Properties of state spaces

Armin Uhlmann
University of Leipzig,
Institute for Theoretical Physics

1

Spaces versus algebras (rings)

Remember Gelfand's relation

$$
\text { compact spaces } \Leftrightarrow \text { algebra of continuous functions }
$$

Other examples:
algebra of (k-times) differentiable functions algebra of holomorphic functions on disk, ...
\mathcal{H} Hilbert space $\Leftrightarrow \mathcal{B}(\mathcal{H}) \Leftrightarrow \Omega(\mathcal{H})$
Unital *-algebra $\mathcal{A} \Rightarrow$ state space $\Omega(\mathcal{A})$
Alfsen, Shulz: Which compact convex sets K are state spaces of C*-algebras (Jordan algebras)?
Necessary: The face generated by two extremal points is a ball.

2

$\Omega_{d}=\Omega(\mathcal{H}), \operatorname{dim} \mathcal{H}=d$.
K any compact set in a finite dimensional linear space. Assume ex $[K]$ compact.
Let T map K into K^{\prime} preserving convex combinations. T can be extended to an affine map.
If T maps Ω affine into K, there is a unique linear extension of T to $\operatorname{Herm}(\mathcal{H})$.

Aut $[K]$: Affine one-to-one maps from K onto K.
$\operatorname{Aut}[\Omega]$: Wigner symmetries $\omega \rightarrow V \omega V^{*}$

Two-point-concavity on a convex set K

$G=G\left(\xi, \xi^{\prime}\right)$ defined for $\xi, \xi^{\prime} \in K$ is concave if

$$
\begin{equation*}
G\left(\xi, \xi^{\prime}\right) \geq \sum \sqrt{p_{j} p_{j}^{\prime}} G\left(\xi_{j}, \xi_{j}^{\prime}\right) \tag{1}
\end{equation*}
$$

for all pairs of convex combinations

$$
\begin{equation*}
\xi=\sum p_{j} \xi_{j}, \quad \xi=\sum p_{k}^{\prime} \xi_{k}^{\prime} . \tag{2}
\end{equation*}
$$

The infimum of a set of concave functions in two variables is again concave.

4

K convex and compact: \Rightarrow
Given $g\left(\eta, \eta^{\prime}\right)$ for all $\eta, \eta^{\prime} \in \operatorname{ex}[K]$, there is a minimal concave function, say $g^{\cap}\left(\xi, \xi^{\prime}\right)$, coinciding with g at extremal points.

$$
\begin{equation*}
g^{\cap}\left(\xi, \xi^{\prime}\right)=\inf \sum \sqrt{p_{j} p_{j}^{\prime}} g\left(\pi_{j}, \pi_{j}^{\prime}\right) \tag{3}
\end{equation*}
$$

If G is a function of two points we also write

$$
\begin{equation*}
G^{\cap}:=g^{\cap} \text { if } g\left(\eta, \eta^{\prime}\right)=G\left(\eta, \eta^{\prime}\right) \tag{4}
\end{equation*}
$$

on ex $[K]$.
(This is similar to the concave roof extension in one argument.)

Main example: $K:=\Omega_{d}$.

$$
\begin{equation*}
F(\rho, \omega)=\operatorname{tr}\left(\rho^{1 / 2} \omega \rho^{1 / 2}\right)^{1 / 2}, \quad \operatorname{Pr}(\rho, \omega)=F(\rho, \omega)^{2} . \tag{5}
\end{equation*}
$$

Statement: F is concave and $F=F^{\cap}$
Indeed, one knows for positive operators

$$
\begin{equation*}
F\left(\sum A_{j}, \sum B_{k}\right) \geq \sum F\left(A_{j}, B_{j}\right) \tag{6}
\end{equation*}
$$

and equality takes place if and only if

$$
\begin{equation*}
F\left(A_{j}, B_{k}\right)=0 \text { for all } j \neq k . \tag{7}
\end{equation*}
$$

Setting, say, $A_{j}=p_{j} \pi_{j}, \ldots$, the assertion follows.
For simplices, $\operatorname{Pr}(.,$.$) is the Kakutani mean. (Bhattachayya)$

6

Mielnik's construction.

With a good definition of fidelity,

$$
\text { fidelity }=\sqrt{\text { transition probability }},
$$

for extremal states we could apply (3). The task to define transition probabilities for pairs of extremal points is due to Mielnik:
Let K compact. [0,1$]_{K}$ denotes the set of all affine functions l satisfying
$0 \leq l(\xi) \leq 1$ for all $\xi \in K$.
For $K=\Omega: l(\omega)=\operatorname{tr} A \omega, \mathbf{0} \leq A \leq \mathbf{1}$

$$
\begin{equation*}
\operatorname{Pr}_{K}\left(\eta_{1}, \eta_{2}\right):=\min l\left(\eta_{2}\right), \quad l\left(\eta_{1}\right)=1, \quad l \in[0,1]_{K} \tag{8}
\end{equation*}
$$

is Mielnik's transition probability for pairs $\eta_{1}, \eta_{2} \in \operatorname{ex}[K]$.
Now one applies (3) to extend (8) from ex[$K]$ to K.

7

Examples

$$
\begin{equation*}
\operatorname{Pr}_{\Omega}\left(\pi_{1}, \pi_{2}\right)=\operatorname{tr} \pi_{1} \pi_{2}, \quad \pi_{j} \text { pure. } \tag{9}
\end{equation*}
$$

Mielnik's procedure gives the correct expression.
Consider the n-dimensional unit ball \mathbf{B}_{n} and $\operatorname{ex}\left[\mathbf{B}_{n}\right]=\mathbf{S}_{n}$, the unit sphere. For two vectors on the sphere:

$$
\begin{equation*}
\operatorname{Pr}_{B}\left(\vec{y}, \vec{y}^{\prime}\right)=\frac{1+\vec{y} \vec{y}^{\prime}}{2} . \tag{10}
\end{equation*}
$$

For two general vectors one applies (3), (5):

$$
\begin{equation*}
\operatorname{Pr}_{B}\left(\vec{x}, \vec{x}^{\prime}\right)=\frac{1+\vec{x} \vec{x}^{\prime}+\sqrt{1-\vec{x} \vec{x}} \sqrt{1-\vec{x}^{\prime} \vec{x}^{\prime}}}{2} \tag{11}
\end{equation*}
$$

8

Maps and Monotonicity

Let T be an affine map from Ω_{n} into Ω_{m}.

$$
\begin{equation*}
\operatorname{Pr}(\omega, \rho) \leq \operatorname{Pr}(T \omega, T \rho) \tag{12}
\end{equation*}
$$

Now assume $G(.,$.$) monotone for cpt-maps,$

$$
\begin{equation*}
G(\omega, \rho) \leq G(T \omega, T \rho), \quad T \mathrm{cpt} . \tag{13}
\end{equation*}
$$

Statement: (Categorical definition of $\operatorname{Pr}(.,$.$))$

$$
\begin{equation*}
G\left(\pi_{1}, \pi_{2}\right)=\operatorname{Pr}\left(\pi_{1}, \pi_{2}\right), \quad G\left(\omega_{1}, \omega_{2}\right) \leq \operatorname{Pr}\left(\omega_{1}, \omega_{2}\right) \tag{14}
\end{equation*}
$$

Then: $G\left(\omega_{1}, \omega_{2}\right)=\operatorname{Pr}\left(\omega_{1}, \omega_{2}\right)$
Because: Given ω_{1}, ω_{2}, there is a cpt-map satisfying $T \pi_{j}=\omega_{j}$ with equality in (12).

9

Example:

$$
\begin{equation*}
\operatorname{tr} \omega^{s} \rho^{1-s} \geq \operatorname{Pr}(\omega, \rho), \quad 0<s<1 \tag{15}
\end{equation*}
$$

because the left hand side fulfills (13), (14).
Now let G just monotone, i. e. fulfill (13).
Then G must be unitary invariant. The only unitary invariants for pairs of pure states are functions of their transition probability. (13) also requires them increasing.
Hence there is a positive, increasing real function $f=f(x)$ on $0 \leq x \leq 1$ such that

$$
\begin{equation*}
G\left(\pi_{1}, \pi_{2}\right)=f\left(\operatorname{tr} \pi_{1} \pi_{2}\right) \tag{16}
\end{equation*}
$$

10

Statement: If for all tcp-maps

$$
G(\omega, \rho) \leq G(T \omega, T \rho)
$$

then there is on $[0,1]$ a monotone increasing function $f \geq 0$ with

$$
\begin{equation*}
G\left(\omega_{1}, \omega_{2}\right) \geq f\left(\operatorname{Pr}\left(\omega_{1}, \omega_{2}\right)\right) \tag{17}
\end{equation*}
$$

and equality holds for pairs of pure states.

11

Example: Take $f(x)=1-\sqrt{1-x}$ and convince yourself of

$$
1-(1 / 2)\left\|\pi_{1}-\pi_{2}\right\|_{1}=f\left(\operatorname{tr} \pi_{1} \pi_{2}\right)
$$

to conclude its correctness for general pairs, i. e.

$$
\begin{equation*}
\left\|\omega_{1}-\omega_{2}\right\|_{1} \leq 2 \sqrt{1-\operatorname{Pr}\left(\omega_{1}, \omega_{2}\right)} \tag{18}
\end{equation*}
$$

In the same manner one obtains with $s_{j} \geq 0$:

$$
\begin{equation*}
\left\|s_{1} \omega_{1}-s_{2} \omega_{2}\right\|_{1}^{2} \leq\left(s_{1}-s_{2}\right)^{2}+4 s_{1} s_{2}\left(1-\operatorname{Pr}\left(\omega_{1}, \omega_{2}\right)\right) \tag{19}
\end{equation*}
$$

Thus it seems worthwhile to define the 1 -distance in general.

12

Let K convex and compact. Remember $[0,1]_{K}$.

$$
\begin{equation*}
\left|\xi_{2}, \xi_{1}\right|_{K}^{+}=\max l\left(\xi_{2}\right)-l\left(\xi_{1}\right), \quad l \in[0,1]_{K} \tag{20}
\end{equation*}
$$

For affine maps on proves the contracting property

$$
\begin{equation*}
\left|\xi_{2}, \xi_{1}\right|_{K}^{+} \geq\left|T\left(\xi_{2}\right), T\left(\xi_{1}\right)\right|_{T(K)}^{+} \tag{21}
\end{equation*}
$$

and the subadditivity property

$$
\begin{equation*}
\left|\xi_{3}, \xi_{1}\right|_{K}^{+} \leq\left|\xi_{3}, \xi_{2}\right|_{K}^{+}+\left|\xi_{2}, \xi_{1}\right|_{K}^{+} \tag{22}
\end{equation*}
$$

Examples:

$$
\left|\omega_{2}-\omega_{1}\right|_{\Omega}^{+}=\operatorname{tr}\left(\omega_{2}-\omega_{1}\right)^{+}
$$

13

For a ball with radius r :

$$
\left|\vec{x}_{2}, \vec{x}_{1}\right|_{B}^{+}==\frac{1}{2 r} \sqrt{\left(\overrightarrow{x_{2}}-\overrightarrow{x_{1}}\right)^{2}}
$$

The 1-distance is defined by

$$
\begin{equation*}
\left|\xi_{2}, \xi_{1}\right|_{K}:=\left|\xi_{2}, \xi_{1}\right|_{K}^{+}+\left|\xi_{1}, \xi_{2}\right|_{K}^{+} \tag{23}
\end{equation*}
$$

It satisfies the triangle inequality and is contracting with respect to affine maps.
((The notation "1-distance" can be misleading: For balls it is an Euclidian distance.))

14

Spectra

For $\xi \in K$ consider the set of all coefficient vectors $\left\{p_{j}\right\}$ which can appear in an extremal decomposition

$$
\begin{equation*}
\xi=\sum p_{j} \eta_{j}, \quad p_{1} \geq p_{2} \geq \ldots, \quad \eta_{j} \in \operatorname{ex}[K] . \tag{24}
\end{equation*}
$$

A coefficient vector is called eigenvalue vector, if it cannot properly majorized by another coefficient vector.
Denote the set of these vectors by $\operatorname{spec}_{K}[\xi]$.
In case $K=\Omega_{d}$ one gets the decreasingly ordered set of eigenvalues followed by zeros.
In case $\vec{x} \in K=\mathbf{B}_{n}$: Draw a line through \vec{x} and the center. It intersects the boundary sphere at two points, say \vec{y}, \vec{y}^{\perp} satisfying
$\vec{x}=(1-p) \vec{y}+p \vec{y}^{\perp}, 1-p \geq p$. Then $\operatorname{spec}_{K}[\vec{x}]=\{1-p, p\}$

15

One needs the compactness of ex[$K]$ to prove
a) There are eigenvalue vectors for all $\xi \in K$
b) Denote by rank[$\xi]$ the smallest possible number of non-zero coefficients in a coefficient vector. Then there is an eigenvalue vector with rank $[\xi]$ non-zero components.

Unsolved: ω and ω^{\prime} density operators. Consider

$$
\begin{equation*}
\inf \sum\left(p_{j}\right)^{s}\left(p_{j}^{\prime}\right)^{1-s} \tag{25}
\end{equation*}
$$

running over all coefficient vectors of ω resp. ω^{\prime}. Is it the trace of $\omega^{s}\left(\omega^{\prime}\right)^{(1-s)}$?

