# Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

Robert Zeier zeier@eecs.harvard.edu

Control, Constraints and Quanta

October 11, 2007

\*ロト \* 御 \* \* 注 \*

- 1 Quantum computing as a control problem
- 2 Fast and slow qubit system
- **3** Further comments

# Quantum systems and their transformations

(pure) quantum states (= vectors in  $\mathbb{C}^m$ ,  $m < \infty$ )

- example: qubit (=quantum bit) is an element of  $\mathbb{C}^2$  ( $\rightarrow$  Bloch sphere)
- combined quantum system: tensor product  $\mathbb{C}^{m_1}\otimes\cdots\otimes\mathbb{C}^{m_n}$ 
  - space of all  $\mathbb{Z}$ -linear comb. of  $v_1 \otimes \cdots \otimes v_n$  ( $v_j \in \mathbb{C}^{m_j}$ ,  $\otimes$  bilinear)
  - example: two qubits as given by  $\mathbb{C}^2 \otimes \mathbb{C}^2$

#### quantum operations = unitary transformations $U \in SU(d)$

- Lie group SU(d) = { G ∈ GL(d, C) | G<sup>-1</sup> = (G<sup>\*</sup>)<sup>T</sup>, det(G) = 1} (= closed linear matrix group)
- Lie algebra  $\mathfrak{su}(d) = \{g \in \mathfrak{gl}(d, \mathbb{C}) | -g = (g^*)^T, \operatorname{Tr}(g) = 0\}$ 
  - tangent space to SU(d) at the identity
  - with bilinear and skew-symmetric multiplication  $[g_1, g_2] := g_1g_2 g_2g_1$ where  $[g_1, g_2] \in \mathfrak{su}(d)$  and  $[[g_1, g_2], g_3] + [[g_3, g_1], g_2] + [[g_2, g_3], g_1] = 0$

# Quantum computing as a control problem



# controllability (= universality), i.e., all $U \in SU(d)$ can be obtained necessary and sufficient condition: $iH_0, iH_1, \ldots, iH_m$ generate $\mathfrak{su}(d)$ (Brockett (1972,1973), Jurdjevic and Sussmann (1972))

#### find efficient (control) algorithms for a quantum computer

w.r.t. execution time (or number of applied unitary transformations)

# Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)

- instantaneous operations  $U_j \in SU(2)^{\otimes n} = SU(2) \otimes \cdots \otimes SU(2)$
- time-evolution w.r.t. a coupling Hamilton operator  $H(-iH \in \mathfrak{su}(2^n))$

efficient (control) algorithms for  $U \in SU(2^n)$  with execution time t

• 
$$U = \left[\prod_{k=1}^m \left( U_k^{-1} \exp(-iHt_k)U_k \right) \right] U_0$$
 and  $t = \sum_{k=1}^m t_k$   $(t_k \ge 0)$ 

 idea: conjugate the orbit exp(-iHt<sub>k</sub>) with instantaneous operations U<sub>k</sub> ∈ SU(2<sup>n</sup>) ⇒ piecewise change of the time evolution

#### remarks

- widely used assumptions in the literature (ightarrow entanglement)
- we compare our methods to time-optimal control algorithms for two (n = 2) nuclear spins (Khaneja/Brockett/Glaser (2001))

# Outline

#### Quantum computing as a control problem

Past and slow qubit system Physical model Mathematical structure Results

3 Further comments

the physical system (high field case, in a double rotating frame)

- free evolution w.r.t. the Hamiltonian  $H_0 = JI_z + J(2S_zI_z)$
- control Hamiltonian on the first qubit (= electron spin):  $H_S = w_r^S(t)[S_x \cos \phi_S(t) + S_y \sin \phi_S(t)]$
- control Hamiltonian on the second qubit (= nuclear spin):  $H_I = w_r^I(t)[I_x \cos \phi_I(t) + I_y \sin \phi_I(t)]$
- time scales  $\omega_r^I \ll J \ll \omega_r^S$  (H<sub>0</sub> faster than some local operations!)
- first qubit = fast qubit and second qubit = slow qubit

notation: 
$$S_{\mu} = (\sigma_{\mu} \otimes \mathrm{id}_2)/2$$
 and  $I_{\nu} = (\mathrm{id}_2 \otimes \sigma_{\nu})/2$   $(\mu, \nu \in \{x, y, z\})$   
where  $\sigma_x := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ,  $\sigma_y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ ,  $\sigma_z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ ,  $\mathrm{id}_2 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

# Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation)  $H_0 + H_I = 2JS^{\beta}I_z + w_r^I(t)(S^{\alpha} + S^{\beta})(I_x \cos \phi_I + I_y \sin \phi_I) \text{ truncates to}$   $H^{\alpha}(\phi_I) = 2JS^{\beta}I_z + w_r^I(t)S^{\alpha}(I_x \cos \phi_I + I_y \sin \phi_I)$ where  $S^{\beta} = (\mathrm{id}_4/2 + S_z) = (\mathrm{id}_2 \ 0_2 \ 0_2), S^{\alpha} = (\mathrm{id}_4/2 - S_z) = (0 \ 0_2 \ 0_2)$ 

energy diagram (w.r.t. lab frame)  $\omega_S, \omega_I =$  natural precession frequency of first and second qubit



# Mathematical structure of our model (1/3)

 $\begin{array}{ll} \mbox{Cartan decomposition } \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} & (\mathfrak{g} = \mathfrak{su}(4), \ \mathfrak{G} = \mathrm{SU}(4)) \\ \mbox{condition: } [\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, \ [\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}, \ [\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k} & (\mathfrak{k} \mbox{ Lie algebra}, \ \mathfrak{K} \ \mbox{its Lie group}) \end{array}$ 

fast operations: 
$$-iS_{\mu} \ (\mu \in \{x, y, z\}) \text{ and } -iH_0 \Rightarrow$$
  
 $\Re = \exp(\mathfrak{k}) \text{ where } \mathfrak{k} = \{-iS_{\mu}, -i2S_{\nu}I_z, -iI_z : \ \mu, \nu \in \{x, y, z\}\}$ 

slow operations: e.g.,  $-iH^{\alpha}(\phi_I) \Rightarrow$  $\mathfrak{P} = \exp(\mathfrak{p})$  where  $\mathfrak{p} = \{-iI_{\gamma}, -i2S_{\mu}I_{\gamma}: \gamma \in \{x, y\}, \mu \in \{x, y, z\}\}$ 

compare to two nuclear spins:  $\mathfrak{k} \oplus \mathfrak{p} = \mathsf{local} \oplus \mathsf{nonlocal}$ 

# Mathematical structure of our model (2/3)

## Weyl orbit $\mathcal{W}(p) = \{KpK^{-1}: K \in \mathfrak{K}\} \cap \mathfrak{a} \text{ of } p \in \mathfrak{p}$

- max. Abelian subalgebra  $\mathfrak{a} = \{a_1(-iS^{eta}I_x) + a_2(-iS^{lpha}I_x): a_j \in \mathbb{R}\} \subset \mathfrak{p}$
- Kostant's convexity theorem (1973): the slow operations and the corresponding Weyl orbit determine the time-optimal control

• 
$$\mathcal{W}[(b_1, b_2)] = \mathcal{W}[b_1(-iS^{\beta}I_x) + b_2(-iS^{\alpha}I_x)] = \{(b_1, b_2), (b_1, -b_2), (-b_1, b_2), (-b_1, -b_2), (b_2, b_1), (b_2, -b_1), (-b_2, -b_1), (-b_2, b_1)\}$$

• majorization condition:  $(a_1, a_2)$  is in the convex closure of  $\mathcal{W}[(b_1, b_2)]$ iff max $\{|a_1|, |a_2|\} \le \max\{|b_1|, |b_2|\}$  and  $|a_1| + |a_2| \le |b_1| + |b_2|$ 

#### compare to two nuclear spins

- Bennett et al. (2002) introduced a similar majorization condition
- Zeier/Grassl/Beth (2004) (see also Yuan/Khaneja (2005 and 2006)) proved the connection to the convex closure of the Weyl orbit

 $(\mathfrak{A} = \exp(\mathfrak{a}))$ 

# Mathematical structure of our model (3/3)

#### RAR decomposition

- max. Abelian subalgebra  $\mathfrak{a} = \{a_1(-iS^{\beta}I_x) + a_2(-iS^{\alpha}I_x): a_j \in \mathbb{R}\} \subset \mathfrak{p}$
- $G = K_1 \exp[a_1(-iS^{\beta}I_x) + a_2(-iS^{\alpha}I_x)]K_2 \in \mathfrak{G}$   $(K_j \in \mathfrak{K})$

#### remark: RUR decomposition is not unique

- $\Rightarrow$  consider all  $(a_1, a_2) + \pi(z_1, z_2)$  where  $z_1, z_2 \in \mathbb{Z}$ 
  - Zeier/Yuan/Khaneja (arXiv:0709.4484v1): majorization condition simplifies for a<sub>1</sub>, a<sub>2</sub> ∈ [-π, π] ⇒ sufficient to consider only z<sub>1</sub> = z<sub>2</sub> = 0
  - similar to two nuclear spins:
    - Vidal/Hammerer/Cirac (2002) used a similar majorization condition
    - Zeier/Grassl/Beth (2004) (see also Dirr et al. (2006)) analyzed the nonuniqueness of the RUR decomposition

# Time-optimal control of fast and slow qubit system

# Zeier/Yuan/Khaneja (arXiv:0709.4484v1)

The minimal time to synthesize  $G \in SU(4)$  is min $\{(|t_1| + |t_2|)/\omega_r^I\}$  such that  $G = K_1 \exp[t_1(-iS^{\beta}I_x) + t_2(-iS^{\alpha}I_x)]K_2$ 

#### remarks

- slow operations:  $-iH^{\alpha}(0)$ , we use the Weyl orbit of  $-iS^{\alpha}I_{x}$ :  $b_{1} = 0$  and  $b_{2} = 1 \Rightarrow \mathcal{W}[(b_{1}, b_{2})] = \{(-1, 0), (1, 0), (0, -1), (0, 1)\}$ 
  - $b_1 = 0$  and  $b_2 = 1 \Rightarrow VV[(b_1, b_2)] = \{(-1, 0), (1, 0), (0, -1), (0, -1)\}$
- relies on Kostant's convexity theorem (1973)
- the control problem is reduced to convex optimization
- similar to two nuclear spins: see Khaneja/Brockett/Glaser (2001)

#### Results

# Examples of time-optimal controls (1/2)

minimum time 
$$t_{\min}$$
 for CNOT[2, 1], CNOT[1, 2], and SWAP  
•  $e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \exp[\pi(-i2S_XI_z + iS_x + iI_z)/2] \Rightarrow t_{\min} = 0$   
(as it is contained in  $\Re$  = fast operations)  
•  $e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \exp[\pi(-i2S_zI_x + iS_z + iI_x)/2] =$   
 $\exp(i\pi S_z/2) \exp(-it'H_0/J) \exp[-i\pi H^{\alpha}(\pi)/w_r^I]$   
(where  $t' = -\pi J/w_r^I \mod 2\pi \ge 0$ )  
 $\Rightarrow t_{\min} = \pi/\omega_r^I$   
•  $e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \exp[\pi(i2S_xI_x + i2S_yI_y + i2S_zI_z)/2] =$   
 $e^{i\pi S_z/2} e^{-i\pi S_x/2} e^{-i3\pi H_0/(2J)} e^{i\pi S_y/2} e^{-it'H_0/J} \exp[-i\pi H^{\alpha}(\pi)/w_r^I]$   
 $\times e^{-i\pi S_x/2} e^{-i\pi H_0/(2J)} e^{-i\pi S_y/2}$   
 $\Rightarrow t_{\min} = \pi/\omega_r^I$ 

# Examples of time-optimal controls (2/2)

# corresponding pulse sequences: (a) $e^{i\pi/4}$ CNOT[1, 2], (b) $e^{i\pi/4}$ SWAP, see Zeier/Yuan/Khaneja (arXiv:0709.4484v1)



#### ① Quantum computing as a control problem

**2** Fast and slow qubit system

#### **3** Further comments

# Beyond two nuclear spins

approach for choosing a Cartan decomposition  $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ 

- for two nuclear spins:  $\mathfrak{k} = \mathsf{local} \mathsf{ part}, \mathfrak{p} = \mathsf{non-local} \mathsf{ part}$
- *n* nuclear spins (n > 2): local operations  $\subseteq \mathfrak{K}$  (e.g.,  $SU(2)^{\otimes n} \subseteq \mathfrak{K}$ )

#### lower bounds on the execution time

- assume that all elements of ℜ can be applied instantaneously, and not only the elements of SU(2)<sup>⊗n</sup>
   ⇒ we get the execution time (under this assumption)
- $\operatorname{SU}(2)^{\otimes n} \subseteq \mathfrak{K} \Rightarrow$  the execution time can only be greater

#### determine suitable $\Re$ (Childs et al. (2003), Zeier/Grassl/Beth (2004))

- *n* even:  $\mathfrak{K}$  is conjugated to the orthogonal group  $O(2^n)$
- n odd: A is conjugated to the (unitary) symplectic group Sp(2<sup>n-1</sup>)

general case of  $\mathfrak{G} = \mathrm{SU}(2^n)$ ,  $\mathfrak{L} = \mathrm{SU}(2)^{\otimes n}$ , and  $\mathfrak{l} = \mathrm{Lie} \ \mathrm{algebra}(\mathfrak{L})$  $\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{m}$ , where  $[\mathfrak{l}, \mathfrak{l}] \subset \mathfrak{l}$  and  $[\mathfrak{l}, \mathfrak{m}] \subset \mathfrak{m}$  (but not  $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{l}$  for n > 2)  $\Rightarrow$  no Cartan decomposition

### de Rham cohomology of $\mathfrak{G}/\mathfrak{L} = \mathrm{SU}(2^n)/\mathrm{SU}(2)^{\otimes n}$

- computed for n = 2, 3 (Zeier (2006))
- potential structure insight to the simulation of unitary transformations
- connections to the structure of entanglement

#### for more information see <a href="http://www.eecs.harvard.edu/~zeier/">http://www.eecs.harvard.edu/~zeier/</a>

#### Thank you for your attention!

◆□▶ ◆圖▶ ◆臣▶