Siegel disk boundaries and hairs for irrationally indifferent fixed points

Mitsuhiro Shishikura

Kyoto University
Low-Dimensional Dynamics
CODY Autumn in Warsaw
Stefan Banach International Mathematical Center, Warsaw
November 19, 2010

Plan

Theorem: If $f(z)=e^{2 \pi i \alpha} h(z)$ such that $\alpha \in$ Irrat $_{N}$ (high type) and is a Brjuno number and $h \in \mathcal{F}_{1}$, then the boundary of the Siegel disk of f is a Jordan curve.

Earlier results by Herman, Petersen-Zackeri (surgery), Buff-Chéritat (function spaces)

Siegel Disk boundary
In order to study "tame" dynamics, take advantage of "expanding" (chaotic) dynamics as renormalizers.

How to recover the original dynamics from its renormalizations in the case of rotation-like dynamics (overlapping domains).
-- solution via Dynamical Charts

Infinitely renormalizable map

Tame maps f_{n} are maps to be renormalized, and expanding maps g_{n} are those which renormalize f_{n} 's. Take advantage of expansion of g_{n} (i.e. contraction by local inverse g_{n}^{-1}), to study the dynamics of f_{n} 's.

How to use Exapansion: Example. $J\left(z^{2}+\varepsilon\right)$ is a Jordan curve.
Construct approximating curves γ_{n}
Show that $\left\{\gamma_{n}\right\}$ is a Cauchy sequence and the limit is the object we want

How to recover f from $\mathcal{R}^{n} f^{\prime}$ s

$$
f_{0}=f \quad f_{1}=\mathcal{R} f_{0} \quad f_{2}=\mathcal{R} f_{1} \quad f_{3}=\mathcal{R} f_{2}
$$

Feigenbaum

proper subintervals

Circle map

partition of interval commuting pairs

Near-parabolic
covering by sector or croissant-like domains
gluing/identification needed to define the renormalization

Yoccoz renormalization for Siegel-Bruno Theorem

The first return time and the first return map are discontinuous on the sector. The first return map becomes continuous after gluing.

It is better to think that we are taking the quotient of an open set containing the sector. The punctured neighborhood is covered by the iterates of the open set.
Due to the overlapping, there are problems when we want to recover f from the renormalization.

For example, if the renormalization has a fixed point, what is the period for the corresponding periodic point for f ?

Dynamical charts for irrational rotation-like dynamics

Open sets $U_{i}(i \in I)$, which cover a punctured nbd of fixed pt
Maps $\varphi_{i}: U_{i} \rightarrow X$, a small number of model spaces

Convention

A small number of model dynamics $F=\varphi_{r(i)} \circ f \circ \varphi_{i}^{-1}$
(for example, $F_{\text {can }}$ and $i d$)
Index set I with induced dynamics $r: I \rightarrow I$ (represents the combinatorics of the dynamics)
$z \rightarrow 0$ in U_{i}

$\operatorname{Im} w \rightarrow+\infty$ in X_{i}

Gluing $\varphi_{i, j}=\varphi_{i} \circ \varphi_{j}^{-1}$ on overlaps, compatible with model dynamics (absorbs the difference for particular maps)
Special for irrational dynamics: Refinements one system of charts \longrightarrow a new system of refined charts

Cylinder/Near-parabolic renormalization

Theorem (Inou \& S.): For some V and N, the near-parabolic renormalization \mathcal{R} from

$$
\left\{e^{2 \pi i \alpha} f: \alpha \in \operatorname{Irrat}_{N}, f \in \mathcal{F}_{1}\right\}=\operatorname{Irrat}_{N} \times \mathcal{F}_{1}
$$

is well defined and expanding along α direction and uniformly contracting along \mathcal{F}_{1} direction. Moreover $\mathcal{R}\left(e^{2 \pi i \alpha} z+z^{2}\right)$ belong to the above set for $\alpha \in \operatorname{Irrat}_{N}$.

If $f(z)=e^{2 \pi i \alpha} z+z^{2}$ with α irrational of high type, then $\mathcal{R} f, \mathcal{R}^{2} f, \mathcal{R}^{3} f, \ldots$ are defined and in a nice class.

A Consequence from the proof of Inou-S. theorem

There exist a canonical domain $\Omega_{c a n}$ and a canonical dynamics $F_{c a n}$: $\Omega_{c a n} \rightarrow \Omega_{c a n}$ such that $f, \mathcal{R} f, \mathcal{R}^{2} f, \ldots$ admit the following description:

A punctured neighborhood is isomorphic to $\Omega_{c a n}$ cut off at a certain width $\left(\sim \frac{4}{3|\alpha|}\right)$ with left and right edges glued by a homeomorphism θ_{f}. The dynamics is induced by $F_{c a n}$.

f near 0

Model space $\Omega_{c a n}$ and model map $F_{c a n}$ modulo gluing

Model space and map: Checkerboard pattern

parabolic fixed point
$z+z^{2}$

$$
F_{c a n} \quad(\infty=\text { fixed pt })
$$

irrat. indiff. (near-parabolic)

Need to cut off at a certain width and glue left and right edges

Successive construction (refinement of dynamical charts)
 single chart with gluing

$$
\mathrm{n} \text {-th to }(\mathrm{n}+1) \text {-st }
$$

Construction of successive charts
 $\Omega_{f} \quad \Omega_{\mathcal{R} f}$

$\Omega^{(0)} \supset \Omega_{k_{1}}^{(1)} \supset \cdots \supset \Omega_{k_{1}, k_{2}, \ldots, k_{n}}^{(n)} \supset \Omega_{k_{1}, k_{2}, \ldots, k_{n}, k_{n+1}}^{(n+1)} \supset \ldots$
each $\Omega_{k_{1}, k_{2}, \ldots, k_{n}}^{(n)}$ is isomorphic to truncated checkerboard pattern $\Omega_{\mathcal{R}^{n} f} \quad$ they are glued via $\theta_{\mathcal{R}^{n} f}$

Theorem: If $f(z)=e^{2 \pi i \alpha} z+z^{2}$ with α of sufficiently high type and Brjuno, then the boundary of Siegel disk is a Jordan curve.

Idea of the proof: Construct approximating curves and show that they converge.

approximation of bdry of Siegel disk

Construct approximate boundary curves by joining segments in $\Omega_{f, k_{1}, \ldots, k_{n}}^{(n)}$ in its canonical coordinate. They converge exponentially. height of the approx. curve: $h_{n}=B\left(\alpha_{n}\right)$ mapping $\Omega_{f, k_{1}}^{(1)} \rightarrow \Omega_{\mathcal{R} f}^{(0)}$ is uniformly expanding (with respect to Poincaré metrics of $\Omega_{f}^{(0)}$ and $\Omega_{\mathcal{R} f}^{(0)}$)

One only needs to work in model space (i.e. truncated checkerboard pattern)

Thank you!

