Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

Robert Zeier zeier@eecs.harvard.edu

Control, Constraints and Quanta

October 11, 2007

- **1** [Quantum computing as a control problem](#page-2-0)
- **2** [Fast and slow qubit system](#page-5-0)
- ³ [Further comments](#page-14-0)

Quantum systems and their transformations

(pure) quantum states (= vectors in \mathbb{C}^m , $m < \infty$)

- $\bullet\,$ example: <code>qubit</code> (=quantum bit) is an element of $\mathbb{C}^2 \left(\rightarrow \text{Bloch sphere}\right)$
- combined quantum system: tensor product $\mathbb{C}^{m_1}\otimes\cdots\otimes\mathbb{C}^{m_n}$
	- space of all \mathbb{Z} -linear comb. of $v_1 \otimes \cdots \otimes v_n$ $(v_j \in \mathbb{C}^{m_j}, \otimes \text{bilinear})$
	- example: two qubits as given by $\mathbb{C}^2 \otimes \mathbb{C}^2$

quantum operations = unitary transformations $U \in SU(d)$

- Lie group $SU(d) = \{ G \in GL(d, \mathbb{C}) | G^{-1} = (G^*)^T, det(G) = 1 \}$ $($ closed linear matrix group)
- • Lie algebra $\mathfrak{su}(d) = \{ g \in \mathfrak{gl}(d,\mathbb{C}) | -g = (g^*)^T,\, \text{Tr}(g) = 0 \}$
	- tangent space to $SU(d)$ at the identity
	- with bilinear and skew-symmetric multiplication $[g_1, g_2] := g_1 g_2 g_2 g_1$ where $[g_1, g_2] \in \mathfrak{su}(d)$ and $[[g_1, g_2], g_3] + [[g_3, g_1], g_2] + [[g_2, g_3], g_1] = 0$

Quantum computing as a control problem

controllability (= universality), i.e., all $U \in SU(d)$ can be obtained necessary and sufficient condition: iH_0 , iH_1 , ..., iH_m generate $\mathfrak{su}(d)$ (Brockett (1972,1973), Jurdjevic and Sussmann (1972))

find efficient (control) algorithms for a quantum computer

w.r.t. execution time (or number of applied unitary transformations)

Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)

- instantaneous operations $U_i \in SU(2)^{\otimes n} = SU(2) \otimes \cdots \otimes SU(2)$
- time-evolution w.r.t. a coupling Hamilton operator $H(-iH \in \mathfrak{su}(2^n))$

efficient (control) algorithms for $U\in \mathrm{SU}(2^n)$ with execution time t

- \bullet $U=\left[\prod_{k=1}^{m}\left(U_{k}^{-1}\exp(-iHt_{k})U_{k}\right)\right]U_{0}$ and $t=\sum_{k=1}^{m}$ $(t_k \geq 0)$
- idea: conjugate the orbit $exp(-iHt_k)$ with instantaneous operations $U_k \in SU(2^n) \Rightarrow$ piecewise change of the time evolution

remarks

- widely used assumptions in the literature (\rightarrow entanglement)
- we compare our methods to time-optimal control algorithms for two $(n = 2)$ nuclear spins (Khaneja/Brockett/Glaser (2001))

Outline

1 [Quantum computing as a control problem](#page-2-0)

2 [Fast and slow qubit system](#page-5-0) [Physical model](#page-6-0) [Mathematical structure](#page-8-0) **[Results](#page-11-0)**

⁸ [Further comments](#page-14-0)

Our model: coupled fast and slow qubit system $(1/2)$

the physical system (high field case, in a double rotating frame)

- free evolution w.r.t. the Hamiltonian $H_0 = JI_z + J(2S_zI_z)$
- control Hamiltonian on the first qubit $(=$ electron spin): $H_S = w_r^S(t)[S_x \cos \phi_S(t) + S_y \sin \phi_S(t)]$
- control Hamiltonian on the second qubit $(=$ nuclear spin): $H_I = w_I^I(t)[I_x \cos \phi_I(t) + I_y \sin \phi_I(t)]$
- time scales $\omega_r^I \ll J \ll \omega_r^S$ (H₀ faster than some local operations!)
- first qubit $=$ fast qubit and second qubit $=$ slow qubit

notation:
$$
S_{\mu} = (\sigma_{\mu} \otimes \text{id}_{2})/2
$$
 and $I_{\nu} = (\text{id}_{2} \otimes \sigma_{\nu})/2$ $(\mu, \nu \in \{x, y, z\})$ where $\sigma_{x} := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_{y} := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_{z} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\text{id}_{2} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation) $H_0+H_I=2JS^{\beta}I_z+w_r^I(t)(S^{\alpha}+S^{\beta})(I_{\mathsf{x}}\cos\phi_I+I_{\mathsf{y}}\sin\phi_I)$ truncates to $H^{\alpha}(\phi_I) = 2JS^{\beta}I_z + w_r^{I}(t)S^{\alpha}(I_x \cos \phi_I + I_y \sin \phi_I)$ where $S^\beta=(\mathrm{id}_4/2+S_z)=\Big(\begin{smallmatrix}\mathrm{id}_2&0_2\0_2&0_2\end{smallmatrix}\Big)$, $S^\alpha=(\mathrm{id}_4/2-S_z)=\Big(\begin{smallmatrix}0_2&0_2\0_2&\mathrm{id}_2\end{smallmatrix}$ $\begin{pmatrix} 0_2 & 0_2 \\ 0_2 & \text{id}_2 \end{pmatrix}$

energy diagram (w.r.t. lab frame) ω _S, ω _I = natural precession frequency of first and second qubit

Mathematical structure of our model $(1/3)$

Cartan decomposition $g = f \oplus p$ (g = $\mathfrak{su}(4)$, $\mathfrak{G} = \mathrm{SU}(4)$) condition: $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$ (\mathfrak{k} Lie algebra, \mathfrak{K} its Lie group)

$$
\begin{array}{l}\n\text{fast operations: } -iS_{\mu} \ (\mu \in \{x, y, z\}) \text{ and } -iH_0 \Rightarrow \\
\mathfrak{K} = \exp(\mathfrak{k}) \text{ where } \mathfrak{k} = \{-iS_{\mu}, -i2S_{\nu}I_z, -iI_z : \ \mu, \nu \in \{x, y, z\}\}\n\end{array}
$$

slow operations: e.g., $-iH^{\alpha}(\phi_I) \Rightarrow$ $\mathfrak{P} = \exp(\mathfrak{p})$ where $\mathfrak{p} = \{-iI_{\gamma}, -i2S_{\mu}I_{\gamma}: \gamma \in \{x, y\}, \mu \in \{x, y, z\}\}\$

compare to two nuclear spins: $\mathfrak{k} \oplus \mathfrak{p} =$ local \oplus nonlocal

Mathematical structure of our model (2/3)

Weyl orbit $\mathcal{W}(\rho)=\{K\rho K^{-1}\colon\ K\in\mathfrak{K}\}\cap\mathfrak{a}$ of $\rho\in\mathfrak{p}$

- max. Abelian subalgebra $\mathfrak{a} = \{a_1(-iS^{\beta}I_{x}) + a_2(-iS^{\alpha}I_{x}) : a_j \in \mathbb{R}\} \subset \mathfrak{p}$
- Kostant's convexity theorem (1973): the slow operations and the corresponding Weyl orbit determine the time-optimal control
- $\bullet \ \ \mathcal{W}[(b_1,b_2)] = \mathcal{W}[b_1(-iS^{\beta}I_{\mathsf{x}}) + b_2(-iS^{\alpha}I_{\mathsf{x}})] = \{ (b_1,b_2), (b_1,-b_2),$ $(-b_1, b_2), (-b_1, -b_2), (b_2, b_1), (b_2, -b_1), (-b_2, -b_1), (-b_2, b_1)\}$
- majorization condition: (a_1, a_2) is in the convex closure of $W[(b_1, b_2)]$ iff max $\{|a_1|, |a_2|\} \leq \max\{|b_1|, |b_2|\}$ and $|a_1| + |a_2| \leq |b_1| + |b_2|$

compare to two nuclear spins

- Bennett et al. (2002) introduced a similar majorization condition
- Zeier/Grassl/Beth (2004) (see also Yuan/Khaneja (2005 and 2006)) proved the connection to the convex closure of the Weyl orbit

Mathematical structure of our model (3/3)

$\mathcal{R} \mathcal{U} \mathcal{R}$ decomposition $(\mathcal{U} = \exp(\mathfrak{a}))$ • max. Abelian subalgebra $\mathfrak{a} = \{ a_1(-iS^\beta I_\mathsf{x}) + a_2(-iS^\alpha I_\mathsf{x}) \colon a_j \in \mathbb{R} \} \subset \mathfrak{p}$ • $G = K_1 \exp[a_1(-iS^{\beta}I_{x}) + a_2(-iS^{\alpha}I_{x})]K_2 \in \mathfrak{G}$ (K_j $\in \mathfrak{K}$)

remark: $\mathcal{R} \mathcal{R} \mathcal{R}$ decomposition is not unique

- \Rightarrow consider all $(a_1, a_2) + \pi(z_1, z_2)$ where $z_1, z_2 \in \mathbb{Z}$
	- Zeier/Yuan/Khaneja (arXiv:0709.4484v1): majorization condition simplifies for $a_1, a_2 \in [-\pi, \pi]$ \Rightarrow sufficient to consider only $z_1 = z_2 = 0$
	- similar to two nuclear spins:
		- Vidal/Hammerer/Cirac (2002) used a similar majorization condition
		- Zeier/Grassl/Beth (2004) (see also Dirr et al. (2006)) analyzed the nonuniqueness of the $\mathcal{R} \mathcal{R}$ decomposition

Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (arXiv:0709.4484v1)

The minimal time to synthesize $G \in \mathrm{SU}(4)$ is $\min\{(|t_1|+|t_2|)/\omega_r^I\}$ such that $\mathit{G} = \mathit{K}_1 \exp [t_1 (-iS^{\beta} \mathit{I}_{\mathsf{x}}) + t_2 (-iS^{\alpha} \mathit{I}_{\mathsf{x}})] \mathit{K}_2$

remarks

- slow operations: $-iH^{\alpha}(0)$, we use the Weyl orbit of $-iS^{\alpha}I_{x}$:
	- $b_1 = 0$ and $b_2 = 1 \Rightarrow W[(b_1, b_2)] = {(-1, 0), (1, 0), (0, -1), (0, 1)}$
- relies on Kostant's convexity theorem (1973)
- the control problem is reduced to convex optimization
- • similar to two nuclear spins: see Khaneja/Brockett/Glaser (2001)

Examples of time-optimal controls $(1/2)$

minimum time
$$
t_{\min}
$$
 for CNOT[2, 1], CNOT[1, 2], and SWAP
\n
$$
\begin{aligned}\n\mathbf{O} \ e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} &= \exp[\pi(-i2S_xI_z + iS_x + iI_z)/2] \Rightarrow t_{\min} = 0 \\
(\text{as it is contained in } \mathfrak{K} = \text{fast operations})\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\mathbf{O} \ e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} &= \exp[\pi(-i2S_zI_x + iS_z + iI_x)/2] = \\
& \exp(i\pi S_z/2) \exp(-it'H_0/J) \exp[-i\pi H^\alpha(\pi)/w_r'] \\
(\text{where } t' = -\pi J/w_r^I \mod 2\pi \ge 0)\n\end{aligned}
$$
\n
$$
\Rightarrow t_{\min} = \pi/\omega_r^I
$$
\n
$$
\mathbf{O} \ e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \exp[\pi(i2S_xI_x + i2S_yI_y + i2S_zI_z)/2] = \\
e^{i\pi S_z/2}e^{-i\pi S_x/2}e^{-i3\pi H_0/(2J)}e^{i\pi S_y/2}e^{-it'H_0/J} \exp[-i\pi H^\alpha(\pi)/w_r'] \\
& \times e^{-i\pi S_x/2}e^{-i\pi H_0/(2J)}e^{-i\pi S_y/2}\n\end{aligned}
$$
\n
$$
\Rightarrow t_{\min} = \pi/\omega_r^I
$$

Examples of time-optimal controls (2/2)

corresponding pulse sequences: <code>(a)</code> $\mathrm{e}^{i\pi/4}\mathrm{CNOT}[1,2]$, <code>(b)</code> $\mathrm{e}^{i\pi/4}\mathrm{SWAP}$, see Zeier/Yuan/Khaneja (arXiv:0709.4484v1)

1 [Quantum computing as a control problem](#page-2-0)

2 [Fast and slow qubit system](#page-5-0)

⁸ [Further comments](#page-14-0)

Beyond two nuclear spins

approach for choosing a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

- for two nuclear spins: $\mathfrak{k} =$ local part, $\mathfrak{p} =$ non-local part
- *n* nuclear spins $(n > 2)$: local operations \subsetneq \mathcal{R} (e.g., $SU(2)^{\otimes n} \subsetneq \mathcal{R}$)

lower bounds on the execution time

- assume that all elements of $\mathcal R$ can be applied instantaneously, and not only the elements of $SU(2)^{\otimes n}$ \Rightarrow we get the execution time (under this assumption)
- $SU(2)^{\otimes n} \subset \mathfrak{K} \Rightarrow$ the execution time can only be greater

determine suitable $\mathfrak K$ (Childs et al. (2003), Zeier/Grassl/Beth (2004))

- *n* even: \mathfrak{K} is conjugated to the orthogonal group $O(2^n)$
- *n* odd: \mathfrak{K} is conjugated to the (unitary) symplectic group $\text{Sp}(2^{n-1})$

Algebraic structure analysis for multi-qubit systems

general case of $\mathfrak{G}={\rm SU}(2^n),$ $\mathfrak{L}={\rm SU}(2)^{\otimes n},$ and $\mathfrak{l}=\mathsf{Lie}$ algebra (\mathfrak{L}) $\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{m}$, where $[\mathfrak{l}, \mathfrak{l}] \subset \mathfrak{l}$ and $[\mathfrak{l}, \mathfrak{m}] \subset \mathfrak{m}$ (but not $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{l}$ for $n > 2$) \Rightarrow no Cartan decomposition

de Rham cohomology of $\mathfrak{G}/\mathfrak{L}=\mathrm{SU}(2^n)/\mathrm{SU}(2)^{\otimes n}$

- computed for $n = 2, 3$ (Zeier (2006))
- potential structure insight to the simulation of unitary transformations
- connections to the structure of entanglement

for more information see http://www.eecs.harvard.edu/~zeier/

Thank you for your attention!

K ロ ▶ K 母 ▶ K 君 ▶