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Spaces versus algebras (rings)
Remember Gelfand’s relation

compact spaces ⇔ algebra of continuous functions

Other examples:
algebra of (k-times) differentiable functions
algebra of holomorphic functions on disk, ...

H Hilbert space ⇔ B(H) ⇔ Ω(H)

Unital ∗-algebra A ⇒ state space Ω(A)

Alfsen, Shulz: Which compact convex sets K are state spaces of
C∗-algebras (Jordan algebras)?
Necessary: The face generated by two extremal points is a ball.
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Ωd = Ω(H), dimH = d.

K any compact set in a finite dimensional linear space. Assume ex[K]

compact.
Let T map K into K ′ preserving convex combinations. T can be extended
to an affine map.
If T maps Ω affine into K, there is a unique linear extension of T to
Herm(H).

Aut[K] : Affine one-to-one maps from K onto K.
Aut[Ω] : Wigner symmetries ω → V ωV ∗
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Two-point-concavity on a convex set K

G = G(ξ, ξ′) defined for ξ, ξ′ ∈ K is concave if

G(ξ, ξ′) ≥
∑

√

pjp′jG(ξj , ξ
′

j) (1)

for all pairs of convex combinations

ξ =
∑

pjξj , ξ =
∑

p′kξ′k . (2)

The infimum of a set of concave functions in two variables is again
concave.
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K convex and compact: ⇒
Given g(η, η′) for all η, η′ ∈ ex[K], there is a minimal concave function, say
g∩(ξ, ξ′), coinciding with g at extremal points.

g∩(ξ, ξ′) = inf
∑

√

pjp′jg(πj , π
′

j) (3)

If G is a function of two points we also write

G∩ := g∩ if g(η, η′) = G(η, η′) (4)

on ex[K].
(This is similar to the concave roof extension in one argument.)
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Main example: K := Ωd.

F (ρ, ω) = tr ( ρ1/2ωρ1/2 )1/2, Pr(ρ, ω) = F (ρ, ω)2 . (5)

Statement: F is concave and F = F∩

Indeed, one knows for positive operators

F (
∑

Aj ,
∑

Bk) ≥
∑

F (Aj , Bj) (6)

and equality takes place if and only if

F (Aj , Bk) = 0 for all j 6= k . (7)

Setting, say, Aj = pjπj , ..., the assertion follows.
For simplices, Pr(.,.) is the Kakutani mean. (Bhattachayya)
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Mielnik’s construction.
With a good definition of fidelity,

fidelity =
√

transition probability ,

for extremal states we could apply (3). The task to define transition
probabilities for pairs of extremal points is due to Mielnik:
Let K compact. [0, 1]K denotes the set of all affine functions l satisfying
0 ≤ l(ξ) ≤ 1 for all ξ ∈ K.
For K = Ω : l(ω) = trAω , 0 ≤ A ≤ 1

PrK(η1, η2) := min l(η2), l(η1) = 1, l ∈ [0, 1]K (8)

is Mielnik’s transition probability for pairs η1, η2 ∈ ex[K].
Now one applies (3) to extend (8) from ex[K] to K.
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Examples

PrΩ(π1, π2) = trπ1π2, πj pure. (9)

Mielnik’s procedure gives the correct expression.
Consider the n-dimensional unit ball Bn and ex[Bn] = Sn, the unit sphere.
For two vectors on the sphere:

PrB(~y, ~y′) =
1 + ~y~y′

2
. (10)

For two general vectors one applies (3), (5):

PrB(~x, ~x′) =
1 + ~x~x′ +

√
1 − ~x~x

√
1 − ~x′~x′

2
. (11)
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Maps and Monotonicity
Let T be an affine map from Ωn into Ωm.

Pr(ω, ρ) ≤ Pr(Tω, Tρ) (12)

Now assume G(., .) monotone for cpt-maps,

G(ω, ρ) ≤ G(Tω, Tρ), T cpt. (13)

Statement: (Categorical definition of Pr(., .))

G(π1, π2) = Pr(π1, π2), G(ω1, ω2) ≤ Pr(ω1, ω2) (14)

Then : G(ω1, ω2) = Pr(ω1, ω2)

Because: Given ω1, ω2, there is a cpt-map satisfying Tπj = ωj with
equality in (12).
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Example:

trωsρ1−s ≥ Pr(ω, ρ), 0 < s < 1 (15)

because the left hand side fulfills (13), (14).

Now let G just monotone, i. e. fulfill (13).
Then G must be unitary invariant. The only unitary invariants for pairs of
pure states are functions of their transition probability. (13) also requires
them increasing.
Hence there is a positive, increasing real function f = f(x) on 0 ≤ x ≤ 1

such that

G(π1, π2) = f( trπ1π2 ) (16)
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Statement: If for all tcp-maps

G(ω, ρ) ≤ G(Tω, Tρ)

then there is on [0, 1] a monotone increasing function f ≥ 0 with

G(ω1, ω2) ≥ f( Pr(ω1, ω2) ) (17)

and equality holds for pairs of pure states.
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Example: Take f(x) = 1 −
√

1 − x and convince yourself of

1 − (1/2) ‖ π1 − π2 ‖1= f(trπ1π2)

to conclude its correctness for general pairs, i. e.

‖ ω1 − ω2 ‖1≤ 2
√

1 − Pr(ω1, ω2) (18)

In the same manner one obtains with sj ≥ 0:

‖ s1ω1 − s2ω2 ‖2
1≤ (s1 − s2)

2 + 4s1s2( 1 − Pr(ω1, ω2) ) (19)

Thus it seems worthwhile to define the 1-distance in general.
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Let K convex and compact. Remember [0, 1]K .

|ξ2, ξ1|+K = max l(ξ2) − l(ξ1), l ∈ [0, 1]K (20)

For affine maps on proves the contracting property

|ξ2, ξ1|+K ≥ |T (ξ2), T (ξ1)|+T (K) (21)

and the subadditivity property

|ξ3, ξ1|+K ≤ |ξ3, ξ2|+K + |ξ2, ξ1|+K (22)

Examples:

|ω2 − ω1|+Ω = tr (ω2 − ω1)
+
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For a ball with radius r :

|~x2, ~x1|+B ==
1

2r

√

( ~x2 − ~x1)2

The 1-distance is defined by

|ξ2, ξ1|K := |ξ2, ξ1|+K + |ξ1, ξ2|+K (23)

It satisfies the triangle inequality and is contracting with respect to affine
maps.
((The notation “1-distance” can be misleading: For balls it is an Euclidian
distance.))
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Spectra
For ξ ∈ K consider the set of all coefficient vectors {pj} which can appear
in an extremal decomposition

ξ =
∑

pjηj , p1 ≥ p2 ≥ . . . , ηj ∈ ex[K] . (24)

A coefficient vector is called eigenvalue vector, if it cannot properly
majorized by another coefficient vector.
Denote the set of these vectors by specK [ξ].
In case K = Ωd one gets the decreasingly ordered set of eigenvalues
followed by zeros.
In case ~x ∈ K = Bn : Draw a line through ~x and the center. It intersects
the boundary sphere at two points, say ~y, ~y⊥ satisfying
~x = (1 − p)~y + p~y⊥, 1 − p ≥ p . Then specK [~x] = {1 − p, p}
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One needs the compactness of ex[K] to prove
a) There are eigenvalue vectors for all ξ ∈ K

b) Denote by rank[ξ] the smallest possible number of non-zero coefficients
in a coefficient vector. Then there is an eigenvalue vector with rank[ξ]

non-zero components.

−−−−−−−

Unsolved: ω and ω′ density operators. Consider

inf
∑

(pj)
s(p′j)

1−s (25)

running over all coefficient vectors of ω resp. ω′. Is it the trace of
ωs(ω′)(1−s) ?
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