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quantum & nano-technology rely on quantum control
(solid-state devices, spintronics-NMR-EPR, quantum dots, ion-traps)
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Wm Quantum CISC Compiler by Optimal Control

1. Quantum W assemble optimised medium-sized building blocks
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Assemblerl l scalable Assemblerl

Machine Code of Quantum Evolutions under Drift and Controls

RISC-CISC analogy: G. Sanders et al. PRA 59, 1098 (1999)



with T. Gradl, T. Huckle

WI I’ I’ Parallelisation

B Parallelising Matrix Operations
1. slice-wise: 2. tree-like:

I. Quantum
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II. Gradient Flows

Ill. Control of
Closed & Open =
Systems o
IV. Constrained
Optimisation uoz - uo3
onelusions & B Resulting Speed-Ups: 10 spins 128 time slices
128 AMD Opteron 850 cpu (2.4 GHz)
Subroutine % of time Speedup
optimizeCG 100 578
maxStepSize 90 709
getGradient 9.1 187
expm 7.5 879
propagation 1 31
gradient 0.6 81

Gradl, Sporl, Huckle, Glaser, T.S.H., Proceedings EUROPAR LNCS 4128 (2006), 751
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B Induction: km-qubit QFT to k(m + 2)-qubit QFT (m even)

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of

Closed & Open — —
SyStemS QFT,. cP-SWAP QFT,, cP-SWAP}, QFT,.

IV. Constrained
Optimisation cP-SWAP?, P-SWAP?, cP-SWAP?, cP-SWAP?,

Conclusions &

Outlook P-SWAP?, cP-SWAP?, P-SWAP?,

P-SWAP!, P-SWAP!,

cP-SWAPS,




Wm Results for Large Systems

. Quantum B quality gain by speed-up

Compilation

II. Gradient Flows

I1l. Control of .
Closed & Open h
Systems 0.9
IV. Constrained 038
Optimisation 07
o
Conclusions & . 5 08
2 o
Outlook 3 2 os
2
g § 0.4]
= c - m=10
0.3]
0.2]
0.1] - m=2
% 20 0 80 100 20 0 60 80 100

number of qubits number of qubits



Wm Results for Large Systems

. Quantum B quality gain by speed-up

Compilation

II. Gradient Flows

I1l. Control of ) .
Closed & Open -m=2
Systems 0.95
IV. Constrained 09
Optimisation 085
100 -m=3;4 o
Conclusions & 5 - m=5:6 g o8
= -m=7 5]
Outlook = e 8 o7
E > -m=7;8
= ® 07 - m=5;6
3
50 =3 - m=3;4
0.65
0.6
0.55 - m=2
0.5
20 40 60 80 100 0 20 40 60 80 100

number of qubits number of qubits



Wm Results for Large Systems

. Quantum B quality gain by speed-up

Compilation

II. Gradient Flows

I1l. Control of .
Closed & Open
Systems 0.9 ingle CISC
IV. Constrained 200 08
Optimisation 0.7
o
Conclusions & 5 150 5 06
Outlook = & o5
g 2
S 100 ® 04
S
o
0.3
50 0.2
01
0
2 2 4 6 8 10

number of qubits number of qubits



Wm Dynamical Systems and Flows

m dynamic systems on smooth manifolds M, e.g.:

Gampiai (1) all states on the (unitary) orbit of an initial state
Compilation (2) group of unitary actions {Ady | U € SU(N)}

::| Gcr::::t;ms (3) vectors of piece-wise constant control amplitudes
Closed & Open (12) R n)

Systems

IV. Constrained
Optimisation

Conclusions &
Outlook



Wm Dynamical Systems and Flows

m dynamic systems on smooth manifolds M, e.g.:

. Gt (1) all states on the (unitary) orbit of an initial state
complaton (2) group of unitary actions {Ady | U € SU(N)}

::| Gc“’dt'e"lt t"’ws (3) vectors of piece-wise constant control amplitudes
Sy " (ER

Optimisaton m flow: smoothmapR x M — M

Outook (0, X) = X

O(7,P(t, X)) = ¢(t+ 7, X)




Wm Dynamical Systems and Flows

m dynamic systems on smooth manifolds M, e.g.:

. Gt (1) all states on the (unitary) orbit of an initial state
complaton (2) group of unitary actions {Ady | U € SU(N)}

::| Gc“’dt'e"lt t"’ws (3) vectors of piece-wise constant control amplitudes
Sy " (ER

Optimisaton m flow: smoothmapR x M — M

Outook (0, X) = X

O(7,P(t, X)) = ¢(t+ 7, X)

m flow acts as one-parameter semigroup for 7, t > 0

qD'r © (Dt = (Dt—l—r
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Wm Gradient Flows for Optimisation

| Queim m smooth quality function f: M — R on M

Compilation

II. Gradient Flows

ill. Control of m differential of fat X e Mis Df: M — T*M
e mapping to cotangent bundle T*M

IV. Constrained
Optimisation

Conclusions & u gradient of fat X e Mis grad fM—TM
Outlook mapping to tangent bundle TM

Df (X)-¢=(gradf(X)|)x forall{ e TyM.

m scalar product (-|-) x in smooth manifold M crucial:
allows for identifying Ty M with TxyM
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Wm Gradient Flows for Optimisation

I. Quantum

Compilation m gradient flow ® : R x M — M.
Il. Gradient Flows solution to gradient system on M determined by

T v ordinary differential equation

Systems

IV. Constrained X = grad f(X)

Optimisation

Conclusions &

Outiook X(t) = &(t, X(0)) is unique solution of gradient
system with initial value X(0) = X

m as desired: f increases along trajectories of ¢ by
following gradient direction of f.
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m steepest ascent, special case:
M coincides with Ty, (as for M = R")

Xii1 = Xk + ax grad f(Xk)
ax > 0 appropriate step size

m steepest ascent for Riemannian manifolds M
(M and Ty, in general not identifiable):

X1 : = expy, (ak grad f(Xi))
ax > 0 appropriate step size

m natural continuous extension for optimising
f: M — R by moving along grad f(X) € TxM
observe: line-segments in Euler are replaced by
geodesics on M
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mexp,: IxM—M

exp, (1€) EXPy

m specially simple in Lie groups: exp, : TxG — G

E=QXeTxG —2 , X cG

fo—1l TF:‘X

Qeg % ecG.
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Wm Gradient Flows for Optimisation

 ovantim m steepest ascent for Riemannian manifolds M
Compilation (M and Ty, in general not identifiable):

II. Gradient Flows

11l. Control of Xk+1 C = eXpXk (ak grad f(Xk))

Closed & Open
Systems

IV. Constrained g > 0 appropriate Step size

Optimisation

Conclusions &

Outlook m steepest ascent for Lie groups G:

Xi+1 - = expy, (ax grad f(Xx))
= exp(ax grad f(Xe) X, ') X

Brockett (1988)
Helmke, Moore (1994)
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Wm Gradient Flows on Riemannian Manifolds

I. Quantum
Compilation

X = grad f(X) € TyM

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained T f
Optimisation .M

X
Conclusions &

Outlook %—a
T

™M

M

W quality function f: M — R, X — f(X)
drives into (local) maximum by gradient flow
to X =grad f(X) on M



WI I’ I’ Gradient Flows on Riemannian Manifolds

I. Quantum

Compilation ¥ =gadg(v)e TyM

P

II. Gradient Flows
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Closed & Open
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IV. Constrained Y
Optimisation X(t, Y) solves control system X = F(Xp, Y)
Conclusions & M
Outlook

YeM =R

control amplitudes
control amplitudes
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Wm Control of Hamiltonian Dynamics

m Bilinear Control System

I. Quantum
Compilation

Il Gradient Flows X(t) = (A+ Z ui(t)B;) X(t)
j=1

I1l. Control of
Closed & Open

Systems m Hamiltonian dynamics (Schrddinger equation)

Controllability

wwwwwww

(1)) = —i(Ha + Y u(t)H;) [(D))

IV. Constrained

Optimisation j:1
gonlcluksions & m
utloo . .
U(t) = —i(Ha +)_ u(t)H;) U(t)
j=1

e Hy: drift term
e H;: controls
e u;(t): control amplitudes
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Wm Controllability of Quantum Systems

I. Quantum

Compilation Definition

::| ir::::t;m A system is operator controllable, if to any set of basis
Closed & Open states its unitary image can be reached (in finite time).

Systems
Controllability

Corollary (Jurdjevic and Sussmann, 1972)

IV. Constrained
Optimisation

Conlusions & The bilinear system (vide supra) is operator controllable
Calzels if drift and controls are a generating set of 5u(2”) by way

of commutation, i.e. (Hy. H;|j=1,2,. MLic = su(2").



Wm Controllability and Coupling Topology

B Example: n weakly coupled spins-3.

I. Quantum Which conditions suffice for

Compilation
II. Gradient Flow: i rep
Q512 (Has Hilj=1,2,...,mLie = su(2") ?
I1l. Control of
Closed & Open
Systems
Controllability

Lemma (Diss. ETH 12752)

. Conchained A system of n qubits is operator controllable, if e.g. the

Optinisation control Hamiltonians H; comprise

Conclusions & {okx. o1y |k =1,2,...n} on every single qubit selectively
and the drift Hamiltonian Hy encompasses the Ising pair

interactions {Jx; (ox> @ 047)/2 | k < £ =2,...n}, where

the coupling topology of Jxy # 0 may take the form of any

connected graph.
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Wm Controllability and Quantum Gates

Corollary

I. Quantum
Compilation

1. Gradiont Flowe The following are equivalent:
. Control of in a quantum system drift Hy and controls H; form a
Svetems " generating set of su(2");
o every unitary transformation in SU(2") can be
realised on that quantum hardware;
Optmisation there is a set of universal quantum gates for the
Conclusions & quantum SySl‘em,‘
reachability set for generalised expectation value
(C)(1) := tr{CTA(1)}
coincides with C-numerical range W(C, A) YA, C.

Outlook
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Wm Principles: Optimal Quantum Control

Scope in Optimal Control:
maximise quality function subject to equation of motion

I. Quantum

LA Scenarios:
Il Gradient Flows m Hamiltonian dynamics

Cioesa & Open notation: U := e~ ™: Ady() := U()U~"; adu(-) := [H, ,-]
Systems

ity 1. pure state ) = —iH |) €M
“““““ ¢ 2. gate U=—-iHU € U(H)
Optmisation 3. non-pure state p=—iady (p) € Bi(H)
Conclusions & 4. projective gate Ady = —iady o Ady € U(Bi(H))
m Master equations of dissipative dynamics
3. non-pure state  p= —(iady +T) (p)

4. contractive map x = —(iady +T)ox € GL(B1(H)
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with N. Khaneja

Wm Methods of Quantum Control

m Gradient Ascent Algorithm GRAPE

J. Magn. Reson. 172 (2005), 296 and Phys. Rev. A72 (2005), 042331
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I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems
Controllability

Tasks

Unitary Optimisation

Decoherence Control

Define scalar-valued HAMILTON function
IV. Constrained )
Optimisation h(U) = Retr{AT(=i(Ha + 3 yH)) U}
Gorcusions & with adjoint system satisfying
utloo . i
A) = —i(Ha + 32; uH)A(D)
Then PONTRYAGIN’s maximum principle requires
. !

% = Retr{Af(=iH))U} =0

thus allowing for a gradient-flow of quantum controls
(r+1) £
ui(te ™) = uj(ty )+€duj }z t




Wm Examples of Quantum Control

with F. Wilhelm, M. Storcz

Goal: realise timeoptimal CNOT on 2 coupled charge qubits

I. Quantum

Copplatcy m pseudospin Hamiltonian: H = Hgyig

II. Gradient Flows

Ill. Control of E E 1 EJ1

Glosed & Open Haine = — <Tm + 7") (0N @) - 5 e @)
i::;o\labm(y E E E

—— - (Tm + —°2) (1o o) - SF(1e0?)
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I’ I’ m Examples of Quantum Control

with F. Wilhelm, M. Storcz

Goal: realise timeoptimal CNOT on 2 coupled charge qubits

I. Quantum

Compilation m pseudospin Hamiltonian: H = Hy:ift + Heontrol
II. Gradient Flows
E, E E

I1l. Control of m cl Ea
Closggéoo(:)en Hdrift = - <T + —2 ) (O'Z " ® ]l) 2 ® ]l)
Systems
Controllability
o En  Ec 2), En 2
(54 ) e - e
Decoherence Control 4 2
IV. Constrained E " @)
Optimisation m

+ — Ko
Conclusions & 4 ( z )

Outlook

E,
Heonwot = <?m Ng2 + Ecq ng1> (0'9) ® l)

2

NB: components {Hy + Hg, Hc} form minimal generating set of su(4).

E,
+ (_mng1 + Ecgng2> (]l 024 0'22))



Wm Examples of Quantum Control

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

Conolabity = timeopt. CNOT: some 5 times faster than NEC group

Tasks

Unitary Optimisation
Decoherence Control

IV. Constrained ® Quallty q = Fe_TOP/TO
Optimisation sol— qg= 1 — 0.999999999 e—55ps/10ns = 0.0055

Conclusions & . _ —250ps/10ns
Ol (NEC:1 — g =1—0.4188 g—250ps/10ns — (0 5917)

PRA 75, 012302 (2007)



Wm Examples of Quantum Control

Goal: TOFFoOLI gate on 3 linearly coupled charge qubits
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II. Gradient Flows m Master equation: p = _(iadH +r) p

I, Control of m DFS: eigenspace to I' with eigenvalue =0

S m Express H = ady in eigenbasis of I (here 4 qubits)
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IV. Constrained
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m |dea: perform calculation (e.g. CNOT) within DFS

Zanardi, Rasetti, Phys. Rev. Lett. 79 (1997), 3309.
Lidar, Chuang, Whaley, Phys. Rev. Lett. 81 (1998), 2594.
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Wm Examples of Quantum Control

B 1 logical qubit coded by 2 physical qubits in Bell states

I. Quantum

S (0): = [0 = J5(101)+[10)), [1) = [v7) = J5(01) ~ [10))
Ciosed & Open B := span {|{=) (Y], [T ) (¥}

Systems

S B 2 logical qubits coded by 4 physical qubits

R 1 1

IV. Constrained ﬁ(‘01>+ ’1O>) ﬁ(’O‘I) + ‘10>)
Optimisation . . .

s (l01) ~[10)) 73(01) = 10))

B protection against T, relaxation (Redfield: I ~ [Z2Z,[ZZ, p]])
because [p,ZZ] =0 V peB®B
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ot » controls G »

Systems

Dy = i XU+ 1Ixx + yy 11+ 1yy) + Jsz 1221
: i Cy = zIll-1z11

IV. Constrained

Optimisation CZ = 11z1 - 111z .

gzltqlglgksions& = <D1, C17 C2 Lle‘B@B °p 5u(4)

e Liouville subspace B® B
spans states protected against T>-relaxation
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Generalising Expectation Values

Generalise from B = B' to non-Hermitian operators:

® pure quantum states:
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LI & TSING '91
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Geometric Optimisation Problems

Wm Significance of C-Numerical Radius

Set f(U) := Retr{ CTUAU'}; write skew-herm. part: [-,-]s

I. Quantum
Compilation

II. Gradient Flows

ll. Control of m calculate Fréchet derivative
e Df(U)(QU) = ([UAUT, CTIkulQU)
o onsttained m identify Df(U)(QU) = (grad f(U)|QQU), where
m ¢ € TySU(N) reads £ = QU and Q € su(N);
m obtain gradient vector field
grad f(U) = [UAU', CT]§, U

Orthogonality
Tensor-SVD
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Outlook



Geometric Optimisation Problems

Wm Significance of C-Numerical Radius

Set f(U) := Retr{ CTUAU'}; write skew-herm. part: [-,-]s

I. Quantum
Compilation

II. Gradient Flows

Il Control of m calculate Fréchet derivative

e Df(U)(QU) = ([UAU', CTl5u|QU)

Ooyronshained m identify Df(U)(QU) = (grad f(U)|Q2U), where
m ¢ € TySU(N) reads £ = QU and Q € su(N);

m obtain gradient vector field
grad f(U) = [UAU', CT]§, U

Orthogonality

Torsorsvo m integrate gradient system U = grad f(U) by

Conclusions &
Outlook



Geometric Optimisation Problems

Wm Significance of C-Numerical Radius

Set f(U) := Retr{ CTUAU'}; write skew-herm. part: [-,-]s

I. Quantum
Compilation

II. Gradient Flows

ll. Control of m calculate Fréchet derivative
Soname " Df(U)(QU) = ([UAU', CT5UIQU)
o onsttained m identify Df(U)(QU) = (grad f(U)|QQU), where
m ¢ € TySU(N) reads £ = QU and Q € su(N);
m obtain gradient vector field
grad f(U) = [UAU', CT]§, U
m integrate gradient system U = grad f(U) by

Orthogonality
Tensor-SVD

Conclusions &
Outlook

. . . T
m discretisation scheme Uy 1 = e~[UkAU.Clls 1,



Wm Examples of Quantum Control

m find rg(A) by gradient flow on unitary group
I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open

Systems "

A, C € Mat3(C A, C € Matg(C)

IV. Constrained Imf(u))

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &

Re{f{U)) Y
Outlook

Glaser, T.S.H., Sieveking, Schedletzky, Nielsen, Sgrensen, Griesinger,
Science 280 (1998), 421




with G. Dirr & U. Helmke

Wm The Local C-Numerical Range

Definition (math-ph/0701037 and math-ph/0702005)

e The local C-numerical range is the set

Compilation

II. Gradient Flows
1l. Control of VVIOC(C7 A) = {tr (CT UAUT) | U € SU(2)®FI} g WC(A)7
Closed & Open
Systems

. Contrained where the unitary orbit is restricted to local operations
Optimisati U=KeSU2)2 SU?2)® - SU(2)

Orthogonality
Tensor-SVD

Conclusions &
Outlook



Wm The Local C-Numerical Range

with G. Dirr & U. Helmke

Definition (math-ph/0701037 and math-ph/0702005)
I. Quantum

Compitation The local C-numerical range is the set
II. Gradient Flows

1l. Control of VVIOC(C7A) = {tr(CT UAUT) | U € SU(2)®FI} g WC(A)7
Closed & Open
Systems

. Contrained where the unitary orbit is restricted to local operations
Obtimisation U = K € SU(Z) X SU(Z) XX SU(Z)

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance

Example (I non convex)

Orthogonality
Tensor-SVD

Conclusions & o 1 0 1 T i 0
Outlook A= (O _1)®< 0 1 —I)

C :=diag(1,0,0,0)




with G. Dirr & U. Helmke

Wm The Local C-Numerical Range

Definition (math-ph/0701037 and math-ph/0702005)

L (CIERTT The local C-numerical range is the set

Compilation

II. Gradient Flows
1l. Control of VVIOC(C7 A) = {tr (CT UAUT) | U € SU(2)®FI} g WC(A)7
Closed & Open
Systems

. Contrained where the unitary orbit is restricted to local operations
Opiimisai U=KeSU(2)® SU(2)®---® SU(2)

Example (Il neither star-shaped nor simply connected)

Geometry
Constrained W, (A)
Invariance

Orthogonality

Tensor-SVD 1 0 ®3
Conclusions & A= 0 eZiﬂ/S

Outlook
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with G. Dirr & U. Helmke

Wm The Local C-Numerical Range

Definition (math-ph/0701037 and math-ph/0702005)
I. Quantum

i The local C-numerical range is the set

II. Gradient Flows

1l. Control of VVIOC(C7A) = {tr(CT UAUT) | U € SU(2)®FI} g WC(A)7
Closed & Open
Systems

. Contrained where the unitary orbit is restricted to local operations
Opiimisai U=KeSU(2)® SU(2)®---® SU(2)

Example (Il distinct circular symmetry

Geometry
Constrained W, (A)

Invariance

e 0 000
Conclusions & A:L 1 O 0 0
Outlook 3 1 0 0 O

1 0 00




Statement of the Problem

W m Time-Reversal by Local Operations

Question:

I. Quantum Which quantum evolutions are reversible by
C ilati . '
oo local unitary operations ?

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained
Optimisation
Loc. C-Numerical Ranges
Local Gradient Flows
Corollaries
Geometry
Constrained W, (A)
Invariance
Orthogonality
Tensor-SVD

Conclusions &
Outlook
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W m Time-Reversal by Local Operations
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I. Quantum Which quantum evolutions are reversible by
C ilati . '
oo local unitary operations ?

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

V. Constrained m Problem: given a Hamiltonian H and a time t > 0,
Optimisation ?3 {K17K2} C SU(2)®n . K1 efItH K2 — e+/tH

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
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Statement of the Problem

W m Time-Reversal by Local Operations

Question:

I. Quantum Which quantum evolutions are reversible by
Compilation . .
local unitary operations ?

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

V. Constrained m Problem: given a Hamiltonian H and a time t > 0,
Optimisation ?3 {K17K2} C SU(2)®n . K1 efItH K2 — e+/tH

Loc. C-Numerical Ranges
Local Gradient Flows
Corollaries
Geometry m Cases:
Constrained W, (A) _ . .
e K, = K, ': local inversion for all { € R

Orthogonality

Tonsor SVD K, # K1‘1: local inversion pointwise at some 7 € R

Conclusions &
Outlook



Statement of the Problem

W m Time-Reversal by Local Operations

Question:

I. Quantum Which quantum evolutions are reversible by
Compilation . .
local unitary operations ?

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

. Contrained m Problem: given a Hamiltonian H and a time t > 0,
Optimisation ?3 {K1 s KQ} C SU(2)®H : K1 eiItH K2 = eJrItH

Loc. C-Numerical Ranges
Local Gradient Flows
Corollaries
Geometry m Cases:
Constrained W, (A) _ . .
e K, = K, ': local inversion for all { € R

Orthogonality

Tonsor SVD K, # K1‘1: local inversion pointwise at some 7 € R

Conclusions &
Outlook

m Applications:
m local refocussing quantum evolutions: Hahn’s echo
m Hamiltonian simulation



Case Distinction

W I I’ I’ Local Time-Reversal

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained
Optimisation
Loc. C-Numerical Ranges
Local Gradient Flows
Corollaries
Geometry
Constrained W, (A)
Invariance

Orthogonality
Tensor-SVD

Conclusions &
Outlook




W m Local Optimisation

quant-ph/0610061

Gomplianmn m minimise f(K) := tr{ KHKTH} over K € SU(2)*"
II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook



W m Local Optimisation

quant-ph/0610061

I. Quantum

Compiation m minimise f(K) := tr{KHKTH} over K € SU(2)*"
I ‘:ad‘e”‘ Flows m gradient flow on /ocal unitaries
I1I. Control of

Closed & Open .
Systems

K = grad f(K)

Pe([(KHK™"), H]) K
IV. Constrained
Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows = _Pé(adH ] AdK(H)) K,

Geometry

Constrained W, (A) —1

o Kpor = -orPe(KHK ) H)
Orthogonality

Tensor-SVD

Conclusions &

Py: projection onto subalgebra ¢ of generators of
outioek local unitaries K = SU(2)®".



W I I’ I’ Local Time-Reversal

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook

m Examples

(a) ISING ZZ-interaction on cyclic graph Cj (bipartite)
(b) ISING ZZ-interaction on cyclic graph Cz (not bipartite)
(c) HEISENBERG XXX interaction (isotropic coupling)

1t

o
3]

Re tr {KHK_1 H} [normalised]
o

0 50
iteration

100 150



Wm Applications

quant-ph/0610061

I. Quantum
Compilation

1L Gradient Flows Corollary (Relations I: Local C-Numerical Range)

I1l. Control of

Closed & Open For H = H' with |[H |, = 1 the following are equivalent:

Systems

T the Hamiltonian H is locally sign-reversible;

Optimisation

b for its local C-numerical range —1 € Wioc(H, H);
Ccr;ﬂlaries
Geometry
Constrained W (A)
Invariance
Orthogonality
Tensor-SVD

Conclusions &
Outlook



Wm Applications

quant-ph/0610061

I. Quantum
Compilation

1L Gradient Flows Corollary (Relations I: Local C-Numerical Range)

I1l. Control of

Closed & Open For H = H' with |[H |, = 1 the following are equivalent:

Systems

T the Hamiltonian H is locally sign-reversible;

Optimisation

Lo ot Moo for its local C-numerical range —1 € Wio(H, H);

Corollaries

Geometry its local C-numerical range is the interval

Constrained W (A)

Wiee(H, H) = [-1; +1];
Orthogonality

Tensor-SVD

Conclusions &
Outlook



W m Applications

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook

quant-ph/0610061

Corollary (Relations IlI: Lie algebras)

For H = H' with ||H||, = 1 the following are equivalent:
the Hamiltonian H is locally sign-reversible;
JK € SU(2)®" : Adk(H) = —H;



W m Applications

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook

quant-ph/0610061

Corollary (Relations IlI: Lie algebras)

For H = H' with ||H||, = 1 the following are equivalent:
the Hamiltonian H is locally sign-reversible;
JK € SU(2)®" : Adk(H) = —H;

H is locally unitarily similar to a H with
Adk,(H)=—-H;



ﬁl Applications
I’ I’ I’ I’ quant-ph/0610061

Corollary (Relations IlI: Lie algebras)

For H = H' with ||H||, = 1 the following are equivalent:

I. Quantum
Compilation

the Hamiltonian H is locally sign-reversible;

II. Gradient Flows

b Conast 3K € SU2)®" : Adk(H) = —H;
System: —
N H is locally unitarily similar to a H with
Optin?isation‘H AdKz (H ) — —H ;

letg = go ® @ C Ej be the root-space

I#j
decomposition of sI(N, C); H is locally unitarily

TersorSV0 similar to a linear combination of root space
Conclusions & _
e elements to non-zero roots H : Z CrEj ()

satisfying a system of linear equatlons
> ¢Prg - & = m(mod 27)



Wm Relative C-Numerical Range

math-ph/0702005

Theorem

. Gragiont Flows Let K be a compact connected subgroup of U(N) with
1L Control of Lie algebra t, and let t be a torus algebra of £. Then the
e relative C-numerical range Wk (C, Ay) of a matrix

V. Constrained A, € Mat §(C) is a circular disc centered at the origin of
euinlaien the complex plane for all C € Mat n(C ) if and only if

: there exists a K € K and a A < t such that KA, K1 is an

Geomry eigenoperator to ada with a non-zero eigenvalue

Consrained W, (A)

I. Quantum
Compilation

Invariance
Orthogonality

ada(KALKT) = [A, KA, KT = ip (KALK") and p+#0

Conclusions &
Outlook



Wm Relative C-Numerical Range

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained
Optimisati
o

Geometry

Constrained W, (A)

Invariance
Orthogonality
Tensor-SVD

Conclusions &
Outlook

math-ph/0702005

Theorem

Let K be a compact connected subgroup of U(N) with
Lie algebra t, and let t be a torus algebra of ¢. Then the
relative C-numerical range Wk (C, Ay) of a matrix

Ay € Mat n(C) is a circular disc centered at the origin of
the complex plane for all C € Mat y(C) if and only if
there exists a K € K and a A < t such that KA, K1 is an
eigenoperator to ada with a non-zero eigenvalue

ada(KALKT) = [A, KA. KT = ip (KALK") and p+#0

If KA, K' is an eigenoperator of adp to eigenvalue +ip
and A_ = Al, then KA_K' shows the eigenvalue —ip.
A, and A_ share the same relative C-numerical range of
circular symmetry, Wk (C,A;) = Wk(C,A-).



W Relative C-Numerical Ranges

math-ph/0701035

Corollary

I. Quantum LetK = SU]oc(Z”) with A+ and A_ = AE_ sharing same

Compilation

Il. Gradient Flows circular-disc shaped Wio.(C, Ay) for all C. Then

I1l. Control of
Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
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W Relative C-Numerical Ranges

math-ph/0701035

Corollary

I. Quantum LetK = SU]oc(Z”) with A+ and A_ = AE_ sharing same

Compilation

Il. Gradient Flows circular-disc shaped Wio.(C, Ay) for all C. Then
L} @erriel i (1) anyAy =A,+ ) A_with e C,eg.,H =A, +A_

Closed & Open K i .
SIS is locally sign reversible;

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
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W Relative C-Numerical Ranges

math-ph/0701035

Corollary

s LetK = SUc(2") with A, and A_ := AJLr sharing same
Il. Gradient Flows circular-disc shaped Wio.(C, Ay) for all C. Then

Closen & onen (1) anyAy =A,+ ) A_with e C,eg.,H =A, +A_
SIS is locally sign reversible;

IV. Constrained

Optimisation (2) the converse does not hold: there are locally
A EoR reversible Hermitian H with no decomposition into a

Corollaries

ey single pair {H,., H_} sharing the same rotationally
[ symmetric Wioo(C, Hy);

Orthogonality
Tensor-SVD

Conclusions &
Outlook



W Relative C-Numerical Ranges

math-ph/0701035

Corollary

s LetK = SUc(2") with A, and A_ := AJLr sharing same
Il. Gradient Flows circular-disc shaped Wio.(C, Ay) for all C. Then
ICopuclict (1) anyAy =A,+ ) A_with e C,eg.,H =A, +A_

Closed & Open K i i
Systems is locally sign reversible;

Optimisaton (2) the converse does not hold: there are locally
. reversible Hermitian H with no decomposition into a
= single pair {H,., H_} sharing the same rotationally

Constrained W, (A)

symmetric Wioo(C, Hy);

Orthogonality

Tonsor:5VD (8) any locally sign reversible Hermitian H € Mat 2:(C))
Sonclusions & can be decomposed into at most (%) pairs

(HD HDY (HB) H®) . each with same
rotationally symmetric Wio(C, H\").



Wm Constrained C-Numerical Ranges

Diss-ETH 12752

I. Quantum

G e The constrained C-numerical range of A is defined by

II. Gradient Flows

Il Controlof W(C, A)| i = 1 IF(UAUTCY) | constraint} € W(C, A) .

Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook



Wm Constrained C-Numerical Ranges

Diss-ETH 12752

Compliiation The constrained C-numerical range of A is defined by

II. Gradient Flows

Ill. Control of W( C’ A)‘

I. Quantum

I Contalof consaint = L U((UAUTCT) | constraint} € W(C, A) .

Systems

IV. Constrained
Optimisation

Example (I. Invariance)

Loc. C-Numerical Ranges

Local Gradient Flows
ooty Maximise transfer from A to C leaving E invariant:
Constrained W (A)

Invariance

m3x|tr{UAUTcT}| subjectto UEU' = E

Tensor-SVD

Conclusions &
Outlook



Diss-ETH 12752

Wm Constrained C-Numerical Ranges

Definition
I. Quantum

Candleitn The constrained C-numerical range of A is defined by

II. Gradient Flows

1. Control of W( C’ A)‘

Closed & Open
Systems

:= {tr(UAU'C") | constraint} C W(C, A) .

constraint

IV. Constrained
Optimisation

Example (Il. Orthogonality)

Maximise transfer A to C while suppressing A to D:

m3x|tr{UAUch}| subjectto  tr{ UAU'D'} = myq

Conclusions &
Outlook

with my € W(D, A) unique point in W(D, A) closest to 0.
Perfect match: 0 € W(D, A) < Ou(A) NHpr # {}



Wm Constrained C-Numerical Ranges

math-ph 0701035

I. Quantum

Compilation COfOlIaI"y

II. Gradient Flows

The constrained C-numerical range is a connected set in

I1l. Control of

Closed & Open the complex plane, if the constraint can be fulfilled by
Systems restricting the full unitary group U(N) to a compact and
Optimisaton connected subgroup K € U(N). Then

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook



Wm Constrained C-Numerical Ranges

math-ph 0701035

I. Quantum

Compilation COfOlIaI"y

II. Gradient Flows

The constrained C-numerical range is a connected set in

I1l. Control of

Closed & Open the complex plane, if the constraint can be fulfilled by
Systems restricting the full unitary group U(N) to a compact and
Optimisaton connected subgroup K € U(N). Then

tondor o constrained and relative C-numerical range coincide
Geometry

C(}I:j:::niiwcw W( C, A) ’constraint = WK( C; A)

Tensor-SVD

Conclusions &
Outlook



Wm Constrained C-Numerical Ranges

math-ph 0701035

I. Quantum

Compilation COfOlIaI"y

II. Gradient Flows

The constrained C-numerical range is a connected set in
T v the complex plane, if the constraint can be fulfilled by

Systems

‘ restricting the full unitary group U(N) to a compact and
Optimisaton connected subgroup K € U(N). Then

ocaradnFows constrained and relative C-numerical range coincide
Geometry

C(]l:j:::niiwcw W( Ca A) ’constraint - WK( C: A)

TS
N optimisation problem solved within W (C, A),
Outlook

e.g. by relative C-numerical radius rg(C, A)



math-ph 0701035

Wm Constrained C-Numerical Ranges

Example (I. Invariance)

I. Quantum
Compilation

Maximising transfer from A to C leaving E invariant

II. Gradient Flows

I1l. Control of

Closed & Open m3x|tr{UAUTcT}| subjectto UEU' = E

Systems

IV. Constrained

e is straightforward: the stabiliser group

e Ke = (K € U(N) | KEK' = E}

Invariance
Orthogonality

Tonsor VD is generated by

Conclusions &

Outlook tr .= {k € u(N)| adx(E) = [k, E] = 0}



Wm Constrained C-Numerical Ranges

I. Quantum
Compilation

II. Gradient Flows

I1l. Control of
Closed & Open
Systems

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook

Lemma (Example I: Invariance)

math-ph 0701035




Wm Constrained C-Numerical Ranges

math-ph 0701035

Lemma (Example I: Invariance)
I. Quantum
Compilation

11 Gradiont Flows The set ¢ is closed under the Lie bracket, hence it

I Gaislas is a subalgebra to u(N) thus generating the
Closed & Open

. stabiliser group Kg C U(N).

IV. Constrained

Optimisation

Loc. C-Numerical Ranges

Local Gradient Flows

Corollaries

Geometry

Constrained W, (A)
Invariance
Orthogonality

Tensor-SVD

Conclusions &
Outlook



Wm Constrained C-Numerical Ranges

math-ph 0701035

Lemma (Example I: Invariance)
I. Quantum
Compilation

11 Gradiont Flows The set ¢ is closed under the Lie bracket, hence it

il Gontrol of is a subalgebra to u(N) thus generating the
Closed & Open

o stabiliser group Kg € U(N).

IV. Constrained

1V Const tr satisfies a homogeneous linear system:
ptimisation
tui. /{ZNL:;ﬂer‘\t:\ Ranges EE = ker adE m 5u( N)

Corollaries

Geometry == {kEEU(N)Kl@E—Et®]l)VeC(k) :O}.
Constrained W, (A)

Invariance

Orthogonality
Tensor-SVD

Conclusions &
Outlook



Wm Constrained C-Numerical Ranges

math-ph 0701035

Lemma (Example I: Invariance)

I. Quantum
Compilation

The set tg is closed under the Lie bracket, hence it
il Gontrol of is a subalgebra to u(N) thus generating the
Qlosed & Open stabiliser group Kg C U(N).

Systems

1. Constained tc satisfies a homogeneous linear system:
ptimisation

nerical Ranges EE E= ker adE mﬁu(N)
= {k € su(N)|(1® E — E' ® 1) vec(k) = 0} .

II. Gradient Flows

Constrained and relative C numerical range
coincide: W(C, A)| g JE)=k = Wke(C,A).

Tensor-SVD

Conclusions &
Outlook



Wm Constrained C-Numerical Ranges

math-ph 0701035

Lemma (Example I: Invariance)

I. Quantum
Compilation

The set tg is closed under the Lie bracket, hence it

II. Gradient Flows

I, Gl is a subalgebra to u(N) thus generating the
S stabiliser group Kg C U(N).
IV. Constrained tc satisfies a homogeneous linear system:

¢ = keradg Nsu(N)
. = {k e su(N)|(1® E — E' ® 1) vec(k) = 0} .
°s Constrained and relative C numerical range
Conclusions & coincide: W(C, A)| g JE)=k = Wke(C,A).

Outlook

E Hermitian: Kg /nc/udes a maximal torus group
T C Ke C SU(N).



Diss-ETH 12752

Wm Constrained C-Numerical Ranges

Algorithm: Gradient Flow with Lagrange Constraint

I. Quantum

e Define Lagrange function (with fo(U) : tr{ CTUAU™}):

II. Gradient Flows

Gocoas Open L(U) = |fo(U)[2 = X (tr{ UEU'E"} - ||E3)
ystems

IV. Constrained

Optimisation

Tensor-

Conclusions &
Outlook
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Wm Constrained C-Numerical Ranges

Algorithm: Gradient Flow with Lagrange Constraint

I. Quantum

ﬁ"z"la“mﬂ Define Lagrange function (with fo(U) : tr{ CTUAU™}):
. Gradient Flows

I1l. Control of L 2 = 2

oo Oper L(U) = [fo(U)2 = A (tr{UEU Ef - ||E||2)

Systems

IV. Constrained

Optimisation Fréchet derivative (with (-)s as skew-Hermitian part):
| D{|fo(U)? = Me(U) + A || E|I3} (iHU)
=tr{ (2(f5(U)[UAU', C"])s — AN[UEU', ET]) iH}

Tensor-SVD

Conclusions &
Outlook
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Wm Constrained C-Numerical Ranges

Algorithm: Gradient Flow with Lagrange Constraint

I. Quantum

ﬁ"z"la“mﬂ Define Lagrange function (with fo(U) : tr{ CTUAU™}):
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I1l. Control of L 2 = 2

oo Oper L(U) = [fo(U)2 = A (tr{UEU Ef - ||E||2)

Systems

IV. Constrained

Optimisation Fréchet derivative (with (-)s as skew-Hermitian part):
| D{|fo(U)? = Me(U) + A || E|I3} (iHU)
=tr{ (2(f5(U)[UAU', C"])s — AN[UEU', ET]) iH}

Tensor-SVD
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Wm Constrained C-Numerical Ranges
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Example (Il. Orthogonality)

I. Quantum

Compilation Maximising transfer from A to C while suppressing Ato D

II. Gradient Flows

. Gontrol of max|tr{ UAUTC}| subjectto tr{UAU'D'} = mg
Syetems T v

N, CosiEfives is more complicated: the constrained set
Optimisation

Kp = {K C SU(N) | tr{ KAKTD'} = my }

. is in general no subgroup Kp.
T Thus the generic constrained C-numerical range

Conclusions &
Outlook

W(C7A)|AdUJ_D = mp C W(C7A)

will not be connected.
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Algorithm: Gradient Flow with Lagrange Constraint
Define Lagrange function:

L(U) = [fo(U)? = Alfo(U)?
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Svetems. " Fréchet derivative (with (-)g as skew-Hermitian part):

\"A Constralned
D{|fc(U)P = Alfo(U) 2} (iHU) =
tr {2 (f5(U)[UAU', C'))s iH}
— Mr {2(f3(U)[UAUT, D)) iH}
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Tensor-SVD
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20 ((f3(UQIU, AU}, CD)s = A (f5(Un[U, AULLD'Y) ) U

U1 =€ k
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I. Quantum

s o Example (ll. Orthogonality)

II. Gradient Flows

Maximise transfer from A to C and suppress A to D for

I1l. Control of
Closed & Open

Systems 0.8359—-0.1152j 0 0

IV. Constrained A = 0 —0.2593-0.3906/ 0 .
Optimisation 0 0 0.0151+0.2609i
Loc. C-Numerical Ranges

é“"‘/‘e'ad‘e'" Flows —0.0318+0.0690/ —0.3522—0.3185/ 0.2351—0.3050i
ngom:'j C = —0.0404+0.0656/ 0.0844—0.2880i 0.2135+0.3234i
Constrained We(4) 0.3086+0.1076/ 0.1742—0.2291/ —0.2368+0.3585i

Invariance

0.0836—0.2790/ —0.1836—0.0203/ —0.2427+-0.2396/
—0.3906—0.1387/ 0.1989—0.2725/ —0.0442+0.3871/

Conclusions &
Outlook

e ( ~0.2910—0.3480i —0.2395-+0.0274i —0.2428+0.0656i>
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m Maximising real part in Wi,.(C, A)

minimises distance from C to local unitary orbit of A

max
KeSu(2)@n

Retr{C' KAK™ "} &

min
KeSU(2)®n

IKAK™'=C]



Wm Applications of Local Gradient Flows

m Maximising real part in Wio.(C, A)
1. Quantum minimises distance from C to local unitary orbit of A

Compilation

Il. Gradient Flows max Retr{CTKAK '} & min |KAK™' —Cll»

Iil. Control of KeSU(2)®n KeSu(2)®n

Sysems

Y aan— m Application to Quantum Information Theory: let

Optimisat A be a given rank-1 state of the form A = |¢)(¢| and
C = diag (1,0)%" [thus Wioc(C, A) — Wioc(A)]

Orthogonality
Tensor-SVD

Conclusions &
Outlook



Wm Applications of Local Gradient Flows

m Maximising real part in Wio.(C, A)
1. Quantum minimises distance from C to local unitary orbit of A

Compilation

Il. Gradient Flows max Retr{CTKAK '} & min |KAK™' —Cll»

Iil. Control of KeSU(2)®n KeSu(2)®n

s

IV Gonstrained m Application to Quantum Information Theory: let

& A be a given rank-1 state of the form A = |¢)(¢| and
C = diag (1,0)%" [thus Wioc(C, A) — Wioc(A)]

Corollary (Interpretation)

Orthogonality
Tensor-SVD

Conclusions & The minimial Euclidean distance is a measure of

Qutiosk (pure-state) entanglement; i.e. it quantifies how far A is

from the local equivalence class of the tensor-product
state C.



Wm Applications

I. Quantum

Compilation | Examples:
Il Gradient Flows pure-state entanglement parameterised by s

I1l. Control of
Closed & Open

Systems N
[3(s)) = VSIW) + V1T —s|W) [94(9)) = VSIGHZ') — VT =s|9p4) ® |94)
IV. Constrained 0.6 0.8
Optimisation
0.5 0.7
0.4 0.6

1 - max. local transfer
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m CPU times: local gradient flows

very fast as compared to global techniques

B Example 1: distance to 3-qubit W-type states
B Example 2: distance to 4-qubit GHZ-type states

qubits  semidefinite prog. by gradient flow  speed-up
cpu-time [sec]’ cpu-time [sec]?
3 10.92 0.30 36.4
4 103.97 0.71 147.0

! Eisert et al. (processor with 2.2 GHz, 1 GB RAM)

2average of 50 runs, Athlon XP1800+ (1.1 GHz, 512 MB RAM)



WI I’ I’ Relation to SVD

m observe: singular-value decomposition (SVD)
for X, Y € CNoNe s vy y € U(Ny), Wy y € U(Ny)

Gomgiaion

I1. Gradient Flows tx = VXXWX

I el vecry = (WL® Vx)vecX

ISV).ISCi:]sStrained ’ZX> (W)t( ®© VX)‘X>

Tx(Ex] = (W e Vi)x) (x|(Wx @ V)
SV(Ey] = (WEe W))Wy @ Vi)

Tensor-

Conclusions &
Outlook



Wm Relation to SVD

m observe: singular-value decomposition (SVD)
for X, Y € CNoNe s vy y € U(Ny), Wy y € U(Ny)

i
II. Gradient Flows zX — VXXWX
el vecYy = (W} ® Vx)vecX
ISV).ISCi:]sStrained ’ZX> (W)t( ® VX)‘X>
izl IEXNEx| = (W@ V)lx)(x|(Wx @ Vi)
Sy Ey] = (W e V)ly)yl(Wy o V)
el ® maximisation
Outock maxtr{|¥)(Y|(W' & V)| X)(X|(W" @ v}

= 1r{|Zx) (Zx| - [Zy)(Tyl} = [(Zx|Ty)[?



Wm Relation to SVD

m observe: singular-value decomposition (SVD)
for X, Y € CNoNe s vy y € U(Ny), Wy y € U(Ny)

i
II. Gradient Flows zX — VXXWX
el vecYy = (W} ® Vx)vecX
ISV).ISCi:]sStrained ’ZX> (W)t( ® VX)‘X>
izl IEXNEx| = (W@ V)lx)(x|(Wx @ Vi)
Sy Ey] = (W e V)ly)yl(Wy o V)
el ® maximisation
Outock maxtr{|¥)(Y|(W' & V)| X)(X|(W" @ v}

= tr{|Zx)(Zx| - [Zy ) (Zyl} = [(Ex[Zy) 2
m this proves the following Theorem:
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Theorem

ForX,Y € CNvMe Jet X = Vi x W}, Y = VIZy W] be
their singular value decompositions with Vx, Vy € U(Ny),
Wx, Wy € U(N>) and X x, Xy sorted by magnitude.
Moreover, set |x) := vec X and |y) := vec Y. Then the
maximum local transfer between |x)(x| and |y)(y| is

t Uly)(y|UN} = (tr{=fzy )2
AL - H{lx) (x[Uly) (y|U")} = (tr{ZxZv})

Equality is actually achieved with Vx, Vy € SU(Ny) and
Wy, Wy € SU(N,) in U := (Wj @ V) - (WL @ Vy).



Wm Relation to SVD and Tensor-SVD
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Yx = VXW with |x) := vec X.
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Corollary (Multipartite Pure-State Entanglement)

The minimum Euclidean distance of an arbitrary
multipartite pure state >, Ax(x1X2 o Xp) to the nearest
separable pure state y1y» o y, is determined by the
largest singular value in X x derived from the best rank-1

approximation to » ., A\x(x1X2 o Xn) seen as higher-order
tensor.



Wm Applications

I. Quantum

Compilation m 3-Qubit Example:
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I1l. Control of
Closed & Open
Systems
by gradient flow on SU(2)®3 by tensor-SVD (HOPM/HOOI)
IV. Constrained _ 0.6 o o
Optimisation Q oesl N5 o6} N=60
Loc. C-Numerical Ranges 7] = —_
Local Gradient Flows % 0.5 2 o0 °%
Corollaries = % 064 08
Geometry § :_‘: 0.62] 0.62
Constrained W (A) 004 S os 0.6]
Invariance >3 > 058 0.58]
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Wm Applications
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111. Control of |¢4(S)> = \/§|GHZ/> -V 11— S|¢+> ® |¢+>

Closed & Open

Systems
IV. Constrained by gradient flow on SU(2)®4 by tensor-SVD (HOPM/HOOI)
Optimisation 0.8
Loc. C-Numerical Ranges & N=5 N =50
Local Gradient Flows 07 45 08 08
Corollaries S
Geometry s o7f 07
Constrained W (A) 0.6 <
Invariance 5 06 06
Orthogonality 05| <
Tensor-SVD : @ 0.5 0.5
= | |
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B Example 1: distance to 3-qubit W-type states

B Example 2: distance to 4-qubit GHZ-type states

qubits semidefinite prog. by gradient flow speed-up
cpu-time [sec]’ cpu-time [sec]?
3 10.92 0.30 36.4
4 103.97 0.71 147.0
qubits  tensor-SVD (HOPM)  tensor-SVD (HOOI)  speed-ups
cpu-time [sec]? cpu-time [sec]?
3 2.39 5.37 4.6 (2.0)
4 3.93 7.03 26.5 (14.8)

! Eisert et al. (processor with 2.2 GHz, 1 GB RAM)
2average of 50 runs, Athlon XP1800+ (1.1 GHz, 512 MB RAM)
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ll. Control of o offers also rewarding theoretical challenges
Closed & Open
Systems

V. Constrained Quantum CISC Compiler: use of parallel cluster
COppmizEl e extend modules beyond 1 and 2-qubit interactions

Conclusions &

— Optimal Control of Open Quantum Systems
e dressed to physical hardware

e generalises decoherence-free subspace

Constrained Optimisation
e local time reversal
e tensor SVD for pure-state entanglement
e new: relative C-numerical range
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