\frac{d}{d t} q=v, \quad \nabla_{\frac{d}{d t}} v=S(q, t), \quad y=q
$$

is given by ($\alpha, \beta>0$ are arbitrary scalar gains)

$$
\begin{aligned}
\frac{d}{d t} \hat{q} & =\hat{v}-\alpha \operatorname{grad}_{\hat{q}} F(\hat{q}, q) \\
\nabla_{\frac{d}{d} \hat{q}} \hat{v} & =\mathscr{T}_{/ / q \rightarrow \hat{q}} S(q, t)-\beta \operatorname{grad}_{\hat{q}} F(\hat{q}, q)+R\left(\hat{v}, \operatorname{grad}_{\hat{q}} F(\hat{q}, q)\right) \hat{v}
\end{aligned}
$$

where

- F is the square of the geodesic distance between q and \hat{q}
- R is the curvature tensor
- $\mathscr{T}_{/ q \rightarrow \hat{q}}$ is the parallel transport along the geodesic from q to \hat{q}.
Intrinsic: independent of coordinates on the configuration manifold.

Invariant systems with equivariant output

- Consider

$$
\begin{aligned}
\frac{d}{d t} x & =f(x, u) \\
y & =h(x, u)
\end{aligned}
$$

with $x \in \mathscr{X} \subset \mathbb{R}^{n}, u \in \mathscr{U} \subset \mathbb{R}^{m}$ and $y \in \mathscr{Y} \subset \mathbb{R}^{p}, p \leq n$. Here $u(t)$ stands for known inputs (constant parameters, measured perturbations, controlled input,...)

- Take G a Lie group acting separately on \mathscr{X}, on \mathscr{U}, and on \mathscr{Y} : for each $g \in G$
- φ_{g} diffeomorphism on \mathscr{X}
- ψ_{g} diffeomorphism on \mathscr{U}
- ρ_{g} diffeomorphism on \mathscr{Y}
- with $\varphi_{g_{1}} \circ \varphi_{g_{2}}=\varphi_{g_{1} \cdot g_{2}}, \quad \psi_{g_{1}} \circ \psi_{g_{2}}=\psi_{g_{1} \cdot g_{2}}, \quad \rho_{g_{1}} \circ \rho_{g_{2}}=\rho_{g_{1} \cdot g_{2}}$

Invariant systems with equivariant output (end)

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

- G-invariant system: for all $g \in G$,

$$
\frac{d}{d t} X=f(X, U)
$$

where $(X, U)=\left(\varphi_{g}(x), \psi_{g}(u)\right)$.

- G-equivariant output: for all $g \in G$,

$$
Y=h(X, U)
$$

where $(X, U, Y)=\left(\varphi_{g}(x), \psi_{g}(u), \rho_{g}(y)\right)$.

Invariant observer

The asymptotic observer

$$
\frac{d}{d t} \hat{x}=F(\hat{x}, u, y)
$$

is called invariant iff, for all g, \hat{x}, u, y

- $F(x, u, h(x, u))=f(x, u)$.
- The transformation

$$
(\hat{X}, U, Y)=\left(\varphi_{g}(\hat{X}), \psi_{g}(u), \rho_{g}(y)\right)
$$

leaves the observer equations unchanged :

$$
\frac{d}{d t} \hat{X}=F(\hat{X}, U, Y)
$$

Symmetry preserving pre-observers

$$
\frac{d}{d t} \hat{x}=F(\hat{x}, u, y)
$$

is a G-invariant pre-observer for the G-invariant system $\frac{d}{d t} x=f(x, u)$ with G-equivariant output $y=h(x, u)$ if and only if

$$
F(\hat{x}, u, y)=f(\hat{x}, u)+\sum_{i=1}^{n} \mathscr{L}_{i}(I(\hat{x}, u), E(\hat{x}, u, y)) w_{i}(\hat{x})
$$

where

- $\left(w_{1}, \ldots, w_{n}\right)$ is an invariant frame.
- $E(\hat{x}, u, y)$ is composed of invariant output errors (scalars): $E(x, u, h(x, u)) \equiv 0$.
- $I(\hat{x}, u)$ is composed of invariant scalar functions.
- for each $i, \quad \mathscr{L}_{i}(I(\hat{x}, u), 0) \equiv 0$

The estimation problem for a two-level system

$$
\begin{aligned}
\frac{d}{d t} \rho & =-\imath\left[\frac{\Delta}{2} \sigma_{z}+\frac{u \mu}{2} \sigma_{x}, \rho\right] \\
y & =\operatorname{Tr}\left(\sigma_{z} \rho\right)
\end{aligned}
$$

- ρ is the density matrix: a 2×2 symmetric ≥ 0 matrix with $\operatorname{Tr}(\rho)=1$ and $\operatorname{Tr}\left(\rho^{2}\right)=1$ (here a projector).
- the Pauli matrices satisfy $\sigma_{x}^{2}=1, \sigma_{x} \sigma_{y}=\imath \sigma_{z}, \ldots$ with

$$
\sigma_{x}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{y}=-\imath|e\rangle\langle g|+\imath|g\rangle\langle e|, \sigma_{z}=|e\rangle\langle e|-|g\rangle\langle g|
$$

- the two real parameters are Δ (the difference between the atomic frequency (transition $|g\rangle \leftrightarrow|e\rangle$) and the laser frequency of amplitude u) and $\mu>0$ the laser/atom coupling strength.

Invariance versus $S U(2)$ action

For any $U \in S U(2)$, the transformation $((u, y, \Delta, \mu)$ unchanged)

$$
\rho \mapsto \varpi=U \rho U^{\dagger}, \quad \sigma_{x} \mapsto \varsigma_{x}=U \sigma_{x} U^{\dagger}, \ldots
$$

leaves

$$
\frac{d}{d t} \rho=-\imath\left[\frac{\Delta}{2} \sigma_{z}+\frac{u(t) \mu}{2} \sigma_{x}, \rho\right], \quad y=\operatorname{Tr}\left(\sigma_{z} \rho\right)
$$

unchanged:

$$
\frac{d}{d t} \sigma=-\imath\left[\frac{\Delta}{2} \varsigma_{z}+\frac{u(t) \mu}{2} \varsigma_{X}, \bar{\omega}\right], \quad y=\operatorname{Tr}\left(\varsigma_{z} \sigma\right)
$$

and $\varsigma_{x}, \varsigma_{y}, \varsigma_{z}$ are new Pauli matrices.

The non-linear asymptotic observer

$$
\begin{aligned}
& \frac{d}{d t} \hat{\rho}=-l\left[\frac{\hat{\Delta}}{2} \sigma_{z}+\frac{u \hat{\mu}}{2} \sigma_{x}, \hat{\rho}\right]-K_{\rho}(\hat{y}-y) \overbrace{\left(\sigma_{z} \hat{\rho}+\hat{\rho} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right) \hat{\rho}\right)}^{\operatorname{Tr}\left(\sigma_{x} \hat{\rho}\right) \iota\left[\sigma_{y}, \hat{\rho}\right]-\operatorname{Tr}\left(\sigma_{y} \hat{\rho}\right) \iota\left[\sigma_{x}, \hat{\rho}\right]} \\
& \frac{d}{d t} \hat{\mu}=-u K_{\mu} \operatorname{Tr}\left(\sigma_{y} \hat{\rho}\right)(\hat{y}-y) \\
& \frac{d}{d t} \hat{\Delta}=-u K_{\Delta} \operatorname{Tr}\left(\sigma_{x} \hat{\rho}\right)(\hat{y}-y)
\end{aligned}
$$

with positive gains K_{ρ}, K_{μ} and K_{Δ}. Preservation of $\operatorname{Tr}(\hat{\rho})=1$ and $\operatorname{Tr}\left(\hat{\rho}^{2}\right)=1$.
Convergence results from averaging arguments (RWA) under the following assumptions and gains design:

- slowly varying u versus Rabi pulsation $|u \mu|:\left|\frac{d}{d t} u\right| \ll u^{2} \mu$.
- Small detuning $|\Delta|,|\hat{\Delta}| \ll|u| \mu$ and $\left|\hat{\mu}_{t=0}-\mu\right| \ll \mu$.
- Small gains: $K_{\rho} \ll|u| \mu, \sqrt{K_{\mu}} \ll \mu, K_{\Delta} \ll K_{\mu} \mu$.

$S U(2)$ invariance of the non-linear observer

For any $U \in S U(2)$, the transformation $((\hat{\Delta}, \hat{\mu})$ unchanged)

$$
\hat{\rho} \mapsto \hat{\omega}=\mapsto U \hat{\rho} U^{\dagger}, \sigma_{x} \mapsto \varsigma_{x}=U \sigma_{x} U^{\dagger}, \ldots
$$

leaves the asymptotic observer

$$
\begin{aligned}
& \frac{d}{d t} \hat{\rho}=-\iota {\left[\frac{\hat{\Delta}}{2} \sigma_{z}+\frac{u \hat{\mu}}{2} \sigma_{x}, \hat{\rho}\right] } \\
&-K_{\rho}\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right)\left(\sigma_{z} \hat{\rho}+\hat{\rho} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{x} \hat{\rho}\right) \hat{\rho}\right) \\
& \frac{d}{d t} \hat{\mu}=-u K_{\mu} \operatorname{Tr}\left(\sigma_{y} \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right) \\
& \frac{d}{d t} \hat{\Delta}=-u K_{\Delta} \operatorname{Tr}\left(\sigma_{x} \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right)
\end{aligned}
$$

unchanged.

Simulation with perfect measures

Initial conditions: $\rho_{0}=\frac{1+\cos \left(\frac{\pi}{5}\right) \sigma_{x}+\sin \left(\frac{\pi}{5}\right) \cos \left(\frac{\pi}{1.4}\right) \sigma_{y}+\sin \left(\frac{\text { ine }}{5}\right) \sin \left(\frac{\pi}{1.4}\right) \sigma_{z}}{2}$,
$\mu=1, \Delta=\frac{1}{5}, \hat{\rho}_{0}=\sigma_{x} \rho_{0} \sigma_{x}$
Control/gains: $u=1, K_{\rho}=2 \varepsilon|u| \mu, K_{\mu}=2 \varepsilon^{2} \mu^{2}$ and $K_{\Delta}=2 \varepsilon^{2}|u| \mu^{2}$ with $\varepsilon=\frac{1}{5}$.

Simulation with noisy measures $(\sigma=2 / 10)$

Initial conditions: $\rho_{0}=\frac{1+\cos \left(\frac{\pi}{5}\right) \sigma_{x}+\sin \left(\frac{\pi}{5}\right) \cos \left(\frac{\pi}{1.4}\right) \sigma_{y}+\sin \left(\frac{\pi}{5}\right) \sin \left(\frac{\pi}{1.4}\right) \sigma_{z}}{2}$,
$\mu=1, \Delta=\frac{1}{5}, \hat{\rho}_{0}=\sigma_{x} \rho_{0} \sigma_{x}$
Control/gains: $u=1, K_{\rho}=2 \varepsilon|u| \mu, K_{\mu}=2 \varepsilon^{2} \mu^{2}$ and $K_{\Delta}=2 \varepsilon^{2}|u| \mu^{2}$ with $\varepsilon=\frac{1}{5}$.

Assumptions

In

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho}=-l & {\left[\frac{\hat{\Delta}}{2} \sigma_{z}+\frac{u \hat{\mu}}{2} \sigma_{x}, \hat{\rho}\right] } \\
& -K_{\rho}\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right)\left(\sigma_{z} \hat{\rho}+\hat{\rho} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right) \hat{\rho}\right) \\
\frac{d}{d t} \hat{\mu}=- & u K_{\mu} \operatorname{Tr}\left(\sigma_{y} \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right) \\
\frac{d}{d t} \hat{\Delta}=- & u K_{\Delta} \operatorname{Tr}\left(\sigma_{x} \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right)
\end{aligned}
$$

we assume that u is constant and that

$$
\hat{\Delta}=\varepsilon \hat{d}, \quad K_{\rho}=4 k_{\rho} \varepsilon|u| \mu, \quad K_{\mu}=2 k_{\mu} \varepsilon^{2} \mu^{2}, \quad K_{\Delta}=2 k_{\Delta} \varepsilon^{2}|u| \mu^{2}
$$

for $\varepsilon>0$ small $\varepsilon \ll 1, k_{\rho}, k_{\mu}, k_{\Delta} \sim 1$.
Convergence based on perturbation techniques (Rotating Wave Approximation (RWA)) but up to order 2 in ε.

In the interaction frame

Consider the following time-varying transformation

$$
\rho=e^{-l \frac{u \mu t \sigma_{X}}{2}} \xi e^{l \frac{u \mu t \sigma_{X}}{2}}, \quad \hat{\rho}=e^{-l \frac{u \mu t \sigma_{X}}{2}} \hat{\xi} e^{l \frac{u \mu t \sigma_{X}}{2}}
$$

The dynamics reads:

$$
\begin{aligned}
& \frac{d}{d t} \xi=-l {\left[\frac{\Delta}{2} e^{i u \mu t \sigma_{x}} \sigma_{z}, \xi\right] } \\
& \frac{d}{d t} \hat{\xi}=-l\left[\frac{\hat{\Delta}}{2} e^{i u \mu t \sigma_{x}} \sigma_{z}+\frac{u(\hat{\mu}-\mu)}{2} \sigma_{x}, \hat{\xi}\right]-K_{\rho} \operatorname{Tr}\left(e^{i u \mu t \sigma_{x}} \sigma_{z}(\hat{\xi}-\xi)\right) \\
& \ldots\left(e^{i u \mu t \sigma_{x}} \sigma_{z} \hat{\xi}+\hat{\xi} e^{i u \mu t \sigma_{x}} \sigma_{z}-2 \operatorname{Tr}\left(e^{i u \mu t \sigma_{x}} \sigma_{z} \hat{\xi}\right) \hat{\xi}\right) \\
& \frac{d}{d t} \hat{\mu}=-u K_{\mu} \operatorname{Tr}\left(e^{\imath \mu \mu t \sigma_{x}} \sigma_{y} \hat{\xi}\right) \operatorname{Tr}\left(e^{\imath \mu \mu t \sigma_{x}} \sigma_{z}(\hat{\xi}-\xi)\right) \\
& \frac{d}{d t} \hat{\Delta}=-u K_{\Delta} \operatorname{Tr}\left(\sigma_{x} \hat{\xi}\right) \operatorname{Tr}\left(e^{i u \mu t \sigma_{x}} \sigma_{z}(\hat{\xi}-\xi)\right)
\end{aligned}
$$

First order secular approximation

By assumption the frequency $u \mu$ is large and thus we neglect terms rotating at $u \mu$ and also $2 u \mu$ (first order in ε):

$$
\begin{aligned}
& \frac{d}{d t} \xi=0 \\
& \frac{d}{d t} \hat{\xi}=-\imath\left[\frac{u(\hat{\mu}-\mu)}{2} \sigma_{x}, \hat{\xi}\right] \\
& -\frac{K_{\rho}}{2} \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)\left(\sigma_{y} \hat{\xi}+\hat{\xi} \sigma_{y}-2 \operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \hat{\xi}\right) \\
& -\frac{K_{\rho}}{2} \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)\left(\sigma_{z} \hat{\xi}+\hat{\xi} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \hat{\xi}\right) \\
& \frac{d}{d t} \hat{\mu}=-\frac{u K_{\mu}}{2}\left(\operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)-\operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)\right) \\
& \frac{d}{d t} \hat{\Delta}=0 \text {. }
\end{aligned}
$$

Convergence of $\hat{\xi}$ and $\hat{\mu}$

Up to second order terms, $\hat{\xi}$ and $\hat{\mu}$ obey an autonomous differential system where ξ is a parameter:

$$
\begin{aligned}
\frac{d}{d t} \hat{\xi}=-l & {\left[\frac{u(\hat{\mu}-\mu)}{2} \sigma_{x}, \hat{\xi}\right] } \\
& \quad-\frac{K_{\rho}}{2} \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)\left(\sigma_{y} \hat{\xi}+\hat{\xi} \sigma_{y}-2 \operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \hat{\xi}\right) \\
& \quad-\frac{K_{\rho}}{2} \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)\left(\sigma_{z} \hat{\xi}+\hat{\xi} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \hat{\xi}\right) \\
\frac{d}{d t} \hat{\mu}=-\frac{u K_{\mu}}{2} & \left(\operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)-\operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)\right)
\end{aligned}
$$

Local exponential convergence for any ξ (excepted some isolated values) and for any $K_{\rho}, K_{\mu}>0$ via the Lyapounov function:

$$
\frac{1}{2} \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)^{2}+\frac{1}{2} \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)^{2}+\frac{1}{K_{\mu}}(\hat{\mu}-\mu)^{2}
$$

Second order secular approximation

We use Kapitsa short-cut method to compute these second order terms particularly important for ξ and $\hat{\Delta}$ since the first order secular terms vanish.
We can decompose $\xi=\bar{\xi}+\delta \xi$: $\bar{\xi}$ is the no-oscillatory part, whereas $\delta \xi$ is the oscillatory one with zero mean and small amplitude $\|\delta \xi\| \ll\|\bar{\xi}\|$. Since $\frac{d}{d t} \xi=-l\left[\frac{\Delta}{2} e^{\imath \mu \mu t \sigma_{x}} \sigma_{z}, \xi\right]$ we have approximatively:

$$
\delta \xi=\frac{i \Delta}{2 u \mu}\left[\frac{\Delta}{2} e^{i u \mu t \sigma_{x}} \sigma_{y}, \bar{\xi}\right]+\ldots
$$

Plugging this relation into the true dynamics of ξ and taking the secular terms yields up to the third order:

$$
\frac{d}{d t} \xi=-l \frac{\Delta^{2}}{2 u \mu}\left[\sigma_{x}, \xi\right]+\ldots
$$

the term $\frac{\Delta^{2}}{2 u \mu}$ corresponds exactly to Bloch-Siegert frequency shift.

Second order secular approximation (continued)

Since $\frac{d}{d t} \hat{\Delta}=-u K_{\Delta} \operatorname{Tr}\left(\sigma_{x} \hat{\xi}\right) \operatorname{Tr}\left(e^{i u \mu t \sigma_{x}} \sigma_{z}(\hat{\xi}-\xi)\right)$ the secular effect can only comes from the part of $\delta \xi$ and $\delta \hat{\xi}$ with frequency $u \mu$: terms of double frequency $2 u \mu$ have no secular effect. In the $\hat{\xi}$ dynamics

$$
\begin{aligned}
& \frac{d}{d t} \hat{\xi}=-l {\left[\frac{\hat{\Delta}}{2} e^{i u \mu t \sigma_{x}} \sigma_{z}+\frac{u(\hat{\mu}-\mu)}{2} \sigma_{x}, \hat{\xi}\right]-K_{\rho} \operatorname{Tr}\left(e^{i u \mu t \sigma_{X}} \sigma_{z}(\hat{\xi}-\xi)\right) } \\
& \ldots\left(e^{i u \mu t \sigma_{x}} \sigma_{z} \hat{\xi}+\hat{\xi} e^{i u \mu t \sigma_{x}} \sigma_{z}-2 \operatorname{Tr}\left(e^{i u \mu t \sigma_{x}} \sigma_{z} \hat{\xi}\right) \hat{\xi}\right)
\end{aligned}
$$

the $u \mu$ frequency oscillatory term, denoted by $\delta_{1} \hat{\xi}$, comes only from $-\imath\left[\frac{\hat{\Delta}}{2} e^{\iota \mu \mu t \sigma_{x}} \sigma_{z}, \hat{\xi}\right]$. Thus

$$
\delta_{1} \hat{\xi}=\frac{l \hat{\Delta}}{2 u \mu}\left[e^{\imath u \mu t \sigma_{x}} \sigma_{y}, \hat{\xi}\right] \quad \text { and } \quad \delta \xi=\delta_{1} \xi=\frac{l \Delta}{2 u \mu}\left[e^{\imath \mu \mu t \sigma_{x}} \sigma_{y}, \xi\right]
$$

Second order secular approximation (end)

We have the following triangular and locally convergent dynamics:

$$
\begin{aligned}
& \frac{d}{d t} \hat{\xi} \stackrel{\text { order } 1}{=}-l {\left[\frac{u(\hat{\mu}-\mu)}{2} \sigma_{x}, \hat{\xi}\right] } \\
&-\frac{K_{\rho}}{2} \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)\left(\sigma_{y} \hat{\xi}+\hat{\xi} \sigma_{y}-2 \operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \hat{\xi}\right) \\
&-\frac{K_{\rho}}{2} \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)\left(\sigma_{z} \hat{\xi}+\hat{\xi} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \hat{\xi}\right) \\
& \frac{d}{d t} \hat{\mu} \stackrel{\text { order } 1}{=}- \frac{u K_{\mu}}{2}\left(\operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)-\operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)\right) \\
& \frac{d}{d t} \xi \stackrel{\text { order } 2}{=}-l \frac{\Delta^{2}}{2 u \mu}\left[\sigma_{x}, \xi\right] \\
& \frac{d}{d t} \hat{\Delta} \hat{\Delta} \stackrel{\text { order } 2}{=}--\frac{K_{\Delta}}{\mu}\left(\operatorname{Tr}\left(\sigma_{x} \hat{\xi}\right)^{2} \hat{\Delta}-\operatorname{Tr}\left(\sigma_{x} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{x} \xi\right) \Delta\right) \\
& \quad+\frac{K_{\Delta} \hat{\Delta}}{2 \mu}\left(\operatorname{Tr}\left(\sigma_{y} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{y}(\hat{\xi}-\xi)\right)-\operatorname{Tr}\left(\sigma_{z} \hat{\xi}\right) \operatorname{Tr}\left(\sigma_{z}(\hat{\xi}-\xi)\right)\right) .
\end{aligned}
$$

Gain design via linear tangent approximation

With

$$
\hat{\xi}-\xi=\frac{1+\tilde{x} \sigma_{x}+\tilde{y} \sigma_{y}+\tilde{z} \sigma_{z}}{2}, \quad \tilde{\mu}=\hat{\mu}-\mu, \quad \tilde{\Delta}=\hat{\Delta}-\Delta
$$

we have, around $\rho=\frac{1-\sigma_{z}}{2}$;

$$
\frac{d}{d t} \tilde{y}=-u \tilde{\mu}-K_{\rho} \tilde{y}, \quad \frac{d}{d t} \tilde{\mu}=u K_{\mu} \tilde{y} / 2
$$

and around $\rho=\frac{1-\sigma_{x}}{2}$

$$
\frac{d}{d t} \tilde{\Delta}=-\frac{K_{\Delta}}{\mu} \tilde{\Delta}
$$

To respect the scaling, choose $0<\varepsilon \ll 1$ and set

$$
K_{\rho}=2 k_{\rho} \varepsilon|u| \mu, \quad K_{\mu}=2 \varepsilon^{2} \mu^{2}, \quad K_{\Delta}=k_{\Delta} \varepsilon^{2}|u| \mu^{2}
$$

with k_{ρ}, k_{Δ} around 1.

Complex laser amplitude $u+\imath v$

The system is

$$
\frac{d}{d t} \rho=-\imath\left[\frac{\Delta}{2} \sigma_{z}+\frac{\mu}{2}\left(u \sigma_{x}+v \sigma_{y}\right), \rho\right], \quad y=\operatorname{Tr}\left(\sigma_{z} \rho\right)
$$

and the asymptotic observer reads:

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho}=-\imath & {\left[\frac{\hat{\Delta}}{2} \sigma_{z}+\frac{\hat{\mu}}{2}\left(u \sigma_{x}+v \sigma_{y}\right), \hat{\rho}\right] } \\
& -K_{\rho}\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right)\left(\sigma_{z} \hat{\rho}+\hat{\rho} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right) \hat{\rho}\right) \\
\frac{d}{d t} \hat{\mu}=- & K_{\mu} \operatorname{Tr}\left(\left(u \sigma_{y}-v \sigma_{x}\right) \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right) \\
\frac{d}{d t} \hat{\Delta}=- & K_{\Delta} \operatorname{Tr}\left(\left(u \sigma_{x}+v \sigma_{y}\right) \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z} \hat{\rho}\right)-y\right)
\end{aligned}
$$

N-level system

The system is ($\Delta^{k l}=0$, no laser de-tuning here)

$$
\frac{d}{d t} \rho=-\imath\left[\sum_{k l} \frac{u^{k l} \mu^{k l}}{2} \sigma_{x}^{k l}, \rho\right], \quad y_{k}=\operatorname{Tr}\left(P_{k} \rho\right)
$$

with $P_{k}=|k\rangle\langle k|$ and its asymptotic observer reads:

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho}=-l & {\left[\sum_{k l} \frac{u^{k l} \hat{\mu}^{k l}}{2} \sigma_{x}^{k l}, \hat{\rho}\right] } \\
& -\sum_{k} K_{\rho}^{k}\left(\operatorname{Tr}\left(P_{k} \hat{\rho}\right)-y_{k}\right)\left(P_{k} \hat{\rho}+\hat{\rho} P_{k}-2 \operatorname{Tr}\left(P_{k} \hat{\rho}\right) \hat{\rho}\right) \\
\frac{d}{d t} \hat{\mu}^{k l}=- & K_{\mu}^{k l} \operatorname{Tr}\left(u \sigma_{y}^{k l} \hat{\rho}\right)\left(\operatorname{Tr}\left(\sigma_{z}^{k l} \hat{\rho}\right)-y_{k}+y_{l}\right)
\end{aligned}
$$

where $\sigma_{x}^{k l}=|k\rangle\langle I|+|I\rangle\langle k|, \ldots$
Such extensions are possible since we start with an invariant observer for the 2-level system, i.e. we exploit the geometry.

Previous works and some references

- Parameter estimation for quantum systems: see, e.g., the works of H. Rabitz, H. Mabuchi and their collaborators.
- Identifiability for quantum systems: see, e.g., C. Lebris et al (COCV) where it is shown that resonant controls play a crucial role.
- Asymptotic observers and symmetries: few references (Aghannan, Bonnabel, Martin, R., Dayawansa and coworkers). See the preprint on Invariant asymptotic observers: http://arxiv.org/abs/math.0C/0612193
- A recent excellent book on (open) quantum systems : S. Haroche, J-M Raimond. Exploring the quantum: atoms, cavities and photons. Oxford University Press (Graduate texts), 2006.

An open 3-level quantum system

- ground state $|g\rangle$,
- excited state $|e\rangle$ of long life-time; $\Omega_{\text {atom }}=\frac{E_{e}-E_{g}}{\hbar}$.
- excited state $|f\rangle$ of short life-time $1 / \Gamma$.
- probe laser:

$$
\omega_{\text {probe }}=\frac{E_{f}-E_{g}}{\hbar} .
$$

Control laser frequency $\omega_{\text {laser }}$ and $\Delta=\omega_{\text {atom }}-\omega_{\text {laser }}$. Measure: the fluorescence photons emitted by the unstable state $|f\rangle$.

The 3-level model (slow/fast)

Basic model of open quantum system (decoherence) (set of identical 3 -level atoms) based on a master equation for the density matrix $\rho\left(3 \times 3, \rho^{\dagger}=\rho, \rho \geq 0, \operatorname{Tr}(\rho)=1, \operatorname{Tr}\left(\rho^{2}\right) \leq 1\right)$:

$$
\begin{gathered}
\quad \text { Schrödinger } \quad \text { decoherence: Lindblad } \\
\frac{d}{d t} \rho=-\frac{l}{\hbar}[H, \rho]+\frac{\Gamma}{2}\left(2 L \rho L^{\dagger}-L^{\dagger} L \rho-\rho L^{\dagger} L\right)
\end{gathered}
$$

with

$$
\frac{1}{\hbar} H=\frac{\Delta}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u \mu}{2}(|e\rangle\langle g|+|g\rangle\langle e|)
$$

and $L=|g\rangle\langle f|$ where $\Gamma \gg \Delta, u \mu$.
The flux of fluorescence photons (measure) is given by

$$
y=\Gamma \operatorname{Tr}\left(L^{\dagger} L \rho\right)
$$

The reduced 2-level model (slow) (CDC06 Mirrahimi-R)

Non commutative computations of the slow approximated model from

$$
\frac{d}{d t} \rho=-\frac{l}{\hbar}[H, \rho]+\frac{\Gamma}{2}\left(2 L \rho L^{\dagger}-L^{\dagger} L \rho-\rho L^{\dagger} L\right) .
$$

With $P=L^{\dagger} L=|e\rangle\langle e|$ (projector on $|e\rangle$) set

$$
\rho_{f}=P \rho+\rho P-P \rho P, \quad \rho_{s}=(1-P) \rho(1-P)+L \rho L^{\dagger} .
$$

then $\rho=\rho_{s}+\rho_{f}-L P \rho_{f} P L^{\dagger}$ and the slow dynamics reads (center manifold technique)

$$
\frac{d}{d t} \rho_{s}=-\frac{l}{\hbar}\left[H_{s}, \rho_{s}\right]+\frac{2}{\Gamma}\left(2 L_{s} \rho_{s} L_{s}^{\dagger}-L_{s}^{\dagger} L_{s} \rho_{s}-\rho_{s} L_{s}^{\dagger} L_{s}\right)
$$

with output $y=\frac{4}{\Gamma} \operatorname{Tr}\left(L_{s}^{\dagger} L_{s} \rho_{s}\right)$ where $H_{s}=(1-P) H(1-P)$ and $L_{s}=(1-P) L\left(\frac{H}{\hbar}\right)(1-P)$.

