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Spaces versus algebras (rings)
Remember Gelfand’s relation

compact spaces < algebra of continuous functions

Other examples:
algebra of (k-times) differentiable functions
algebra of holomorphic functions on disk, ...

H Hilbert space < B(H) < Q(H)
Unital *-algebra A = state space 2(.A)

Alfsen, Shulz: Which compact convex sets K are state spaces of
C*-algebras (Jordan algebras)?
Necessary: The face generated by two extremal points is a ball.
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fﬂd = Q(H), dimH = d. T

K any compact set in a finite dimensional linear space. Assume ex| K|
compact.

Let 7" map K into K’ preserving convex combinations. 7' can be extended
to an affine map.

If 7" maps (2 affine into K, there is a unique linear extension of 7' to
Herm(H).

Aut| K| : Affine one-to-one maps from K onto K.
Aut[Q)] : Wigner symmetries w — VwV™
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Wo-point-concavity on a convex set K
G = G(£,¢) defined for £, ¢’ € K is concave if

G(&€) > \/piiG(&.€)) (1)

for all pairs of convex combinations

=) pi&, €= i (2)

The infimum of a set of concave functions in two variables is again
concave.
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K convex and compact. =
Given g(n,n’) for all n,n" € ex|K], there is a minimal concave function, say
g"' (&, &), coinciding with g at extremal points.

g"(&, &) =inf > "\ /piplg(m;, ) 3)
If G is a function of two points we also write

G":=g¢" if g(n,n") =G, 1) (4)

on ex|K].
(This is similar to the concave roof extension in one argument.)
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ain example: K := Q.

F(p,w) =tr (p'Pwp'?)'2, Pr(p,w) = F(p,w)*. (5)

Statement: F' is concave and F = F"
Indeed, one knows for positive operators

F() A;,Y By)> > F(A;,Bj) (6)

and equality takes place if and only if

F(A;,By) =0 forall j #Fk. (7)

Setting, say, A; = p;m;, ..., the assertion follows.
For simplices, Pr(.,.) is the Kakutani mean. (Bhattachayya)
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fMielnik’s construction. T
With a good definition of fidelity,

fidelity = 1/ transition probability ,

for extremal states we could apply (3). The task to define transition
probabilities for pairs of extremal points is due to Mielnik:

Let K compact. |0, 1]x denotes the set of all affine functions [ satisfying
0<I(§) <1forall¢ e K.

For K =Q:l(w)=trdw,0< A<1

Pri(n1,m2) :=minl(n), I(n)=1, 1€]0,1]k (8)

Is Mielnik’s transition probability for pairs 71,72 € ex|[K].
Now one applies (3) to extend (8) from ex|[K] to K.
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Pro(my,m) = trmime, m; pure. (9)

e

xamples

Mielnik’s procedure gives the correct expression.
Consider the n-dimensional unit ball B,, and ex|B,,| = S,,, the unit sphere.
For two vectors on the sphere:

, L+ 4y
Prg(y,y) = ny : (10)
For two general vectors one applies (3), (5):
1+ 77 +V1—32V1 - 2%
Prp(7.7) — + T 4+ V1 — T8V — &7 | wn

2
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fMaps and Monotonicity

Let T be an affine map from 2,, into €2,,,.
Pr(w, p) < Pr(Tw, Tp) (12)
Now assume G(.,.) monotone for cpt-maps,
G(w,p) < G(Tw,Tp), T cpt. (13)

Statement: (Categorical definition of Pr(.,.))

G(mi,m2) = Pr(m,m), G(wi,w2) < Pr(wi,ws) (14)

Then : G(w1,w2) = Pr(wy, wo)
Because: Given wy,ws, there is a cpt-map satisfying T'r; = w; with

Lequality in (12). J

Propoerties of state spaces — n.



. .

xample:
trw’pt ™ > Pr(w,p), 0<s<l1 (15)

because the left hand side fulfills (13), (14).

Now let GG just monotone, i. e. fulfill (13).

Then G must be unitary invariant. The only unitary invariants for pairs of
pure states are functions of their transition probability. (13) also requires
them increasing.

Hence there is a positive, increasing real function f = f(z)on 0 < x <1
such that

G(my,me) = f(trmymy) (16)

o -

Propnerties of state spaces — n. 10



10
s

tatement: If for all tcp-maps

G(w,p) < G(Tw,Tp)
then there is on [0, 1] a monotone increasing function f > 0 with
G(Wl, w2) > f( Pr(wla CUQ) ) (17)

and equality holds for pairs of pure states.
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xample: Take f(z) =1 — /1 — x and convince yourself of

1—(1/2) || m — 2 1= f(trmims)

to conclude its correctness for general pairs, I. €.

H W1 — W2 ||1§ 2\/1 — Pr(wl,wg)

In the same manner one obtains with s; > 0:

| s1w1 — Sawo H%S (s1 — 82)2 + 45152(1 — Pr(wy,ws))

Thus it seems worthwhile to define the 1-distance in general.

o

(18)

(19)
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et K convex and compact. Remember [0, 1] k.
‘627&1‘;—{ :maXl(€2) _l(€1), l € [07 1]K (20)
For affine maps on proves the contracting property

‘627€1|;_( > ‘T(£2)7T(€1)‘;(K) (21)

and the subadditivity property

€5, 611 < &3, &l + €2, &% (22)

Examples:

Wy — w1|$ = tr (wy —wq) ™
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or a ball with radius r :

L 1 S
|5132,$1\B == % ( 2 — 1)2
The 1-distance is defined by
€2, 611Kk = |&2, &5 + €1, &2l (23)

It satisfies the triangle inequality and is contracting with respect to affine
maps.

((The notation “1-distance” can be misleading: For balls it is an Euclidian
distance.))
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Spectra

For ¢ € K consider the set of all coefficient vectors {p, } which can appear
In an extremal decomposition

§ = ijnja p1>p22>..., mnj€ex|K]|. (24)

A coefficient vector is called eigenvalue vector, if it cannot properly
majorized by another coefficient vector.

Denote the set of these vectors by specg[£].

In case K = (), one gets the decreasingly ordered set of eigenvalues
followed by zeros.

In case ¥ € K = B,, . Draw a line through 7 and the center. It intersects
the boundary sphere at two points, say 7, = satisfying

Z=(1-p)jJ+piyt, 1 —p>p.Thenspeck|d] = {1 —p,p}
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fOne needs the compactness of ex| K] to prove
a) There are eigenvalue vectors for all £ € K
b) Denote by rank|£] the smallest possible number of non-zero coefficients
in a coefficient vector. Then there is an eigenvalue vector with rank[¢]
non-zero components.

Unsolved: w and w’ density operators. Consider

inf > (p;)*(p)) " (25)

running over all coefficient vectors of w resp. w’. Is it the trace of
ws(w/)(l—s) 2
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