Controllability of Electron Nuclear Spin Dynamics

Jamin Sheriff

Control, Constraints and Quanta

October 15, 2007

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

System Definition

- 2 A Controllability Condition
- 3 Consequences

A Reminder

Recall,

Definition

A Lie algebra is simple if it has no proper ideals.

A Reminder

Recall,

Definition

A Lie algebra is simple if it has no proper ideals.

Defintion

A Lie group is simple if it is connected and its algebra is simple.

Systems of Interest

Left (or right) invariant systems on $\mathfrak{G}\times\mathfrak{G},$ where \mathfrak{G} is a simple Lie group :

$$\dot{X}(t) = \sum_{i=1}^{n} u_i(t) \begin{pmatrix} \Omega_i^a \\ \Omega_i^b \end{pmatrix}_{X(t)}$$

where, $\begin{pmatrix} \Omega_i^a \\ \Omega_i^b \end{pmatrix} \in \mathfrak{g} \oplus \mathfrak{g}, \ \mathfrak{g} = \operatorname{Lie}(G).$

- 4 同 6 4 日 6 4 日 6

Controllability

$$\dot{X}(t) = u_1(t) \begin{pmatrix} \Omega_1^a \\ \Omega_2^b \end{pmatrix}_{X(t)} + u_2(t) \begin{pmatrix} \Omega_2^a \\ \Omega_2^b \end{pmatrix}_{X(t)}$$
(1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Controllability

$$\dot{X}(t) = u_1(t) \left(\begin{array}{c} \Omega_1^a \\ \Omega_1^b \end{array}\right)_{X(t)} + u_2(t) \left(\begin{array}{c} \Omega_2^a \\ \Omega_2^b \end{array}\right)_{X(t)}$$
(1)

Controllability Subalgebra

$$\mathfrak{A} = \left\langle \left(\begin{array}{c} \Omega_1^{\mathfrak{s}} \\ \Omega_1^{\mathfrak{b}} \end{array} \right), \left(\begin{array}{c} \Omega_2^{\mathfrak{s}} \\ \Omega_2^{\mathfrak{b}} \end{array} \right) \right\rangle$$

The system (1) is controllable if and only if $\mathfrak{A} = \mathfrak{g} \oplus \mathfrak{g}$.

<ロト <部 > < 注 > < 注 >

Controllability

$$\dot{X}(t) = u_1(t) \left(\begin{array}{c} \Omega_1^a \\ \Omega_1^b \end{array}\right)_{X(t)} + u_2(t) \left(\begin{array}{c} \Omega_2^a \\ \Omega_2^b \end{array}\right)_{X(t)}$$
(1)

Controllability Subalgebra

$$\mathfrak{A} = \left\langle \left(egin{array}{c} \Omega_1^a \ \Omega_1^b \end{array}
ight), \left(egin{array}{c} \Omega_2^a \ \Omega_2^b \end{array}
ight)
ight
angle$$

The system (1) is controllable if and only if $\mathfrak{A} = \mathfrak{g} \oplus \mathfrak{g}$.

Consider the subalgebras of \mathfrak{g} given by $\langle \Omega_1^a, \Omega_2^a \rangle$ and $\langle \Omega_1^b, \Omega_2^b \rangle$.

Controllability

$$\dot{X}(t) = u_1(t) \left(\begin{array}{c} \Omega_1^a \\ \Omega_1^b \end{array}\right)_{X(t)} + u_2(t) \left(\begin{array}{c} \Omega_2^a \\ \Omega_2^b \end{array}\right)_{X(t)}$$
(1)

Controllability Subalgebra

$$\mathfrak{A} = \left\langle \left(egin{array}{c} \Omega_1^{\mathfrak{a}} \ \Omega_1^{b} \end{array}
ight), \left(egin{array}{c} \Omega_2^{\mathfrak{a}} \ \Omega_2^{b} \end{array}
ight)
ight
angle$$

The system (1) is controllable if and only if $\mathfrak{A} = \mathfrak{g} \oplus \mathfrak{g}$.

Consider the subalgebras of \mathfrak{g} given by $\langle \Omega_1^a, \Omega_2^a \rangle$ and $\langle \Omega_1^b, \Omega_2^b \rangle$.

Componentwise Controllability

The system (1) is controllable only if $\langle \Omega_1^a, \Omega_2^a \rangle = \langle \Omega_1^b, \Omega_2^b \rangle = \mathfrak{g}$.

< ロ > < 同 > < 回 > < 回 >

Controllability

$$\dot{X}(t) = u_1(t) \left(\begin{array}{c} \Omega_1^a \\ \Omega_1^b \end{array}\right)_{X(t)} + u_2(t) \left(\begin{array}{c} \Omega_2^a \\ \Omega_2^b \end{array}\right)_{X(t)}$$
(1)

Controllability Subalgebra

$$\mathfrak{A} = \left\langle \left(egin{array}{c} \Omega_1^{\mathfrak{s}} \\ \Omega_1^{\mathfrak{b}} \end{array}
ight), \left(egin{array}{c} \Omega_2^{\mathfrak{s}} \\ \Omega_2^{\mathfrak{b}} \end{array}
ight)
ight
angle$$

The system (1) is controllable if and only if $\mathfrak{A} = \mathfrak{g} \oplus \mathfrak{g}$.

Consider the subalgebras of \mathfrak{g} given by $\langle \Omega_1^a, \Omega_2^a \rangle$ and $\langle \Omega_1^b, \Omega_2^b \rangle$.

Componentwise Controllability

The system (1) is controllable only if $\langle \Omega_1^a, \Omega_2^a \rangle = \langle \Omega_1^b, \Omega_2^b \rangle = \mathfrak{g}$.

Is this sufficient? No!

< ロ > < 同 > < 回 > < 回 >

Assume $\langle \Omega_1^a, \Omega_2^a \rangle = \mathfrak{g}$.

Image: A image: A

- ∢ ⊒ →

Assume
$$\langle \Omega_1^a, \Omega_2^a \rangle = \mathfrak{g}.$$

Let $\Omega_1^b = \Omega_1^a, \ \Omega_2^b = \Omega_2^a.$

< □ > < 同 > < 回 >

э

Assume
$$\langle \Omega_1^a, \Omega_2^a \rangle = \mathfrak{g}$$
.
Let $\Omega_1^b = \Omega_1^a$, $\Omega_2^b = \Omega_2^a$.
Then,

$$\begin{aligned} \mathfrak{A} &= \left\langle \left(\begin{array}{c} \Omega_1^a \\ \Omega_1^a \end{array} \right), \left(\begin{array}{c} \Omega_1^b \\ \Omega_1^b \end{array} \right) \right\rangle \\ &= \Delta \\ &= \left\{ \left(\begin{array}{c} v \\ v \end{array} \right) : v \in \mathfrak{g} \right\} \end{aligned}$$

< □ > < 同 > < 回 >

э

Assume $\langle \Omega_1^a, \Omega_2^a \rangle = \mathfrak{g}.$

э

Assume $\langle \Omega_1^a, \Omega_2^a \rangle = \mathfrak{g}$. Take $\theta \in \operatorname{Aut}(\mathfrak{g})$. Let $\Omega_1^b = \theta(\Omega_1^a)$ and $\Omega_2^b = \theta(\Omega_2^a)$.

伺 ト く ヨ ト く ヨ ト

Assume $\langle \Omega_1^a, \Omega_2^a \rangle = \mathfrak{g}$. Take $\theta \in \operatorname{Aut}(\mathfrak{g})$. Let $\Omega_1^b = \theta(\Omega_1^a)$ and $\Omega_2^b = \theta(\Omega_2^a)$. Then,

$$\begin{aligned} \mathfrak{A} &= \left\langle \left(\begin{array}{c} \Omega_1^a \\ \theta(\Omega_1^a) \end{array} \right), \left(\begin{array}{c} \Omega_2^a \\ \theta(\Omega_2^a) \end{array} \right) \right\rangle \\ &= \operatorname{graph} \theta \\ &= \left\{ \left(\begin{array}{c} v \\ \theta(v) \end{array} \right) : v \in \mathfrak{g} \right\} \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Controllability Condition

Controllability Condition

Let G is a simple Lie group. Then, given componentwise controllability, the system (1) is uncontrollable if and only if $\exists \ \theta \in \operatorname{Aut}(\mathfrak{g})$ mapping $\Omega_i^a \mapsto \Omega_i^b$ for i = 1, 2.

- - E - - E

Remarks

In general, for systems with more than two controls,

$$\dot{X}(t) = \sum_{i=1}^{n} u_i(t) \begin{pmatrix} \Omega_i^a \\ \Omega_i^b \end{pmatrix}_{X(t)}$$
(2)

the condition is,

Controllability Condition

Let G is a simple Lie group. Then, given componentwise controllability, the system (2) on $G \times G$ is controllable if and only if $\exists \ \theta \in \operatorname{Aut}(\mathfrak{g})$ mapping $\Omega_i^a \mapsto \Omega_i^b$ for $i = 1, \ldots, n$.

伺 ト イ ヨ ト イ ヨ ト

Remarks

The Controllabilty Condition is not true for all semisimple groups.

Jamin Sheriff Controllability of Electron Nuclear Spin Dynamics

Consequences

Let B be the Killing form on \mathfrak{g} . Automorphisms of \mathfrak{g} preserve B,

 $B(\theta(X), \theta(Y)) = B(X, Y), \forall X, Y \in \mathfrak{g}, \forall \theta \in \operatorname{Aut}(\mathfrak{g})$

・ロト ・回ト ・ヨト ・ヨト

Consequences

Let B be the Killing form on \mathfrak{g} . Automorphisms of \mathfrak{g} preserve B,

$$B(heta(X), heta(Y))=B(X,Y),orall\,X,Y\in \mathfrak{g},orall\, heta\in\mathrm{Aut}(\mathfrak{g})$$

So,

A Sufficient Condition

The system (1) is controllable if

- $B(\Omega^a_i,\Omega^a_i) \neq B(\Omega^b_i,\Omega^b_i)$ for some $i \in \{1,2\}$ or,
- $B(\Omega_1^a, \Omega_2^a) \neq B(\Omega_1^b, \Omega_2^b)$

Consequences

Let B be the Killing form on \mathfrak{g} . Automorphisms of \mathfrak{g} preserve B,

$$B(heta(X), heta(Y))=B(X,Y),orall\,X,\,Y\in \mathfrak{g},orall\, heta\in\mathrm{Aut}(\mathfrak{g})$$

So,

A Sufficient Condition

The system (1) is controllable if

- $B(\Omega_i^a,\Omega_i^a) \neq B(\Omega_i^b,\Omega_i^b)$ for some $i \in \{1,2\}$ or,
- $B(\Omega_1^a, \Omega_2^a) \neq B(\Omega_1^b, \Omega_2^b)$

Is this necessary? Only for $\mathfrak{so}(3)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Sufficient Condition Is Not Necessary

In general, let \mathfrak{g}_0 be a compact simple Lie algebra, but not $\mathfrak{so}(3)$.

The negative of the Killing form on \mathfrak{g}_0 is an inner product.

Let $O(\mathfrak{g}_0)$ be the orthogonal group with respect to -B. Then, strictly,

 $\operatorname{Aut}(\mathfrak{g}_0)\subset \textit{O}(\mathfrak{g}_0)$

伺 ト イ ヨ ト イ ヨ ト

The Sufficient Condition Is Not Necessary

Let S denote the unit sphere in \mathfrak{g}_0 under -B, and suppose that $\operatorname{Aut}(\mathfrak{g}_0)$ does not act transitively on it.

Find Ω_1^a and Ω_2^a that generate \mathfrak{g}_0 , and find a $\theta \in O(\mathfrak{g}_0)$ such that $\theta(\Omega_1^a)$ is not in the $\operatorname{Aut}(\mathfrak{g}_0)$ orbit of Ω_1^a .

Then, $B(\Omega_i^a, \Omega_i^a) = B(\Omega_i^b, \Omega_i^b)$ for i = 1, 2 and $B(\Omega_1^a, \Omega_2^a) = B(\Omega_1^b, \Omega_2^b)$.

But, by the Controllability Condition,

$$\mathfrak{A} = \left\langle \left(egin{array}{c} \Omega_1^a \ heta(\Omega_1^a) \end{array}
ight), \left(egin{array}{c} \Omega_2^a \ heta(\Omega_2^a) \end{array}
ight)
ight
angle = \mathfrak{g}_0 \oplus \mathfrak{g}_0$$

くほし くほし くほし

Does $Aut(\mathfrak{g}_0)$ ever act transitively on S?

Jamin Sheriff Controllability of Electron Nuclear Spin Dynamics

・ 同 ト ・ ヨ ト ・ ヨ

$\mathfrak{so}(3)$

The sufficient condition for controllability is necessary in $\mathfrak{so}(3)$.

Claim

$$\operatorname{Aut}(\mathfrak{so}(3)) = SO(\mathfrak{so}(3))$$

Let (Ω_1^a, Ω_2^a) and (Ω_1^b, Ω_2^b) be two pairs in $\mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

Claim

There exists a $\theta \in SO(\mathfrak{so}(3)) = \operatorname{Aut}(\mathfrak{so}(3))$ mapping $\Omega_i^a \mapsto \Omega_i^b$ for i = 1, 2 if and only if $||\Omega_i^a|| = ||\Omega_i^b||$ and $\langle \Omega_1^a, \Omega_2^a \rangle = \langle \Omega_1^b, \Omega_2^b \rangle$.

Conclusion

Given componentwise controllability, the system (1) is uncontrollable if and only if $||\Omega_i^a|| = ||\Omega_i^b||$ and $\langle \Omega_1^a, \Omega_2^a \rangle = \langle \Omega_1^b, \Omega_2^b \rangle$.

Using Eigenvalues

Observation

All automorphisms of $\mathfrak{so}(2n+1)$ are inner. Inner automorphisms of $\mathfrak{so}(2n+1)$ preserve eigenvalues.

・ 同 ト ・ ヨ ト ・ ヨ ト

Using Eigenvalues

Observation

All automorphisms of $\mathfrak{so}(2n+1)$ are inner. Inner automorphisms of $\mathfrak{so}(2n+1)$ preserve eigenvalues.

Corollary

The system (1) on $SO(2n+1) \times SO(2n+1)$ is controllable if the eigenvalues of Ω_i^a are not equal to those of Ω_i^b for some *i*.

(日) (同) (三) (三)

Using Eigenvalues

Observation

All automorphisms of $\mathfrak{so}(2n+1)$ are inner. Inner automorphisms of $\mathfrak{so}(2n+1)$ preserve eigenvalues.

Corollary

The system (1) on $SO(2n+1) \times SO(2n+1)$ is controllable if the eigenvalues of Ω_i^a are not equal to those of Ω_i^b for some *i*.

Other algebras (except for $\mathfrak{sp}(n)$) have outer automorphisms, which complicate things.

<ロト <部 > < 注 > < 注 >

Summary

Controllability Condition

Let G is a simple Lie group. Then, given componentwise controllability, the system (1) is controllable if and only if $\exists \ \theta \in \operatorname{Aut}(\mathfrak{g})$ mapping $\Omega_i^a \mapsto \Omega_i^b$ for i = 1, 2.

Future Work

Stronger conditions!

Things I Deferred

The proof, and a counterexample for non-simple semisimple algebras.

Thanks

Navin Khaneja, Rober Zeier, Gunther Dirr, Steven Jug (CFO, Build Co.), Devyani Nanduri

Jamin Sheriff

Controllability of Electron Nuclear Spin Dynamics