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Classical Hamilton-Jacobi theory (geometric version)

The standard formulation of the Hamilton-Jacobi problem is

to find a function S(t, qA) (called the principal function) such that

∂S

∂t
+ h(qA,

∂S

∂qA
) = 0. (1)

If we put S(t, qA) = W (qA) − tE, where E is a constant, then W

satisfies

h(qA,
∂W

∂qA
) = E; (2)

W is called the characteristic function.

Equations (1) and (2) are indistinctly referred as the Hamilton-

Jacobi equation.

R. Abraham, J.E. Marsden: Foundations of Mechanics (2nd edi-

tion). Benjamin-Cumming, Reading, 1978.
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Let M be the configuration manifold, and T ∗M its cotangent

bundle equipped with the canonical symplectic form

ωM = dqA ∧ dpA
where (qA) are coordinates in M and (qA, pA) are the induced ones

in T ∗M .

Let h : T ∗M −→ R a hamiltonian function and Xh the corre-

sponding hamiltonian vector field:

iXh
ωM = dh

The integral curves of Xh, (qA(t), pA(t)), satisfy the Hamilton

equations:

dqA

dt
=

∂h

∂pA
,
dpA
dt

= − ∂h

∂qA
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Let λ be a closed 1-form on M , say dλ = 0; (then, locally λ = dW )

Hamilton-Jacobi Theorem

The following conditions are equivalent:

(i) If σ : I →M satisfies the equation

dqA

dt
=

∂h

∂pA

then λ◦σ is a solution of the Hamilton equa-

tions;

(ii) d(h ◦ λ) = 0
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Define a vector field on M :

Xλ
h = TπM ◦Xh ◦ λ

T ∗M

πM

��

Xh // T (T ∗M)

TπM

��
Q

λ

@@

Xλ
h // TM

The following conditions are equivalent:

(i) If σ : I →M satisfies the equation

dqA

dt
=

∂h

∂pA

then λ ◦ σ is a solution of the Hamilton equations;

(i)’ If σ : I →M is an integral curve of Xλ
h , then λ◦σ is an integral

curve of Xh;

(i)” Xh and Xλ
h are λ-related, i.e.

Tλ(Xλ
h ) = Xh ◦ λ
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Hamilton-Jacobi Theorem

Let λ be a closed 1-form on M . Then the follow-

ing conditions are equivalent:

(i) Xλ
h and Xh are λ-related;

(ii) d(h ◦ λ) = 0

If

λ = λA(q) dqA

then the Hamilton-Jacobi equation becomes

h(qA, λA(qB)) = const.

and we recover the classical formulation when

λA =
∂W

∂qA
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NONHOLONOMIC MECHANICAL SYSTEMS
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Lagrangian mechanics

Let L = L(qA, q̇A) be a lagrangian function, where (qA) are coor-

dinates in a configuration n-manifold Q.

The Hamilton ’s principle produces the Euler-Lagrange equa-

tions
d

dt
(
∂L

∂q̇A
)− ∂L

∂qA
= 0, 1 ≤ A ≤ n. (3)
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A geometric version of Eq. (3) can be obtained as follows.

L : TQ −→ R. Consider the (1,1)-tensor field S and the Liouville

vector field ∆ defined on the tangent bundle TQ of Q:

S =
∂

∂q̇A
⊗ dqA, ∆ = q̇A

∂

∂q̇A
.

We construct the Poincaré-Cartan 1 and 2-forms

αL = S∗(dL), ωL = −dαL,

S∗ denotes the adjoint operator of S.

The energy is given by

EL = ∆(L)− L,

so that we recover the classical expressions

ωL = dqA ∧ dpA, EL = q̇ApA − L,

pA =
∂L

∂q̇A
denotes the generalized momenta.
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We say that L is regular if the 2-form ωL is symplectic, which

in coordinates turns to be equivalent to the regularity of the

Hessian matrix of L with respect to the velocities, say(
WAB =

∂2L

∂q̇A∂q̇B

)
is nonsingular.

In this case, the equation

iX ωL = dEL (4)

has a unique solution, X = ξL, called the Euler-Lagrange vec-

tor field; ξL is a second order differential equation (SODE) that

means that its integral curves are tangent lifts of their projec-

tions on Q (these projections are called the solutions of ξL). A

direct computation shows that the solutions of ξL are just the

ones of Eqs (3).

If [L : TTQ −→ T TQ is the musical isomorphism, [L(v) = ivωL,

then we have [L(ξL) = dEL.
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Legendre transformation

Finally, let us recall that the Legendre transformation FL :

TQ −→ T ∗Q is a fibred mapping (that is, πQ ◦ FL = τQ, where

τQ : TQ −→ Q and πQ : T ∗Q −→ Q denote the canonical projections

of the tangent and cotangent bundle of Q, respectively).

In local coordinates, we have

FL(qA, q̇A) = (qA, pA),

and then we have that L is regular if and only if FL is a local

diffeomorphism.

Along this paper we will assume that FL is in fact a global

diffeomorphism (in other words, L is hyperregular) which is the

case when L is a lagrangian of mechanical type, say

L = T − V

where

- T is the kinetic energy defined by a Riemannian metric on Q,

- V : Q −→ R is a potential energy.
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Hamiltonian description

The hamiltonian counterpart is developed in the cotangent

bundle T ∗Q of Q. Denote by ωQ = dqA ∧ dpA the canonical sym-

plectic form, where (qA, pA) are the canonical coordinates on T ∗Q.

The Hamiltonian energy is just H = EL ◦ FL and the Hamilto-

nian vector field is the solution of the symplectic equation

iXH
ωQ = dH.

As we know, the integral curves (qA(t), pA(t)) of XH satisfies the

Hamilton equations
q̇A = ∂H

∂pA

ṗA = − ∂H
∂qA

}
(5)

Since FL∗ωQ = ωL we deduce that ξL and XH are FL-related,

and consequently FL transforms the Euler-Lagrange equations

(3) into the Hamilton equations (5).
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Example: The rolling disk

Consider a disk rolling without sliding on a horizontal plane.

Let (x, y) be the coordinates of the point of contact with the

floor, ψ the angle measured from a chosen point of the rim to

the point of contact (rotation angle), φ is the angle between the

tangent to the disk at the point of contact and the x axis (heading

angle), and θ is the angle of inclination of the disk.

The configuration manifold is then Q = R2 × S1 × S1 × S1.

The lagrangian is L = T − V where

T =
1

2
m(ẋ2 + ẏ2 +R2θ̇2 +R2φ̇2 sin2 θ)−mR(θ̇ cosφ(ẋ sinφ− ẏ cosφ)

+ φ̇ sin θ(ẋ cosφ + ẏ sinφ)) +
1

2
I1(θ̇

2φ̇2 cos2 θ) +
1

2
I2(ψ̇ + φ̇ sin θ)2

and

V = mgR cos θ

Here m is the mass of the disk, R is the radius, and I1 and I2
are the principal momenta of inertia.
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The rolling without sliding condition means that the point of

contact has zero velocity and consequently the following con-

straints have to be fullfilled along the motion

Φ1 = ẋ− (R cosφ)ψ̇ = 0, Φ2 = ẏ − (R sinφ)ψ̇ = 0.

All the configurations are available, but not all the velocities.

15



Nonholonomic mechanical systems

A nonholonomic mechanical system is given by a lagrangian

function L = L(qA, q̇A) subject to a family of constraint functions

Φi(qA, q̇A) = 0, 1 ≤ i ≤ m ≤ n = dimQ.

If Φi(qA, q̇A) = Φi
A(q)q̇A (respectively, Φi(qA, q̇A) = Φi

A(q)q̇A + bi(q))

is linear (respectively, affine) in the velocities the constraints

are called linear (respectively, affine). Otherwise, they are called

nonlinear.

Invoking the D’ Alembert principle for linear and affine con-

straints (or the Chetaev principle, for nonlinear constraints) we

derive the nonholonomic equations of motion

d

dt
(
∂L

∂q̇A
)− ∂L

∂qA
= λi

∂Φi

∂q̇A
, 1 ≤ A ≤ n

Φi(qA, q̇A) = 0.

 (6)

where λi = λi(q
A, q̇A) are Lagrange multipliers to be determined.
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In a geometrical setting, L is a function on TQ and the con-

straints are given by a submanifold M of TQ locally defined by

Φi = 0.

If the constraints are linear (respectively, affine) then M is the

total space of a vector (respectively, affine) subbundle of TQ.

For general nonlinear constraints, M is a submanifold satisfying

τQ(M) = Q to avoid holonomic constraints. From now on, we will

assume nonlinear constraints, since the treatment is the same.

Equations (6) can be equivalently reformulated as follows

iX ωL − dEL = λiS
∗(dΦi)

X(Φi) = 0.

}
(7)
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If we realize that the bundle of 1-forms S∗((TM)0) is locally

generated by the local 1-forms {S∗(dΦi)}, we can rewrite Eqs (7)

as follows
iX ωL − dEL ∈ S∗((TM)0)

X ∈ TM.

}
(8)

We assume the admissibility condition:

dim(TM)0 = dimS∗((TM)0)

which is equivalent to say that the matrix(
∂Φi

∂q̇A

)
has maximal rank m.

(For linear constraints the above conditions means that the set

of 1-forms {µi = Φi
A(q)dqA} is linearly independent and, indeed, a

local cobasis of the distribution M).
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We also assume the compatibility condition:

F⊥ ∩ TM = {0}

where F is the distribution on TQ (along M) such that

F 0 = S∗((TM)0)

and F⊥ denotes the ωL-complement of F .

Notice that F⊥ = 〈Z i〉 where [L(Z i) = S∗(dΦi), therefore [L(F⊥) =

F 0.
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Consider a possible solution of the equation

iX ωL − dEL = λiS
∗(dΦi);

then X = ξL + λiZ
i. If we impose the condition to the dynamics

be tangent to the constraint submanifold we obtain

0 = X(Φj) = ξL(Φj) + λiZ
i(Φj) (9)

Denote C ij = Z i(Φj). Notice that if the matrix (C ij) is regular,

then we can compute the Lagrange multipliers solving the linear

equation (9) at each point of M . In this case we can obtain the

nonholonomic dynamics Xnh which is the unique solution of Eqs.

(8).

A simple calculation gives

C ij =
∂Φi

∂q̇A
WAB∂Φj

∂q̇B

where (WAB) is the inverse matrix of (WAB), and shows that if

(WAB) is definite (positive or negative) then (C ij) is inversible.

As a consequence, if the lagrangian function L is of mechanical

type then the nonholonomic system is admissible and compati-

ble.
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Projections

Assume that the nonholonomic system is compatible and ad-

missible, then we have a direct sum decomposition

Tx(TQ) = TxM ⊕ F⊥
x

for all x ∈M . In terms of vector bundles we have a Whitney sum

decomposition

TTQ|M = TM ⊕ F⊥

with two complementary projections P : TTQ|M = TM and Q :

TTQ|M = F⊥ such that Xnh = P(ξL).

Remark To be more precise, the result Xnh = P(ξL) holds if the

constraint are homogenous, that is, ∆ is tangent to the constraint

submanifold, ∆|M ∈ TM . This is the case for linear and affine

constraints.
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Assuming the regularity of the Lagrangian, we have that the

Lagrangian and Hamiltonian formulations are locally equivalent.

If we suppose, in addition, that the Lagrangian L is hyperregu-

lar, then the Legendre transformation FL : TQ → T ∗Q, (qA, q̇A) 7→
(qA, pA = ∂L/∂q̇A), is a global diffeomorphism. The constraint func-

tions on T ∗Q become Ψi = Φi ◦ FL−1, i.e.

Ψi(qA, pA) = Φi(qA,
∂H

∂pA
) ,

where the Hamiltonian H : T ∗Q→ R is defined by H = EL ◦ FL−1.

Since locally FL−1(qA, pA) = (qA,
∂H

∂pA
), then

H = pAq̇
A − L(qA, q̇A) ,

where q̇A is expressed in terms of qA and pA using FL−1.
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The equations of motion for the nonholonomic system on T ∗Q

can now be written as follows

q̇A =
∂H

∂pA

ṗA = −∂H
∂qA

− λ̄i
∂Ψi

∂pB
HBA

 (10)

together with the constraint equations

Ψi(q, p) = 0

where HAB are the components of the inverse of the matrix

(HAB) = (∂2H/∂pA∂pB). Note that

(
∂Ψi

∂pB
HBA)(q, p) = (

∂Φi

∂q̇A
◦ FL−1)(q, p).
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The symplectic 2-form ωL is related, via the Legendre map,

with the canonical symplectic form ωQ on T ∗Q. Let M̄ denote

the image of the constraint submanifold M under the Legendre

transformation, and let F̄ be the distribution on T ∗Q along M̄ ,

whose annihilator is given by

F̄ 0 = FL∗(S
∗((TM̄)0)) .

Observe that F̄ 0 is locally generated by the m independent 1-

forms

µ̄i =
∂Ψi

∂pA
HABdq

B , 1 ≤ i ≤ m.

The nonholonomic Hamilton equations for the nonholonomic

system can be then rewritten in intrinsic form as

(iXωQ − dH)|M̄ ∈ F̄ 0

X|M̄ ∈ TM̄

}
(11)
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The compatibility condition is now written as F̄⊥ ∩ TM̄ = {0},
where “ ⊥ ” denotes the symplectic complement with respect to

ωQ. Equivalently, the matrix

(C̄ ij) =

(
∂Ψi

∂pA
HAB

∂Ψj

∂pB

)
(12)

is regular. On the Lagrangian side, the compatibility condition

is locally written as

det(C̄ ij) = det

(
∂φi

∂q̇A
WAB ∂φ

j

∂q̇B

)
6= 0 , (13)

whereWAB are the entries of the Hessian matrix

(
∂2L

∂q̇A∂q̇B

)
1≤A,B≤n

.
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The compatibility condition is not too restrictive, since it is

trivially verified by the usual systems of mechanical type (la-

grangian = kinetic energy - potential energy), where theHAB rep-

resent the components of a positive definite Riemannian metric.

The compatibility condition guarantees the existence of a unique

solution of the constrained equations of motion (11) which, hence-

forth, will be denoted by X̄nh on the Hamiltonian side and Xnh on

the Lagrangian side. Moreover, if XH is the Hamiltonian vector

field of H (iXH
ωQ = dH) then

λ̄i = C̄ijXH(Ψj) . (14)
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Hamilton-Jacobi theory for nonholonomic mechanical systems

Let L : TQ −→ R be a lagrangian function subject to non-

holonomic constraints given by a submanifold M of TQ. We as-

sume the admissibility and compatibility conditions, and consid-

er the hamiltonian counterpart given by a Hamiltonian function

H : T ∗Q −→ R and a constraint submanifold M̄ = FL(M) as in the

precedent sections. Xnh and X̄nh will denote the corresponding

nonholonomic dynamics.

Let γ be a closed 1-form on Q such that γ(Q) ⊂ M̄ . Then

the following conditions are equivalent:

(i) for every curve σ : R −→ Q such that

σ̇(t) = TπQ(XH(γ(σ(t)))) (15)

for all t, then γ ◦ σ is an integral curve of X̄nh.

(ii) π∗Q(d(H ◦ γ)) ∈ F̄ 0.
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Let L : TQ −→ R a lagrangian subject to linear constraints given

by a distribution M on Q. Denote by M̄ ⊂ T ∗Q the image of M ⊂
TQ by the Legendre transformation, and by h the corresponding

hamiltonian function on T ∗Q. In that case, we have proved the

following result:

Hamilton-Jacobi Theorem

Let λ be a 1-form on Q taking values into M̄

and satisfying dλ ∈ I(M o). Then the following

conditions are equivalent:

(i) X̄λ
nh and X̄nh are λ-related;

(ii) d(h ◦ λ) ∈M o

Here, Xnh is the nonholonomic dynamics.

D. Iglesias, M. de León, D. Mart́ın de Diego: Towards a Hamil-

ton-Jacobi theory for nonholonomic mechanical systems, Preprint

(2007).
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The mobile robot with fixed orientation

The robot has three wheels with radius R, which turn simulta-

neously about independent axes, and perform a rolling without

sliding over a horizontal floor.

Let (x, y) denotes the position of the centre of mass, θ the steer-

ing angle of the wheel, ψ the rotation angle of the wheels in their

rolling motion over the floor. So, the configuration manifold is

Q = S1 × S1 × R2

The lagrangian L is

L =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
Jθ̇2 +

3

2
Jωψ̇

2

where m is the mass, J is the moment of inertia and Jω is the

axial moment of inertia of the robot.
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The constraints are induced by the conditions that the wheels

roll without sliding, in the direction in which they point, and

that the instantaneous contact point of the wheels with the floor

have no velocity component orthogonal to that direction:

ẋ sin θ − ẏ cos θ = 0,

ẋ cos θ + ẏ sin θ −Rψ̇ = 0.
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Consider

γ1 = J dθ

γ2 = 3Jω dψ +mR cos θ dx +mR sin θ dy

dγ1 = 0 ∈ I(Do)

dγ2 = −mRdθ ∧ (sin θ dx− cos θ dy) ∈ I(Do)

Observe that in both cases d(H ◦ γi) = 0, for i = 1, 2.

In such a case,

t 7−→ (x0, y0, t + θ0, ψ0)

t 7−→ (tR cos θ0 + x0, tR sin θ0 + y0, θ0, t + ψ0)

are the solutions of the nonholonomic system (L,D).
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γ3 = J dθ + 3Jω dψ +mR cos θ dx +mR sin θ dy

and dγ3 ∈ I(Do). In such a case, the solution of the nonholonomic

problem that we obtain is

t 7−→ (R sin(t− θ0) + x0 +R sin θ0,−R cos(t− θ0) + y0 +R cos θ0, t + θ0, t + ψ0)

which is a solution of the nonholonomic problem but not of the

free system.
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SINGULAR LAGRANGIAN SYSTEMS
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Let L : TQ −→ R be a singular lagrangian. That is, the Hessian

matrix (
WAB =

∂2L

∂q̇A∂q̇B

)
is not regular, or, equivalently, the closed 2-form ωL is not sym-

plectic.

Therefore, the the equation

iX ωL = dEL (16)

has no solution in general, or the solutions are not defined ev-

erywhere.

We can apply the Dirac-Bergman theory of constraints.
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We assume that L is almost regular:

M1 = FL(TQ) is a submanifold of T ∗Q;

The Legendre mapping FL1 : TQ −→M1 is a submersion with

connected fibers.

M1 is the submanifold of primary constraints.

If L is almost regular, then EL projects onto a function

h1 : M1 −→ R

Denote by j1 : M1 −→ R the natural inclusion and put

ω1 = j∗1(ωQ)
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Consider the equation

iX ω1 = dh1 (17)

There are two possibilities:

There is a solution X defined at all the points of M1; such X

is called a global dynamics and it is a solution modulo ker ω1.

In other words, there are only primary constraints.

Otherwise, we select the submanifold M2 formed by the points

of M1 where a solution exists. But such a solution X is not

necessarily tangent to M2, so we have to impose a tangency

condition, and we obtain a new submanifold M3 along it there

exists a solution. Continuing this process, we obtain a chain

of submanifolds

· · ·Mk ↪→ · · ·M2 ↪→M1 ↪→ T ∗Q

If the algorithm stabilizes at some k, say Mk+1 = Mk, then we

say that Mk is the final constraint submanifold and then there

exists a well-defined solution X of (17) along Mf .
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Case I: There is a global dynamics

In this case there exists a vector field X on M1 such that

iX ω1 = dh1

Moreover, π1(M1) = Q.

Assume that γ is a closed 1-form on Q such that γ(Q) ⊂M1.

Define a vector field Xγ on Q by putting

Xγ = Tπ1 ◦X ◦ γ

TM1
Tπ1 // TQ

M1

X

OO

πf //
oo
γ1

Q

Xγ
OO

Here γ1 is the restriction to γ.
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We have

γ∗(iX−Tγ(Xγ) ω1) = γ∗(iX ω1)− γ∗(iTγ(Xγ) ω1)

= γ∗d(h1)− γ∗(iTγXγ ω1)

= d(h1 ◦ γ)

since γ∗(iTγXγ ω1) = iXγ (−dγ) = 0.

Therefore, we deduce the following

X − Tγ(Xγ) ∈ ker ω1 ⇔ d(h1 ◦ γ) = 0

We should remark that ω1 (as it happens with ωQ) vanishes

acting on two vertical tangent vectors.

Also, notice that even in the case when X and Tγ(Xγ) are differ-

ent, both give the solutions of the singular problem. Therefore,

γ applies the integral curves of Xγ into the integral curves of X

(the solutions of our system) with the Hamilton-Jacobi equation

d(h1 ◦ γ) = 0
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Case II: There are secondary constraints

TQ FL //

FL1 ##FF
FF

FF
FF

F
T ∗Q

πQ

""EE
EE

EE
EE

E

M1

� ?

OO

π1

""EEEEEEEE
Q

M2

� ?

OO

π2

""EEEEEEEE
Q1

� ?

OO

� ?

OO

Q2

� ?

OO

� ?

OO

Mf

� ?

OO

πf

""EE
EE

EE
EE

Qf

� ?

OO

We assume that each πl : Ml −→ Ql is a fibration (Ql is assumed

to be a manifold for each l).
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Assume that γ is a 1-form on Q such that

γ(Q) ⊂M1;

γ(Qf ⊂Mf ;

γ∗fω1 = 0.

Define a vector field Xγ on Q by putting

Xγ = Tπf ◦X ◦ γf

TMf
Tπf // TQf

Mf

X

OO

πf //
oo
γf

Qf

Xγ
OO

Here γf is the restriction to γ.

40



We have a solution X of the equation

(iX ω1 = dh1)|Mf

where X is a vector field on Mf .

Proceeding as above, we have

γ∗f(iX−Tγf (Xγ) ω1) = γ∗f(iX ω1)− γ∗f(iTγf (Xγ) ω1)

= γ∗fd(h1)− γ∗f(iTγXγ ω1)

= d(h1 ◦ γf)

since γ∗f(iTγfX
γ ω1) = iXγ γ∗fω1 = 0.

Therefore, we deduce the following

X − Tγ(Xγ) ∈ ker ωf ⇔ d(h1 ◦ γ) = 0

where γf is the restriction of ω1 to Mf

But any solution of the equation (iX ω1 = dh1)|Mf
is a solution of

the equation iX ωf = dhf .
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So,

d(h1 ◦ γ) = 0

could be still considered as the Hamilton-Jacobi equation in this

context.
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Vakonomic dynamics or variational nonholonomic systems

Let L : TQ −→ R be a lagrangian subjected to nonholonomic

constraints given by a submanifold M of TQ.

M is locally defined by constraint functions

Φi(qA, q̇A) = 0, 1 = 1, . . . , k

Then the vakonomic problem is equivalent to solve the Euler-

Lagrange equations of the extended lagrangian

L(qA, λi, q̇
A, λ̇i) = L(qA, q̇A) + λi Φ

i(qA, q̇A)

Notice that L is singular, so that we can apply the above ma-

chinery.
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Optimal Control Theory

A control system of ordinary differential equations is usually

given by

ẋi = Γi(x(t), u(t))

where

xi, 1 ≤ i ≤ n are called the state variables

ua, 1 ≤ a ≤ m are called the control functions

Consider the following optimal control problem:

Given initial and final states x0 and xf , the objective is to find

a smooth curve c(t) = (x(t), u(t)) such that

x(t0) = x0, x(Tf) = xf ,

c(t) satisfies the control equation,

and minimizes the functional

I(c) =

∫ tf

t0

L(x(t), u(t)) dt

for some cost function L = L(x, u).
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In geometric terms we have a control fiber bundle

π : C −→ B

and a vector field Γ along π:

Γ = Γi(x, u)
∂

∂xi

L is a function L : C −→ R
and the optimal control problem is equivalent to a vakonomic

problem given by:

a lagrangian L : TC −→ R

a constraint submanifold M = {v ∈ TC |Tπ(v) = Γ(τC(v))} of

TC.

Therefore, the optimal control problem is equivalent to study

the singular lagrangian system defined on T (C × Rn) with a sin-

gular lagrangian function

L(xi, ua, λi, ẋ
i, u̇a, λ̇i) = L(xi, ua) + λi(ẋ

i − Γi(x, u))
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We will apply the constraint algorithm to this lagrangian L
where now Q = C × Rn.

Compute the momenta (pxi, pua, pλi
):

pxi = λi, pua = 0, pλi
= 0

equations which define M1.

Therefore we have

h1(x
i, ua, λi) = −L(x, u) + λiΓ

i(x, u)

and

ω1 = dxi ∧ dλi

where (xi, ua, λi) can be considered as local coordinates for M1.
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Consider the equation

iX ω1 = dh1 (18)

A generic solution on M1 is of the form

X = Ai ∂

∂xi
+Ba ∂

∂ua
+ Ci

∂

∂λi
which, using (18) provides

Ai = Γi, C i =
∂L

∂xi
− λj

∂Γj

∂xi

so that

X = Γi
∂

∂xi
+Ba ∂

∂ua
+

(
∂L

∂xi
− λj

∂Γj

∂xi

)
∂

∂λi

In addition, we obtain a new constraint

Ψa =
∂L

∂ua
− λj

∂Γj

∂ua

which is a secondary constraint defining M2 inside M1.
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The tangency condition implies

X(Ψb) = 0

that is

Γi
∂Ψb

∂xi
+Ba ∂Ψb

∂ua
+

(
∂L

∂xi
− λj

∂Γj

∂xi

)
∂Ψb

∂λi
= 0

Observe that if the following matrix(
∂Ψb

∂ua

)
is regular, then we can obtain the B´s explicitly.

In this case Mf = M2.

Since we can obtain the u´s as explicit functions of the rest of

coordinates, say

ua = ζa(x, λ)

we have local coordinates (xi, λi) on M2.
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As in the general case, take γ be a 1-form on Q = C × Rn such

that

γ(Q1) ⊂M1;

γ(Q2) ⊂M2;

γ∗2(ωQ) = 0.

Notice that

h1 ◦ γ2 = −L(xi, ζa(x, λ) + λi Γ(xj, ζa(x, λ))

so that the Hamilton-Jacobi becomes

−L(xi, ζa(x, λ) + λi Γ(xj, ζa(x, λ)) = cte

Since γ∗2(ωQ) = 0 we deduce

λi =
∂W

∂xi

and then we obtain the Hamilton-Jacobi equation

∂W

∂xi
Γ(xj, ζa(x, λ))− L(xi, ζa(x, λ)) = cte (19)

(The Hamilton-Jacobi-Bellman (HJB) equation)
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FUTURE WORK

Intrinsic formulation of the theory for vakonomic dynamics

in a Skinner-Rusk context.

Applications to optimal control theory.
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