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Quantum systems and their transformations

(pure) quantum states (= vectors in Cm, m <∞)

• example: qubit (=quantum bit) is an element of C2 (→ Bloch sphere)

• combined quantum system: tensor product Cm1 ⊗ · · · ⊗ Cmn

• space of all Z-linear comb. of v1 ⊗ · · · ⊗ vn (vj ∈ Cmj , ⊗ bilinear)
• example: two qubits as given by C2 ⊗ C2

quantum operations = unitary transformations U ∈ SU(d)

• Lie group SU(d) = {G ∈ GL(d ,C)|G−1 = (G ∗)T , det(G ) = 1}
(= closed linear matrix group)

• Lie algebra su(d) = {g ∈ gl(d ,C)| − g = (g∗)T , Tr(g) = 0}
• tangent space to SU(d) at the identity
• with bilinear and skew-symmetric multiplication [g1, g2] := g1g2 − g2g1

where [g1, g2] ∈ su(d) and [[g1, g2], g3] + [[g3, g1], g2] + [[g2, g3], g1] = 0
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Quantum computing as a control problem

physical resources to synthesize unitary transformations U ∈ SU(d)

• a given set of unitary transformations

• unitary time evolution of the quantum system (Schrödinger equation):
d
dt U(t) = −ı̇H(t)U(t) with Hamiltonian H(t) = H0 +

∑m
j=1 vj(t)Hj

where ı̇H(t) ∈ su(d) and vj(t) are control functions

controllability (= universality), i.e., all U ∈ SU(d) can be obtained

necessary and sufficient condition: ı̇H0, ı̇H1, . . . , ı̇Hm generate su(d)
(Brockett (1972,1973), Jurdjevic and Sussmann (1972))

find efficient (control) algorithms for a quantum computer

w.r.t. execution time (or number of applied unitary transformations)
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Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)

• instantaneous operations Uj ∈ SU(2)⊗n = SU(2)⊗ · · · ⊗ SU(2)

• time-evolution w.r.t. a coupling Hamilton operator H (−ı̇H ∈ su(2n))

efficient (control) algorithms for U ∈ SU(2n) with execution time t

• U =
[∏m

k=1

(
Uk
−1 exp(−ı̇Htk)Uk

)]
U0 and t =

∑m
k=1 tk (tk ≥ 0)

• idea: conjugate the orbit exp(−ı̇Htk) with instantaneous operations
Uk ∈ SU(2n) ⇒ piecewise change of the time evolution

remarks

• widely used assumptions in the literature (→ entanglement)

• we compare our methods to time-optimal control algorithms
for two (n = 2) nuclear spins (Khaneja/Brockett/Glaser (2001))
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Our model: coupled fast and slow qubit system (1/2)

the physical system (high field case, in a double rotating frame)

• free evolution w.r.t. the Hamiltonian H0 = JIz + J(2Sz Iz)

• control Hamiltonian on the first qubit (= electron spin):
HS = wS

r (t)[Sx cosφS(t) + Sy sinφS(t)]

• control Hamiltonian on the second qubit (= nuclear spin):
HI = w I

r (t)[Ix cosφI (t) + Iy sinφI (t)]

• time scales ωI
r � J � ωS

r (H0 faster than some local operations!)

• first qubit = fast qubit and second qubit = slow qubit

notation: Sµ = (σµ ⊗ id2)/2 and Iν = (id2 ⊗ σν)/2 (µ, ν ∈ {x , y , z})
where σx := ( 0 1

1 0 ), σy :=
(

0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
, id2 := ( 1 0

0 1 )
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Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation)

H0 + HI = 2JSβIz + w I
r (t)(Sα + Sβ)(Ix cosφI + Iy sinφI ) truncates to

Hα(φI ) = 2JSβIz + w I
r (t)Sα(Ix cosφI + Iy sinφI )

where Sβ = (id4/2 + Sz) =
(

id2 02
02 02

)
, Sα = (id4/2− Sz) =

(
02 02
02 id2

)

energy diagram (w.r.t. lab frame)

ωS , ωI = natural precession frequency of
first and second qubit

αβ

ββ

αα

βα

ωS − J

ωS + J

ωI − J

ωI + J
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Mathematical structure of our model (1/3)

Cartan decomposition g = k⊕ p (g = su(4), G = SU(4))

condition: [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k (k Lie algebra, K its Lie group)

fast operations: −ı̇Sµ (µ ∈ {x , y , z}) and −ı̇H0 ⇒
K = exp(k) where k = {−ı̇Sµ,−ı̇2Sν Iz ,−ı̇Iz : µ, ν ∈ {x , y , z}}

slow operations: e.g., −ı̇Hα(φI ) ⇒
P = exp(p) where p = {−ı̇Iγ ,−ı̇2SµIγ : γ ∈ {x , y}, µ ∈ {x , y , z}}

compare to two nuclear spins: k⊕ p = local⊕ nonlocal
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Mathematical structure of our model (2/3)

Weyl orbit W(p) = {KpK−1 : K ∈ K} ∩ a of p ∈ p

• max. Abelian subalgebra a = {a1(−ı̇SβIx) + a2(−ı̇SαIx) : aj ∈ R} ⊂ p

• Kostant’s convexity theorem (1973): the slow operations and
the corresponding Weyl orbit determine the time-optimal control

• W[(b1, b2)] =W[b1(−ı̇SβIx) + b2(−ı̇SαIx)] = {(b1, b2), (b1,−b2),
(−b1, b2), (−b1,−b2), (b2, b1), (b2,−b1), (−b2,−b1), (−b2, b1)}

• majorization condition: (a1, a2) is in the convex closure of W[(b1, b2)]
iff max{|a1|, |a2|} ≤ max{|b1|, |b2|} and |a1|+ |a2| ≤ |b1|+ |b2|

compare to two nuclear spins

• Bennett et al. (2002) introduced a similar majorization condition

• Zeier/Grassl/Beth (2004) (see also Yuan/Khaneja (2005 and 2006))
proved the connection to the convex closure of the Weyl orbit
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Mathematical structure of our model (3/3)

KAK decomposition (A = exp(a))

• max. Abelian subalgebra a = {a1(−ı̇SβIx) + a2(−ı̇SαIx) : aj ∈ R} ⊂ p

• G = K1 exp[a1(−ı̇SβIx) + a2(−ı̇SαIx)]K2 ∈ G (Kj ∈ K)

remark: KAK decomposition is not unique

⇒ consider all (a1, a2) + π(z1, z2) where z1, z2 ∈ Z
• Zeier/Yuan/Khaneja (arXiv:0709.4484v1):

majorization condition simplifies for a1, a2 ∈ [−π, π]
⇒ sufficient to consider only z1 = z2 = 0

• similar to two nuclear spins:
• Vidal/Hammerer/Cirac (2002) used a similar majorization condition
• Zeier/Grassl/Beth (2004) (see also Dirr et al. (2006))

analyzed the nonuniqueness of the KAK decomposition
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Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (arXiv:0709.4484v1)

The minimal time to synthesize G ∈ SU(4) is min{(|t1|+ |t2|)/ωI
r}

such that G = K1 exp[t1(−ı̇SβIx) + t2(−ı̇SαIx)]K2

remarks

• slow operations: −ı̇Hα(0), we use the Weyl orbit of −ı̇SαIx :
b1 = 0 and b2 = 1 ⇒ W[(b1, b2)] = {(−1, 0), (1, 0), (0,−1), (0, 1)}

• relies on Kostant’s convexity theorem (1973)

• the control problem is reduced to convex optimization

• similar to two nuclear spins: see Khaneja/Brockett/Glaser (2001)
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Examples of time-optimal controls (1/2)

minimum time tmin for CNOT[2, 1], CNOT[1, 2], and SWAP

1 e ı̇π/4
(

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)
= exp[π(−ı̇2Sx Iz + ı̇Sx + ı̇Iz)/2] ⇒ tmin = 0

(as it is contained in K = fast operations)

2 e ı̇π/4
(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
= exp[π(−ı̇2Sz Ix + ı̇Sz + ı̇Ix)/2] =

exp(ı̇πSz/2) exp(−ı̇t ′H0/J) exp
[
−ı̇πHα(π)/w I

r

]
(where t ′ = −πJ/w I

r mod 2π ≥ 0)
⇒ tmin = π/ωI

r

3 e ı̇π/4
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
= exp[π(ı̇2Sx Ix + ı̇2Sy Iy + ı̇2Sz Iz)/2] =

e ı̇πSz/2e−ı̇πSx/2e−ı̇3πH0/(2J)e ı̇πSy/2e−ı̇t
′H0/J exp

[
−ı̇πHα(π)/w I

r

]
×e−ı̇πSx/2e−ı̇πH0/(2J)e−ı̇πSy/2

⇒ tmin = π/ωI
r
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Examples of time-optimal controls (2/2)

corresponding pulse sequences: (a) e ı̇π/4CNOT[1, 2], (b) e ı̇π/4SWAP,
see Zeier/Yuan/Khaneja (arXiv:0709.4484v1)
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Beyond two nuclear spins

approach for choosing a Cartan decomposition g = k⊕ p

• for two nuclear spins: k = local part, p = non-local part

• n nuclear spins (n > 2): local operations $ K (e.g., SU(2)⊗n $ K)

lower bounds on the execution time
• assume that all elements of K can be applied instantaneously,

and not only the elements of SU(2)⊗n

⇒ we get the execution time (under this assumption)

• SU(2)⊗n ⊆ K ⇒ the execution time can only be greater

determine suitable K (Childs et al. (2003), Zeier/Grassl/Beth (2004))

• n even: K is conjugated to the orthogonal group O(2n)

• n odd: K is conjugated to the (unitary) symplectic group Sp(2n−1)
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Algebraic structure analysis for multi-qubit systems

general case of G = SU(2n), L = SU(2)⊗n, and l = Lie algebra(L)

g = l⊕m, where [l, l] ⊂ l and [l,m] ⊂ m (but not [m,m] ⊂ l for n > 2)
⇒ no Cartan decomposition

de Rham cohomology of G/L = SU(2n)/SU(2)⊗n

• computed for n = 2, 3 (Zeier (2006))

• potential structure insight to the simulation of unitary transformations

• connections to the structure of entanglement
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for more information see http://www.eecs.harvard.edu/~zeier/

Thank you for your attention!
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