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Motivation: Control in Quantum Technology

We are currently in the midst of a second quantum revolution.
The first quantum revolution gave us new rules that govern
physical reality. The second quantum revolution will take these
rules and use them to develop new technologies. DOWLING & MILBURN, 2003

economy
currently some 30% of the GNP of industrial states
depend on quantum effects (transistor, laser)

technology ahead
quantum & nano-technology rely on quantum control
(solid-state devices, spintronics–NMR–EPR, quantum dots, ion-traps)
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Quantum CISC Compiler by Optimal Control
Extending the Toolbox beyond 1 and 2-Qubit Gate Modules

� assemble optimised medium-sized building blocks

Quantum Algorithm, Unitary Module

RISC−Compiler
??y(1)

??y(2) CISC−Compiler
??y(3)

Universal Gates (RISC) single CISC Modular Controls (CISC)

Assembler

??y ??y scalable Assembler

??y
Machine Code of Quantum Evolutions under Drift and Controls

RISC-CISC analogy: G. Sanders et al. PRA 59, 1098 (1999)
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Parallelisation
Speed-Up on High-Performance Parallel Cluster with T. Gradl, T. Huckle

� Parallelising Matrix Operations
1. slice-wise: 2. tree-like:

P0
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P0

P1

P2

P3
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P1

P2
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P1

P0 P1

U01
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 U1  U2 U3
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� Resulting Speed-Ups: 10 spins 128 time slices
128 AMD Opteron 850 CPU (2.4 GHz)

Subroutine % of time Speedup
optimizeCG 100 578

maxStepSize 90 709
getGradient 9.1 187

expm 7.5 879
propagation 1 31
gradient 0.6 81

Gradl, Spörl, Huckle, Glaser, T.S.H., Proceedings EUROPAR LNCS 4128 (2006), 751
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Assembling by Recursion
Ex.: QFT

� Idea: from 2-qubit QFT to 2n-qubit QFT
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Assembling by Recursion
Ex.: Recursive QFT

� Induction: km-qubit QFT to (k + 1)m-qubit QFT (m = 2)



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems

IV. Constrained
Optimisation

Conclusions &
Outlook

Assembling by Recursion
Ex.: Recursive QFT

� Induction: km-qubit QFT to (k + 1)m-qubit QFT (m = 2)



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems

IV. Constrained
Optimisation

Conclusions &
Outlook

Assembling by Recursion
Ex.: Recursive QFT

� Induction: km-qubit QFT to k(m + 2)-qubit QFT (m even)
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Results for Large Systems
Ex.: Recursive km-QFT

� quality gain by speed-up
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Results for Large Systems
Ex.: Recursive 1, n-SWAP

� quality gain by speed-up
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Results for Large Systems
Ex.: Recursive Cn-NOT

� quality gain by speed-up
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Dynamical Systems and Flows

dynamic systems on smooth manifolds M, e.g.:
(1) all states on the (unitary) orbit of an initial state
(2) group of unitary actions {AdU | U ∈ SU(N)}
(3) vectors of piece-wise constant control amplitudes

(iso
= R n)

flow: smooth map R ×M → M

Φ(0,X ) = X
Φ(τ,Φ(t ,X )) = Φ(t + τ,X ) .

flow acts as one-parameter semigroup for τ, t ≥ 0

Φτ ◦ Φt = Φt+τ
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Gradient Flows for Optimisation
Terminology and Setting

smooth quality function f : M → R on M

differential of f at X ∈ M is Df : M → T ∗M
mapping to cotangent bundle T ∗M

gradient of f at X ∈ M is grad f : M → TM
mapping to tangent bundle TM

Df (X ) · ξ = 〈grad f (X )|ξ〉X for all ξ ∈ TX M.

scalar product 〈·|·〉X in smooth manifold M crucial:
allows for identifying T ∗

X M with TX M
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Gradient Flows for Optimisation
Terminology and Setting

gradient flow Φ : R ×M → M:
solution to gradient system on M determined by
ordinary differential equation

Ẋ = grad f (X )

X (t) = Φ(t ,X (0)) is unique solution of gradient
system with initial value X (0) = X

as desired: f increases along trajectories of Φ by
following gradient direction of f .
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Gradient Flows for Optimisation
Discretised Schemes: Euler Method and Adaptation to Manifolds

steepest ascent, special case:
M coincides with TM (as for M = R n)

Xk+1 = Xk + αk grad f (Xk )

αk ≥ 0 appropriate step size

steepest ascent for Riemannian manifolds M
(M and TM in general not identifiable):

Xk+1 : = expXk

(
αk grad f (Xk )

)
αk ≥ 0 appropriate step size

natural continuous extension for optimising
f : M → R by moving along grad f (X ) ∈ TX M
observe: line-segments in Euler are replaced by
geodesics on M
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Gradient Flows on Riemannian Manifolds
Riemannian Exponential: Tool for Integrating on Manifolds

expx : TX M → M

specially simple in Lie groups: expx : TX G → G

ξ = ΩX ∈ TX G
expX−−−−−−→ etΩX ∈ G

RX−1

y xRX

Ω ∈ g
exp−−−−−−−−−→ etΩ ∈ G .
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Gradient Flows for Optimisation
Discretised Schemes: Euler Method and Adaptation to Manifolds

steepest ascent for Riemannian manifolds M
(M and TM in general not identifiable):

Xk+1 : = expXk

(
αk grad f (Xk )

)
αk ≥ 0 appropriate step size

steepest ascent for Lie groups G:

Xk+1 : = expXk

(
αk grad f (Xk )

)
= exp

(
αk grad f (Xk ) X−1

k

)
Xk ,

Brockett (1988)
Helmke, Moore (1994)
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Gradient Flows on Riemannian Manifolds
Abstract Optimisation Task

↑ f



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems

IV. Constrained
Optimisation

Conclusions &
Outlook

Gradient Flows on Riemannian Manifolds
Abstract Optimisation Task

↑ f

� quality function f : M → R ,X 7→ f (X )
drives into (local) maximum by gradient flow
to Ẋ = grad f (X ) on M
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Gradient Flows on Riemannian Manifolds
Optimal Control Task

↑ f

X(t , Y ) solves control system Ẋ = F (X0, Y )

↑ φT
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Control of Hamiltonian Dynamics

Bilinear Control System

Ẋ (t) =
(
A +

m∑
j=1

uj(t)Bj
)

X (t)

Hamiltonian dynamics (Schrödinger equation)

|ψ̇(t)〉 = −i
(
Hd +

m∑
j=1

uj(t)Hj
)
|ψ(t)〉

U̇(t) = −i
(
Hd +

m∑
j=1

uj(t)Hj
)

U(t)

• Hd : drift term
• Hj : controls
• uj(t): control amplitudes
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Controllability of Quantum Systems

Definition

A system is operator controllable, if to any set of basis
states its unitary image can be reached (in finite time).

Corollary (Jurdjevic and Sussmann, 1972)

The bilinear system (vide supra) is operator controllable
if drift and controls are a generating set of su(2n) by way
of commutation, i.e. 〈Hd ,Hj | j = 1,2, . . . ,m〉Lie

rep
= su(2n).
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Controllability and Coupling Topology

� Example: n weakly coupled spins-1
2 .

Which conditions suffice for

〈Hd ,Hj | j = 1,2, . . . ,m〉Lie
rep
= su(2n) ?

Lemma (Diss. ETH 12752)

A system of n qubits is operator controllable, if e.g. the
control Hamiltonians Hj comprise
{σkx , σky | k = 1,2, . . .n} on every single qubit selectively
and the drift Hamiltonian Hd encompasses the Ising pair
interactions {Jk` (σkz ⊗ σ`z)/2 | k < ` = 2, . . .n}, where
the coupling topology of Jk` 6= 0 may take the form of any
connected graph.
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Controllability and Quantum Gates

Corollary

The following are equivalent:
1 in a quantum system drift Hd and controls Hj form a

generating set of su(2n);
2 every unitary transformation in SU(2n) can be

realised on that quantum hardware;
3 there is a set of universal quantum gates for the

quantum system;
4 reachability set for generalised expectation value
〈C〉(t) := tr{C†A(t)}
coincides with C-numerical range W (C,A) ∀A,C.
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1 in a quantum system drift Hd and controls Hj form a

generating set of su(2n);
2 every unitary transformation in SU(2n) can be

realised on that quantum hardware;
3 there is a set of universal quantum gates for the

quantum system;
4 reachability set for generalised expectation value
〈C〉(t) := tr{C†A(t)}
coincides with C-numerical range W (C,A) ∀A,C.
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Principles: Optimal Quantum Control

Scope in Optimal Control:
maximise quality function subject to equation of motion

Scenarios:
Hamiltonian dynamics

notation: U := e−itH ; AdU(·) := U(·)U−1; adH(·) := [H, , · ]

1. pure state ˙|ψ〉 = −iH |ψ〉 ∈ H
2. gate U̇ = −iH U ∈ U(H)

3. non-pure state ρ̇ = −i adH (ρ) ∈ B1(H)

4. projective gate ȦdU = −i adH ◦ AdU ∈ U
(
B1(H)

)
Master equations of dissipative dynamics

3’. non-pure state ρ̇ = −(i adH +Γ) (ρ)

4’. contractive map χ̇ = −(i adH +Γ) ◦ χ ∈ GL
(
B1(H)

)
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Methods of Quantum Control
2. Gradient Flows on Control Amplitudes with N. Khaneja

Gradient Ascent Algorithm GRAPE

J. Magn. Reson. 172 (2005), 296 and Phys. Rev. A 72 (2005), 042331

1 Define scalar-valued HAMILTON function
h(U) = Re tr{λ†(−i(Hd +

P
j uj Hj ))U}

2 with adjoint system satisfying
λ̇(t) = −i(Hd +

P
j uj Hj )λ(t) .

3 Then PONTRYAGIN’s maximum principle requires
∂h
∂uj

= Re tr{λ†(−iHj )U}
!
= 0

4 thus allowing for a gradient-flow of quantum controls

uj (t
(r+1)
k ) = uj (t

(r)
k ) + ε ∂h

∂uj

˛̨
t=tk

.
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Examples of Quantum Control
1. Realising Quantum Gates in Minimal Time with F. Wilhelm, M. Storcz

Goal: realise timeoptimal CNOT on 2 coupled charge qubits

pseudospin Hamiltonian: H = Hdrift

Hdrift =−
(

Em

4
+

Ec1

2

)
(σ

(1)
z ⊗ 1l)− EJ1

2
(σ

(1)
x ⊗ 1l)

−
(

Em

4
+

Ec2

2

)
(1l⊗ σ

(2)
z )− EJ2

2
(1l⊗ σ

(2)
x )

+
Em

4
(σ

(1)
z ⊗ σ

(2)
z )
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Examples of Quantum Control
2. Realising Quantum Gates in Minimal Time with F. Wilhelm, M. Storcz

Goal: realise timeoptimal CNOT on 2 coupled charge qubits

pseudospin Hamiltonian: H = Hdrift + Hcontrol

Hdrift =−
(

Em

4
+

Ec1

2

)
(σ

(1)
z ⊗ 1l)− EJ1

2
(σ

(1)
x ⊗ 1l)

−
(

Em

4
+

Ec2

2

)
(1l⊗ σ

(2)
z )− EJ2

2
(1l⊗ σ

(2)
x )

+
Em

4
(σ

(1)
z ⊗ σ

(2)
z )

Hcontrol =

(
Em

2
ng2 + Ec1ng1

)
(σ

(1)
z ⊗ 1l)

+

(
Em

2
ng1 + Ec2ng2

)
(1l⊗ σ

(2)
z )

NB: components {Hd + Hd , Hc} form minimal generating set of su(4).



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems
Controllability

Tasks

Unitary Optimisation

Decoherence Control

IV. Constrained
Optimisation

Conclusions &
Outlook

Examples of Quantum Control
2. Realising Quantum Gates in Minimal Time

⇒ timeopt. CNOT: some 5 times faster than NEC group

• Quality q := Fe−τop/τQ

so 1− q = 1− 0.999999999 e−55ps/10ns = 0.0055
(NEC: 1− q = 1− 0.4188 e−250ps/10ns = 0.5917)

PRA 75, 012302 (2007)
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Examples of Quantum Control
2. Realising Quantum Gates in Minimal Time

Goal: TOFFOLI gate on 3 linearly coupled charge qubits

13 times faster than NEC
� error rates cut by two orders of magnitude (T2 ' 10 ns):

1 direct gate by optimal control
1− q = 1− 0.99999 e−180ps/10ns = 0.0178

2 by 9 CNOT’s from optimal control
1− q = 1− (0.999999999 e−55ps/10ns)9 = 0.0483

3 by 9 CNOT’s under pioneering controls
1− q = 1− (0.4188 e−250ps/10ns)9 = 0.9997

PRA 75, 012302 (2007)
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Examples of Quantum Control
3. Decoherence Control: Idea of Decoherence-Free Subspaces (DFS)

Principle:
Code logical qubits in decoherence-free physical levels

Master equation: ρ̇ = −(i adH +Γ) ρ

DFS: eigenspace to Γ with eigenvalue =0
Express Ĥ ≡ adH in eigenbasis of Γ (here 4 qubits)

Idea: perform calculation (e.g. CNOT) within DFS
Zanardi, Rasetti, Phys. Rev. Lett. 79 (1997), 3309.

Lidar, Chuang, Whaley, Phys. Rev. Lett. 81 (1998), 2594.
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Examples of Quantum Control
3. Decoherence Control: Model System of 2 Qubits by 4 Spins

� 1 logical qubit coded by 2 physical qubits in Bell states

|0〉L := |ψ+〉 = 1√
2
(|01〉+ |10〉) , |1〉L := |ψ−〉 = 1√

2
(|01〉− |10〉)

B := span {|ψ±〉〈ψ±|, |ψ∓〉〈ψ±|}



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems
Controllability

Tasks

Unitary Optimisation

Decoherence Control

IV. Constrained
Optimisation

Conclusions &
Outlook

Examples of Quantum Control
3. Decoherence Control: Model System of 2 Qubits by 4 Spins

� 1 logical qubit coded by 2 physical qubits in Bell states

|0〉L := |ψ+〉 = 1√
2
(|01〉+ |10〉) , |1〉L := |ψ−〉 = 1√

2
(|01〉− |10〉)

B := span {|ψ±〉〈ψ±|, |ψ∓〉〈ψ±|}

� 2 logical qubits coded by 4 physical qubits

z z z z1√
2
(|01〉+ |10〉) 1√

2
(|01〉+ |10〉)

1√
2
(|01〉 − |10〉) 1√

2
(|01〉 − |10〉)
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3. Decoherence Control: Model System of 2 Qubits by 4 Spins

� 1 logical qubit coded by 2 physical qubits in Bell states

|0〉L := |ψ+〉 = 1√
2
(|01〉+ |10〉) , |1〉L := |ψ−〉 = 1√
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� protection against T2 relaxation (Redfield: Γ ∼ [ZZ , [ZZ , ρ]])

because [ρ,ZZ ] = 0 ∀ ρ ∈ B ⊗ B
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Examples of Quantum Control
3. Decoherence Control: Models with 4 Linearly Coupled Spins

� controls

z z z z(Z (Z−Z ) −Z )
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Examples of Quantum Control
3. Decoherence Control: Models with 4 Linearly Coupled Spins

� controls

z z z z(Z (Z−Z ) −Z )

� drift: Ising (ZZ) and Heisenberg (XX) interactions

z z z zZZXX XXSystem-I



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems
Controllability

Tasks

Unitary Optimisation

Decoherence Control

IV. Constrained
Optimisation

Conclusions &
Outlook

Examples of Quantum Control
3. Decoherence Control: Models with 4 Linearly Coupled Spins

� controls

z z z z(Z (Z−Z ) −Z )

� drift: Ising (ZZ) and Heisenberg (XX,XXX) interactions

z z z z
XXX

ZZXX XX

XX XXSystem-II

System-I
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3. Decoherence Control: Models with 4 Linearly Coupled Spins

� controls

z z z z(Z (Z−Z ) −Z )

� drift: Ising (ZZ) and Heisenberg (XX,XXX) interactions

z z z z
(1 Hz) XXX

ZZXX XX

(2 Hz) XX (2 Hz) XXSystem-II

System-I

� relaxation (T−1
2 : T−1

1 = 4.0 s−1 : 0.024 s−1 ' 170 : 1)z z z z
[ZZ , [ZZ , (·)]] [ZZ , [ZZ , (·)]]
[A2,•, [A

†
2,•, (·)]] [A2,•, [A

†
2,•, (·)]]

T2 :
T1 :
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Examples of Quantum Control
3. Decoherence Control: Algebraic Analysis of System I

� System-I: staying within slowly-relaxing subspace

• drift Hamiltonian D1 with Ising-ZZ
• controls C1,2

D1 := Jxx (xx1l1l + 1l1lxx + yy1l1l + 1l1lyy) + Jzz 1lzz1l

C1 := z1l1l1l− 1lz1l1l

C2 := 1l1lz1l− 1l1l1lz .

⇒ 〈D1,C1,C2〉Lie
∣∣
B⊗B

rep
= su(4)

• Liouville subspace B ⊗ B
spans states protected against T2-relaxation
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3. Decoherence Control: Algebraic Analysis of System II

� System-II: driving outside slowly-relaxing subspace
• drift: extended to isotropic Heisenberg-XXX

D1 + D2 := Jxx
(
xx1l1l + 1l1lxx + yy1l1l + 1l1lyy

)
+Jxyz

(
1lxx1l + 1lyy1l + 1lzz1l

)
• Lie-algebraic closure: in 66-dim. Lie algebra

dim〈(D1 + D2),C1,C2〉Lie = 66 ,

• su(4) merely subalgebra
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3. Decoherence Control: Algebraic Analysis of System II

System-II:
� full controllability within slowly-relaxing subspace
• observation

e−iπC1(D1+D2)eiπC1 = D1−D2

• Trotter limit

lim
n→∞

(
e−i(D1+D2)/(2n)e−i(D1−D2)/(2n)

)n
= e−iD1

• reduction of dynamics

System-II
infinite # switchings−−−−−−−−−−−→ System-I
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Examples of Quantum Control
3. Decoherence Control: Algebraic Analysis of System II

System-II:
� full controllability within slowly-relaxing subspace
• observation

e−iπC1(D1+D2)eiπC1 = D1−D2

• Trotter limit

lim
n→∞

(
e−i(D1+D2)/(2n)e−i(D1−D2)/(2n)

)n
= e−iD1

• reduction of dynamics

System-II
infinite # switchings−−−−−−−−−−−→ System-I
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Examples of Quantum Control
3. Decoherence Control: Results of System I

� System-I: staying within slowly-relaxing subspace

no relaxation relaxation-optimised
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3. Decoherence Control: Results of System I

� System-I: staying within slowly-relaxing subspace
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Examples of Quantum Control
3. Decoherence Control: Results of System II

� System-II: driving outside slowly-relaxing subspace

no relaxation with relaxation (T2, T1)
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Examples of Quantum Control
3. Decoherence Control: Results of System II

� System-II: driving outside slowly-relaxing subspace

no relaxation with relaxation (T2, T1)
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quant-ph/0609037
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Examples of Quantum Control
3. Realising Quantum Gates with Minimal Relaxation

CNOT under System-II: Projection into Subspaces
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Examples of Quantum Control
3. Realising Quantum Gates with Minimal Relaxation

quant-ph/0609037

� CNOT under System-II: Process Tomography of
Gate Protected against Dissipation by Optimal Control
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3. Realising Quantum Gates with Minimal Relaxation
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� CNOT under System-II: Process Tomography of
Gate Protected against Dissipation by Optimal Control
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Examples of Quantum Control
3. Realising Quantum Gates with Minimal Relaxation

quant-ph/0609037

� CNOT under System-II: comparison of methods

by decoherence control: conventional:
> 95% fideltity < 15% fidelity
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Paper and Pen Approach: TROTTER Expansion

Decoherence-Protected CNOT-Gate via
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Decoherence Control: Take-Home Message

Which Tool in Which Setting?

1. “anything goes” : Paul FEYERABEND

only in ideal case: decoherence-free,
fully controllable and closed under drift

2. Timeoptimal Control:
whenever slowly-relaxing subsystem controllable
and closed under drift

3. Relaxation-Optimised Control:
whenever slowly-relaxing subsystem open, where
subsystem
(i) controllable or
(ii) to be extended for controllability
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Which Tool in Which Setting?

1. “anything goes” : Paul FEYERABEND

only in ideal case: decoherence-free,
fully controllable and closed under drift

2. Timeoptimal Control:
whenever slowly-relaxing subsystem controllable
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3. Relaxation-Optimised Control:
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subsystem
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(ii) to be extended for controllability
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Significance of Numerical and C-Numerical Ranges
Generalising Expectation Values

Expectation value of observables B = B† ∈ B(H):

pure quantum states:

〈B〉 := 〈ψB|ψ〉

ensembles:

tr
(
B†ρ(t)

)
= tr

(
B† Uρ0U−1)

C numerical range:
generalisation to non-Hermitian operators

W (C,A) := {tr(C† UAU−1)|U ∈ U(H)}
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Significance of Numerical and C-Numerical Ranges
Generalising Expectation Values

Generalise from B = B† to non-Hermitian operators:

pure quantum states:

〈B〉 := 〈ψB|ψ〉 ∈ W (B) := {〈φB|φ〉,
∣∣‖φ‖ = 1}

ensembles:

tr
(
B†ρ(t)

)
= tr

(
B† Uρ0U−1)

C numerical range:
generalisation to non-Hermitian operators

W (C,A) := {tr(C† UAU−1)|U ∈ U(H)}
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Numerical Range and C-Numerical Range

Classical features of W (A) and W (C,A):

• W (A) and W (C,A) are compact and connected.
GOLDBERG & STRAUSS 1977

• W (A) is convex. HAUSDORFF 1919, TÖPLITZ 1918

• W (C,A) is star-shaped. CHEUNG & TSING ’96

• W (C,A) is convex if C or A Hermitian. WESTWICK ’75

• W (C,A) is a circular disk centered at the origin if
C or A are unitarily similar to block-shift form

LI & TSING ’91
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Significance of C-Numerical Radius
Geometric Optimisation Problems

Find points on unitary orbit of initial state A that enclose

minimal Euclidean distance to target state C

min
U
||C − UAU−1||22 ⇔ max

U
Re tr{C† UAU−1}

⇔ find max. real part of C num. range

minimal angle to target state C

max
U

cos2
A,C (U) = max

U

| tr{C†UAU−1}|2

‖A‖2
2 · ‖C‖

2
2

⇔ find: C num. radius rC(A) = max
U
| tr{C† UAU−1}|

pro memoria: ||C − UAU−1||22 = ||A||22 + ||C||22 − 2 Re tr{C† UAU−1}
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Significance of C-Numerical Radius
Geometric Optimisation Problems

Set f (U) := Re tr{C†UAU†}; write skew-herm. part: [·, ·]S

calculate Fréchet derivative
Df (U)(ΩU) = 〈[UAU†,C†]†SU|ΩU〉
identify Df (U)(ΩU) = 〈grad f (U)|ΩU〉, where
ξ ∈ TUSU(N) reads ξ = ΩU and Ω ∈ su(N);
obtain gradient vector field
grad f (U) = [UAU†,C†]†S U

integrate gradient system U̇ = grad f (U) by

discretisation scheme Uk+1 = e−αk [Uk AU†
k ,C†]S Uk
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Examples of Quantum Control
Maximising Spectroscopic Sensitivity:

find rC(A) by gradient flow on unitary group

A,C ∈ Mat 3(C ) A,C ∈ Mat 8(C )

Glaser, T.S.H., Sieveking, Schedletzky, Nielsen, Sørensen, Griesinger,
Science 280 (1998), 421
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The Local C-Numerical Range
Local Quantum Control with G. Dirr & U. Helmke

Definition (math-ph/0701037 and math-ph/0702005)

The local C-numerical range is the set

Wloc(C,A) := {tr (C†UAU†) | U ∈ SU(2)⊗n} ⊆ WC(A),

where the unitary orbit is restricted to local operations
U =: K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)
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The Local C-Numerical Range
Local Quantum Control with G. Dirr & U. Helmke

Definition (math-ph/0701037 and math-ph/0702005)

The local C-numerical range is the set

Wloc(C,A) := {tr (C†UAU†) | U ∈ SU(2)⊗n} ⊆ WC(A),

where the unitary orbit is restricted to local operations
U =: K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)

Example (I non convex)

A :=

(
1 0
0 −1

)
⊗

(
1 + i 0

0 1− i

)
C := diag (1,0,0,0)
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The Local C-Numerical Range
Local Quantum Control with G. Dirr & U. Helmke

Definition (math-ph/0701037 and math-ph/0702005)

The local C-numerical range is the set

Wloc(C,A) := {tr (C†UAU†) | U ∈ SU(2)⊗n} ⊆ WC(A),

where the unitary orbit is restricted to local operations
U =: K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)

Example (II neither star-shaped nor simply connected)

A :=

(
1 0
0 e2iπ/3

)⊗3

C :=

(
1 0
0 0

)⊗3
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The Local C-Numerical Range
Local Quantum Control with G. Dirr & U. Helmke

Definition (math-ph/0701037 and math-ph/0702005)

The local C-numerical range is the set

Wloc(C,A) := {tr (C†UAU†) | U ∈ SU(2)⊗n} ⊆ WC(A),

where the unitary orbit is restricted to local operations
U =: K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)

Example (III distinct circular symmetry)

A := 1√
3
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Time-Reversal by Local Operations
Statement of the Problem

Question:

Which quantum evolutions are reversible by
local unitary operations ?

Problem: given a Hamiltonian H and a time t > 0,
? ∃ {K1,K2} ⊂ SU(2)⊗n : K1 e−itH K2 = e+itH

Cases:
1 K2 = K−1

1 : local inversion for all t ∈ R
2 K2 6= K−1

1 : local inversion pointwise at some τ ∈ R

Applications:
local refocussing quantum evolutions: Hahn’s echo
Hamiltonian simulation
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Local Time-Reversal
Case Distinction
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Local Optimisation
Local Gradient Flows quant-ph/0610061

minimise f (K ) := tr{KHK †H} over K ∈ SU(2)⊗n

gradient flow on local unitaries

K̇ = grad f (K ) = Pk([(KHK−1),H]) K

= −Pk

(
adH ◦ AdK(H)

)
K ,

Kr+1 = e−αr Pk([(KHK−1),H])Kr

Pk: projection onto subalgebra k of generators of
local unitaries K = SU(2)⊗n.
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Local Gradient Flows quant-ph/0610061
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Local Time-Reversal
Examples of Local Gradient Flows

Examples
(a) ISING ZZ -interaction on cyclic graph C4 (bipartite)

(b) ISING ZZ -interaction on cyclic graph C3 (not bipartite)

(c) HEISENBERG XXX interaction (isotropic coupling)
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Applications
Local Time Reversal quant-ph/0610061

Corollary (Relations I: Local C-Numerical Range)

For H = H† with ‖H‖2 = 1 the following are equivalent:

1 the Hamiltonian H is locally sign-reversible;

2 for its local C-numerical range −1 ∈ Wloc(H,H);

3 its local C-numerical range is the interval
Wloc(H,H) = [−1 ; +1];
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Local Time Reversal quant-ph/0610061

Corollary (Relations II: Lie algebras)

For H = H† with ‖H‖2 = 1 the following are equivalent:

1 the Hamiltonian H is locally sign-reversible;

2 ∃K ∈ SU(2)⊗n : AdK (H) = −H;

3 H is locally unitarily similar to a H̄ with
AdKz (H̄ ) = −H̄ ;

4 let g = g0 ⊕
⊕
i 6=j

C Eij be the root-space

decomposition of sl(N,C ); H is locally unitarily
similar to a linear combination of root-space

elements to non-zero roots H̄ :=
m∑

λ=1
cλE (λ)

ij

satisfying a system of linear equations∑
` pλ,` · φ` = π(mod 2π)
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Relative C-Numerical Range
Condition for Rotational Symmetry math-ph/0702005

Theorem

Let K be a compact connected subgroup of U(N) with
Lie algebra k, and let t be a torus algebra of k. Then the
relative C-numerical range WK(C,A+) of a matrix
A+ ∈ Mat N(C ) is a circular disc centered at the origin of
the complex plane for all C ∈ Mat N(C ) if and only if
there exists a K ∈ K and a ∆ ∈ t such that KA+K † is an
eigenoperator to ad∆ with a non-zero eigenvalue

ad∆(KA+K †) ≡ [∆,KA+K †] = ip (KA+K †) and p 6= 0 .
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Relative C-Numerical Range
Condition for Rotational Symmetry math-ph/0702005

Theorem

Let K be a compact connected subgroup of U(N) with
Lie algebra k, and let t be a torus algebra of k. Then the
relative C-numerical range WK(C,A+) of a matrix
A+ ∈ Mat N(C ) is a circular disc centered at the origin of
the complex plane for all C ∈ Mat N(C ) if and only if
there exists a K ∈ K and a ∆ ∈ t such that KA+K † is an
eigenoperator to ad∆ with a non-zero eigenvalue

ad∆(KA+K †) ≡ [∆,KA+K †] = ip (KA+K †) and p 6= 0 .

If KA+K † is an eigenoperator of ad∆ to eigenvalue +ip
and A− := A†+, then KA−K † shows the eigenvalue −ip.
A+ and A− share the same relative C-numerical range of
circular symmetry, WK(C,A+) = WK(C,A−).
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Relative C-Numerical Ranges
Relation of Reversibility and Rotationally Symmetric WK(C, A)

math-ph/0701035

Corollary

Let K = SUloc(2n) with A+ and A− := A†+ sharing same
circular-disc shaped Wloc(C,A±) for all C. Then
(1) any Aλ := A+ + λA− with λ ∈ C , e.g., H := A+ + A−

is locally sign reversible;
(2) the converse does not hold: there are locally

reversible Hermitian H with no decomposition into a
single pair {H+,H−} sharing the same rotationally
symmetric Wloc(C,H±);

(3) any locally sign reversible Hermitian H ∈ Mat 2n(C )

can be decomposed into at most
(2n

2

)
pairs

(H(1)
+ ,H(1)

− ), (H(2)
+ ,H(2)

− ), . . . each with same
rotationally symmetric Wloc(C,H

(`)
± ).
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Constrained C-Numerical Ranges
Constrained Optimisation Diss-ETH 12752

Definition

The constrained C-numerical range of A is defined by

W (C,A)
∣∣
constraint :=

{
tr(UAU†C†)

∣∣ constraint
}
⊆ W (C,A) .

Example (I. Invariance)

Maximise transfer from A to C leaving E invariant:

max
U
| tr{UAU†C†}| subject to UEU† = E
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Constrained C-Numerical Ranges
Constrained Optimisation Diss-ETH 12752

Definition

The constrained C-numerical range of A is defined by

W (C,A)
∣∣
constraint :=

{
tr(UAU†C†)

∣∣ constraint
}
⊆ W (C,A) .

Example (I. Invariance)

Maximise transfer from A to C leaving E invariant:

max
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Constrained C-Numerical Ranges
Constrained Optimisation Diss-ETH 12752

Definition

The constrained C-numerical range of A is defined by

W (C,A)
∣∣
constraint :=

{
tr(UAU†C†)

∣∣ constraint
}
⊆ W (C,A) .

Example (II. Orthogonality)

Maximise transfer A to C while suppressing A to D:

max
U
| tr{UAU†C†}| subject to tr{UAU†D†} = m0

with m0 ∈ W (D,A) unique point in W (D,A) closest to 0.
Perfect match: 0 ∈ W (D,A) ⇔ Ou(A) ∩HD⊥ 6= {}
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Constrained C-Numerical Ranges
Relation to WK(C, A) math-ph 0701035

Corollary

The constrained C-numerical range is a connected set in
the complex plane, if the constraint can be fulfilled by
restricting the full unitary group U(N) to a compact and
connected subgroup K ⊆ U(N). Then

1 constrained and relative C-numerical range coincide

W (C,A)|constraint = WK(C,A)

2 optimisation problem solved within WK(C,A),
e.g. by relative C-numerical radius rK(C,A)
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Corollary

The constrained C-numerical range is a connected set in
the complex plane, if the constraint can be fulfilled by
restricting the full unitary group U(N) to a compact and
connected subgroup K ⊆ U(N). Then

1 constrained and relative C-numerical range coincide

W (C,A)|constraint = WK(C,A)
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e.g. by relative C-numerical radius rK(C,A)
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Example (I. Invariance)

Maximising transfer from A to C leaving E invariant

max
U
| tr{UAU†C†}| subject to UEU† = E

is straightforward: the stabiliser group

KE := {K ∈ U(N) |KEK † = E}

is generated by

kE := {k ∈ u(N) | adk (E) ≡ [k ,E ] = 0} .
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Lemma (Example I: Invariance)

1 The set kE is closed under the Lie bracket, hence it
is a subalgebra to u(N) thus generating the
stabiliser group KE ⊆ U(N).

2 kE satisfies a homogeneous linear system:
kE = ker adE ∩ su(N)

= {k ∈ su(N)|(1l⊗ E − E t ⊗ 1l) vec(k) = 0} .

3 Constrained and relative C numerical range
coincide: W (C,A)

∣∣
AdU(E)=E = WKE (C,A) .

4 E Hermitian: KE includes a maximal torus group
T ⊆ KE ⊆ SU(N).
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Algorithm: Gradient Flow with Lagrange Constraint

1 Define Lagrange function (with fC(U) : tr{C†UAU†}):

L(U) := |fC(U)|2 − λ
(

tr{UEU†E†} − ||E ||22
)

2 Fréchet derivative (with (·)S as skew-Hermitian part):

D
{
|fC(U)|2 − λfE(U) + λ ‖E‖2

2
}

(iHU)

= tr
{ (

2 (f ∗C(U)[UAU†,C†])S − λ[UEU†,E†]
)

iH
}

3 Recursive scheme:

Uk+1 = e−α
(

2 (f∗C (Uk )[Uk AU†
k ,C†])S−λ[Uk EU†

k ,E†]
)

Uk
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Example (II. Orthogonality)

Maximising transfer from A to C while suppressing A to D

max
U
| tr{UAU†C†}| subject to tr{UAU†D†} = m0

is more complicated: the constrained set

K̃D := {K ⊆ SU(N) | tr{KAK †D†} = m0 }

is in general no subgroup KD.
Thus the generic constrained C-numerical range

W (C,A)
∣∣
AdU⊥D = m0 ⊆ W (C,A)

will not be connected.



I. Quantum
Compilation

II. Gradient Flows

III. Control of
Closed & Open
Systems

IV. Constrained
Optimisation
Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained WC (A)

Invariance

Orthogonality

Tensor-SVD

Conclusions &
Outlook

Constrained C-Numerical Ranges
Constrained Optimisation: Orthogonality Diss-ETH 12752

Algorithm: Gradient Flow with Lagrange Constraint

1 Define Lagrange function:

L(U) := |fC(U)|2 − λ |fD(U)|2

2 Fréchet derivative (with (·)S as skew-Hermitian part):

D
{
|fC(U)|2 − λ |fD(U)|2
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}

3 Recursive scheme:

Uk+1 = e−2α
(
(f∗C (Uk )[Uk AU†

k ,C†])S −λ
(

f∗D (Uk )[Uk AU†
k ,D†]

)
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)
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Example (II. Orthogonality)

Maximise transfer from A to C and suppress A to D for

A =

(
0.8359−0.1152i 0 0

0 −0.2593−0.3906i 0
0 0 0.0151+0.2609i

)

C =

(
−0.0318+0.0690i −0.3522−0.3185i 0.2351−0.3050i
−0.0404+0.0656i 0.0844−0.2880i 0.2135+0.3234i

0.3086+0.1076i 0.1742−0.2291i −0.2368+0.3585i

)

D =

(
−0.2910−0.3480i −0.2395+0.0274i −0.2428+0.0656i

0.0836−0.2790i −0.1836−0.0203i −0.2427+0.2396i
−0.3906−0.1387i 0.1989−0.2725i −0.0442+0.3871i

)
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Applications of Local Gradient Flows
Pure-State Entanglement

Maximising real part in Wloc(C,A)
minimises distance from C to local unitary orbit of A

max
K∈SU(2)⊗n

Re tr{C† KAK−1} ⇔ min
K∈SU(2)⊗n

‖KAK−1−C‖2

Application to Quantum Information Theory: let
A be a given rank-1 state of the form A = |ψ〉〈ψ| and
C = diag (1,0)⊗n [thus Wloc(C,A) → Wloc(A)]

Corollary (Interpretation)

The minimial Euclidean distance is a measure of
(pure-state) entanglement; i.e. it quantifies how far A is
from the local equivalence class of the tensor-product
state C.
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Examples:
pure-state entanglement parameterised by s

|ψ3(s)〉 =
√

s|W〉 +
√

1 − s|W̃〉 |ψ4(s)〉 =
√

s|GHZ ′〉 −
√

1 − s|ψ+〉 ⊗ |ψ+〉
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Applications
Pure-State Entanglement

CPU times: local gradient flows
very fast as compared to global techniques

� Example 1: distance to 3-qubit W -type states

� Example 2: distance to 4-qubit GHZ-type states

qubits semidefinite prog. by gradient flow speed-up
cpu-time [sec]1 cpu-time [sec]2

3 10.92 0.30 36.4
4 103.97 0.71 147.0

1
Eisert et al. (processor with 2.2 GHz, 1 GB RAM)

2
average of 50 runs, Athlon XP1800+ (1.1 GHz, 512 MB RAM)
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Relation to SVD

observe: singular-value decomposition (SVD)
for X ,Y ∈ C N1×N2 : VX ,Y ∈ U(N1),WX ,Y ∈ U(N2)

ΣX = VX XWX

vec ΣX = (W t
X ⊗ VX ) vec X

|ΣX 〉 = (W t
X ⊗ VX )|x〉

|ΣX 〉〈ΣX | = (W t
X ⊗ VX )|x〉〈x |(W ∗

X ⊗ V †
X )

|ΣY 〉〈ΣY | = (W t
Y ⊗ VY )|y〉〈y |(W ∗

Y ⊗ V †
Y )

maximisation

max
V ,W

tr{|Y 〉〈Y |(W t ⊗ V )|X 〉〈X |(W ∗ ⊗ V †)}

= tr{|ΣX 〉〈ΣX | · |ΣY 〉〈ΣY |} = |〈ΣX |ΣY 〉|2

this proves the following Theorem:
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Pure-State Entanglement

Theorem

For X ,Y ∈ C N1×N2 let X = V †
X ΣX W †

X , Y = V †
Y ΣY W †

Y be
their singular value decompositions with VX ,VY ∈ U(N1),
WX ,WY ∈ U(N2) and ΣX ,ΣY sorted by magnitude.
Moreover, set |x〉 := vec X and |y〉 := vec Y. Then the
maximum local transfer between |x〉〈x | and |y〉〈y | is

max
U∈SU(N2)⊗SU(N1)

tr{|x〉〈x |U|y〉〈y |U†)} =
(

tr{Σ†X ΣY}
)2
.

Equality is actually achieved with VX ,VY ∈ SU(N1) and
WX ,WY ∈ SU(N2) in U := (W ∗

X ⊗ V †
X ) · (W t

Y ⊗ VY ).
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Relation to SVD and Tensor-SVD
Pure-State Entanglement

Corollary (Bipartite Pure-State Entanglement)

The minimum Euclidean distance of an arbitrary bipartite
pure state |x〉〈x | to the local unitary orbit of
|y〉〈y | = diag (1,0,0, . . . ,0), i.e. the nearest separable
pure state, is determined by the largest singular value in
ΣX = VXW with |x〉 := vec X.
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Pure-State Entanglement

Corollary (Multipartite Pure-State Entanglement)

The minimum Euclidean distance of an arbitrary
multipartite pure state

∑
k λk (x1x2 ◦ xn) to the nearest

separable pure state y1y2 ◦ yn is determined by the
largest singular value in ΣX derived from the best rank-1
approximation to

∑
k λk (x1x2 ◦ xn) seen as higher-order

tensor.
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3-Qubit Example:
|ψ3(s)〉 =

√
s|W 〉+

√
1− s|W̃ 〉

by gradient flow on SU(2)⊗3 by tensor-SVD (HOPM/HOOI)
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4-Qubit Example:
|ψ4(s)〉 =

√
s|GHZ ′〉 −

√
1− s|ψ+〉 ⊗ |ψ+〉

by gradient flow on SU(2)⊗4 by tensor-SVD (HOPM/HOOI)
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Applications: Grad. Flows vs Tensor SVD
Pure-State Entanglement

� Example 1: distance to 3-qubit W -type states

� Example 2: distance to 4-qubit GHZ-type states

qubits semidefinite prog. by gradient flow speed-up
cpu-time [sec]1 cpu-time [sec]2

3 10.92 0.30 36.4
4 103.97 0.71 147.0

qubits tensor-SVD (HOPM) tensor-SVD (HOOI) speed-ups
cpu-time [sec]2 cpu-time [sec]2

3 2.39 5.37 4.6 (2.0)
4 3.93 7.03 26.5 (14.8)

1
Eisert et al. (processor with 2.2 GHz, 1 GB RAM)

2
average of 50 runs, Athlon XP1800+ (1.1 GHz, 512 MB RAM)
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Conclusions

1 Gradient Flows on Riem. Manifolds & Lie Groups
• powerful tool for optimisation and control

2 Quantum Control: key in future technology
• offers also rewarding theoretical challenges

3 Quantum CISC Compiler: use of parallel cluster
• extend modules beyond 1 and 2-qubit interactions

4 Optimal Control of Open Quantum Systems
• dressed to physical hardware
• generalises decoherence-free subspace

5 Constrained Optimisation
• local time reversal
• tensor SVD for pure-state entanglement
• new: relative C-numerical range
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