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Quantum computing as a control problem

Quantum systems and their transformations

(pure) quantum states (= vectors in C”, m < o)
qubit (=quantum bit) is an element of C? (— Bloch sphere)

[}
e combined quantum system: tensor product C™ ® - -- ® C™n

e space of all Z-linear comb. of vy ® --- ® v, (v; € C™, ® bilinear)
o two qubits as given by C? ® C?

quantum operations = unitary transformations U € SU(d)

e Lie group SU(d) = {G € GL(d,C)| G1 = (G*)T, det(G) = 1}
(= closed linear matrix group)
e Lie algebra su(d) = {g € gl(d,C)| — g = (

e tangent space to SU(d) at the identity
e with bilinear and skew-symmetric multiplication [g1, 8] := g1 — g2£1

where [g1, g] € su(d) and [[g1, £2], &3] + [[g3, 81], &2] + [[82, &3], 81] = O

g")", Tr(g) =0}
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Quantum computing as a control problem

physical resources to synthesize unitary transformations U € SU(d)
e a given set of unitary transformations

e unitary time evolution of the quantum system (Schrédinger equation):
2 U(t) = —iH(t)U(t) with Hamiltonian H(t) = Ho + >y vi(t)H
where iH(t) € su(d) and vj(t) are control functions

controllability (= universality), i.e., all U € SU(d) can be obtained

necessary and sufficient condition: iHp,iH1,. .., iH;, generate su(d)
(Brockett (1972,1973), Jurdjevic and Sussmann (1972))

find efficient (control) algorithms for a quantum computer

w.r.t. execution time (or number of applied unitary transformations)
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Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)
e instantaneous operations U; € SU(2)®" = SU(2) ® - - - ® SU(2)

e time-evolution w.r.t. a coupling Hamilton operator H (—iH € su(2"))

v

efficient (control) algorithms for U € SU(2") with execution time t

o U= [Hkmzl (kal exp(—thk)Uk)] Uo and t = kazl tx (tk > 0)
e idea: conjugate the orbit exp(—iHtx) with instantaneous operations
Uk € SU(2") = piecewise change of the time evolution

remarks
e widely used assumptions in the literature (— entanglement)

e we compare our methods to time-optimal control algorithms
for two (n = 2) nuclear spins (Khaneja/Brockett/Glaser (2001))
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Our model: coupled fast and slow qubit system (1/2)

the physical system (high field case, in a double rotating frame)
o free evolution w.r.t. the Hamiltonian Hy = JI, + J(25.1)

e control Hamiltonian on the first qubit (= electron spin):
Hs = wp (t)[Sx cos ¢s(t) + Sy sin ¢s(t)]
e control Hamiltonian on the second qubit (= nuclear spin):
H = w/(t)[lx cos ¢;(t) + I sin ¢ (t)]
o time scales w! < J < w? (Ho faster than some local operations!)

e first qubit = fast qubit and second qubit = slow qubit

notation: S, = (0, ®id2)/2 and I, = (id2 ® 7,)/2 (v € {x,y,z})
where o == (93}), 0, == ((,) Bi), 0z ‘= (é&)v idz := (59
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Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation)
Ho + Hy = 2JSP1, + w!(t)(S% + SP)(Ix cos ¢; + I, sin ¢;) truncates to

H*(¢1) = 2JSP 1, + w!(t)S(Ix cos ¢y + Iy sin ¢)

where S8 = (idg/2 + S,) = (igj 82), S =(ids/2-5;) = (82 i?lé)

o

(A)|7\]

w "

energy diagram (w.r.t. lab frame) ws -3

ws, wy = natural precession frequency of ws+J
first and second qubit
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Mathematical structure of our model (1/3)

Cartan decomposition g = ¢ @ p (g = su(4), 8 =SU(4))
condition: [, €] C &, [&,p] Cp, [p,p] C€ (¢ Lie algebra, R its Lie group)

v

fast operations: —iS,, (1 € {x,y,z}) and —iHy =
R = exp(t) where ¢ = {—iS,, —i25,1,,—il,: p,v € {x,y,z}}

slow operations: e.g., —iH*(¢;) =
ey TR S T R

compare to two nuclear spins: €@ p = local & nonlocal J
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Mathematical structure of our model (2/3)

Weyl orbit W(p) = {KpK™': K€ R} Naof pep
o max. Abelian subalgebra a = {a1(—iSPl )+ ax(—iS%I): a; € R} C p

o Kostant's convexity theorem (1973): the slow operations and
the corresponding Weyl orbit determine the time-optimal control

o W((b1, b2)] = Wlbi(=i5 1) + ba(=iS* )] = {(bx, b2), (b1, —b2),
(_b1> b2)7 (_b1’ _b2)> (b2> b1)7 (b27 _bl)’ (_b27 _bl)a (_b2> bl)}

e majorization condition: (a1, az) is in the convex closure of W[(b1, b2)]
iff max{|a1|, |a2|} < max{|b1|, |b2|} and |a1| + |a2| < |b1| + |b2|

compare to two nuclear spins

e Bennett et al. (2002) introduced a similar majorization condition

e Zeier/Grassl/Beth (2004) (see also Yuan/Khaneja (2005 and 2006))
proved the connection to the convex closure of the Weyl orbit
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Mathematical structure of our model (3/3)

RAR decomposition (A = exp(a))
o max. Abelian subalgebra a = {a1(—iSPl )+ ax(—iS%ly): aj € R} C p
o G = Kyexplai(—iSPl) + ax(—iS%)]|Kz € & (Kj € R)

v

remark: K2R decomposition is not unique
= consider all (a1, a2) + 7(z1, z2) where z;,z0 € Z
o Zeier/Yuan/Khaneja (arXiv:0709.4484v1):
majorization condition simplifies for aj, ap € [—7, 7]
= sufficient to consider only z; =z =0
e similar to two nuclear spins:

e Vidal/Hammerer/Cirac (2002) used a similar majorization condition
o Zeier/Grassl/Beth (2004) (see also Dirr et al. (2006))
analyzed the nonuniqueness of the RAR decomposition
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Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (arXiv:0709.4484v1)

The minimal time to synthesize G € SU(4) is min{(|t1| + |t2)/w!}
such that G = Ky exp[ty(—iSP1,) + to(—iS? 1) K2

remarks
e slow operations: —iH*(0), we use the Weyl orbit of —iS%I:
by=0and bp =1= W[(bla b2)] = {(_170)7 (170)a (07 _1)7 (07 1)}
e relies on Kostant's convexity theorem (1973)

e the control problem is reduced to convex optimization

e similar to two nuclear spins: see Khaneja/Brockett/Glaser (2001)
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minimum time t,;, for CNOT[2, 1], CNOT1, 2], and SWAP

000
o cirlt §§§§> — exp[m(—i2Sul, + iSx + i1,)/2] = tmin = 0
(as it is contained in R = fast operations)
, 1000
@ /4 <§ é § g) = exp[r(—i2S, 1y + 1S, + ily)/2] =
exp(in S, /2) exp(—it'Ho/J) exp [—im H*(m)/w]]
(where t' = —7J/w! mod 27 > 0)
= tmin = T/w!
1000
o e/t <gggg> — exp[m(i2S,l + 25,1, + i25,1,)/2] =

z7r52/2 —imSx/2 —z37rHo/(2J)ez7rSy/2 —it'Ho/J exp [—iﬂ‘Ha(ﬂ')/er]
« @i Sx /2 mHo/(2J) —imS, /2

= lfin = ﬂ/wl
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Examples of time-optimal controls (2/2)

corresponding pulse sequences: (a) e™/*CNOT[L1,2], (b) e"™/*SWAP,
see Zeier/Yuan/Khaneja (arXiv:0709.4484v1)

(@) (g)_z (b) (g)_y &,
| (), 1),
S S |
| — L
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Beyond two nuclear spins

approach for choosing a Cartan decomposition g =€ @ p
e for two nuclear spins: € = local part, p = non-local part
e n nuclear spins (n > 2): local operations & & (e.g., SU(2)®"

= %)

lower bounds on the execution time

e assume that all elements of & can be applied instantaneously,
and not only the elements of SU(2)®"
= we get the execution time (under this assumption)

e SU(2)®" C R = the execution time can only be greater

determine suitable £ (Childs et al. (2003), Zeier/Grassl/Beth (2004))
e neven: R is conjugated to the orthogonal group O(2")
e nodd: f is conjugated to the (unitary) symplectic group Sp(2"~1)

v
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Algebraic structure analysis for multi-qubit systems

general case of & = SU(2"), £ = SU(2)®", and [ = Lie algebra(£)

g =[@®m, where [[,[] C [and [[,m] C m (but not [m,m] C [ for n > 2)
=- no Cartan decomposition

de Rham cohomology of & /£ = SU(2")/SU(2)®"
e computed for n = 2,3 (Zeier (2006))
e potential structure insight to the simulation of unitary transformations

e connections to the structure of entanglement
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for more information see http://www.eecs.harvard.edu/ zeier/ )

Thank you for your attention! )
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