Finding the optimal strategy in a tally game CODY2010, November 2010

Neil Dobbs, Tomasz Nowicki, Maxim Sviridenko, Grzegorz Świrszcz

IBM - Watson Research Center
November 2010

Tally Game

.?

- 'a cruel, yet funny game played by employees in smaller stores. to play, simply count the number of ugly, weird or gross people who come into the store with tally marks on receipt paper. accompany your mark by quickly shouting "tally" or saying it loud enough to let your fellow worker-bees know an awful being had just graced your establishment with it's yucky presence. the employee with the most tally's
at the end of the day is the winner. and should be rewarded. http://www.urbandictionary.com/define.pho?term=tally20game
- 'The score, or the stick with notches in it to keep a track of the score or count.' Merriam Webster
- Gra w Karbowego Tomasz Nowicki

Tally Game

?

- 'a cruel, yet funny game played by employees in smaller stores. to play, simply count the number of ugly, weird or gross people who come into the store with tally marks on receipt paper. accompany your mark by quickly shouting "tally" or saying it loud enough to let your fellow worker-bees know an awful being had just graced your establishment with it's yucky presence. the employee with the most tally's at the end of the day is the winner. and should be rewarded.'
http://www.urbandictionary.com/define.php?term=tally20game
\square

Tally Game

.?

- 'a cruel, yet funny game played by employees in smaller stores. to play, simply count the number of ugly, weird or gross people who come into the store with tally marks on receipt paper. accompany your mark by quickly shouting "tally" or saying it loud enough to let your fellow worker-bees know an awful being had just graced your establishment with it's yucky presence. the employee with the most tally's at the end of the day is the winner. and should be rewarded.' http://www.urbandictionary.com/define.php?term=tally20game
- 'The score, or the stick with notches in it to keep a track of the score or count.' Merriam Webster

Tally Game

.?

- 'a cruel, yet funny game played by employees in smaller stores. to play, simply count the number of ugly, weird or gross people who come into the store with tally marks on receipt paper. accompany your mark by quickly shouting "tally" or saying it loud enough to let your fellow worker-bees know an awful being had just graced your establishment with it's yucky presence. the employee with the most tally's at the end of the day is the winner. and should be rewarded.' http://www.urbandictionary.com/define.php?term=tally20game
- 'The score, or the stick with notches in it to keep a track of the score or count.' Merriam Webster
- Gra w Karbowego Tomasz Nowicki

Generalized Tally Game

1 I choose probability measure μ on $[0,1]$ with $\mathbb{E}=\frac{1}{2}$.
2 My opponent knowing my μ chooses $x \in \mathbb{R}_{0}^{+}$.
3 We draw s according to μ. If $s \geq x$ I pay x.
4 Otherwise $x \rightarrow x-s$ and we go back to step 3 .
Obviously, I want to chose μ in such a way that given my
opponents best strategy I want to minimize the expected payoff.

Generalized Tally Game

1 I choose probability measure μ on $[0,1]$ with $\mathbb{E}=\frac{1}{2}$.
2 My opponent knowing my μ chooses $x \in \mathbb{R}_{0}^{+}$.
3 We draw s according to μ. If $s \geq x \mid$ pay x.
4 Otherwise $x \rightarrow x-s$ and we go back to step 3 .
Obviously, I want to chose μ in such a way that given my
opponents best strategy I want to minimize the expected payoff.

Generalized Tally Game

1 I choose probability measure μ on $[0,1]$ with $\mathbb{E}=\frac{1}{2}$.
2 My opponent knowing my μ chooses $x \in \mathbb{R}_{0}^{+}$.
3 We draw s according to μ. If $s \geq x$ I pay x.
4 Otherwise $x \rightarrow x-s$ and we go back to step 3 .
Obviously, I want to chose μ in such a way that given my
opponents best strategy I want to minimize the expected payoff.

Generalized Tally Game

1 I choose probability measure μ on $[0,1]$ with $\mathbb{E}=\frac{1}{2}$.
2 My opponent knowing my μ chooses $x \in \mathbb{R}_{0}^{+}$.
3 We draw s according to μ. If $s \geq x$ I pay x.
4 Otherwise $x \rightarrow x-s$ and we go back to step 3 .
Obviously, I want to chose μ in such a way that given my
opponents best strategy I want to minimize the expected payoff.

Generalized Tally Game

1 I choose probability measure μ on $[0,1]$ with $\mathbb{E}=\frac{1}{2}$.
2 My opponent knowing my μ chooses $x \in \mathbb{R}_{0}^{+}$.
3 We draw s according to μ. If $s \geq x$ I pay x.
4 Otherwise $x \rightarrow x-s$ and we go back to step 3.
Obviously, I want to chose μ in such a way that given my opponents best strategy I want to minimize the expected payoff.

Joint Replenishment Problem with Time Windows

This is one of the fundamental problems in Inventory and Supply Chain Management.

- We are given a warehouse and the set of retailers $\{1, \ldots, n\}$.
- We are given the discrete time horizon $\{1, \ldots, T\}$
- We are given a set of demands \mathcal{D} consisting of triples (i, r, t) for retailer of type i that arrives at time t and must be satisfied by an order placed in the time interval $[r, t]$
- To satisfy arbitrary many demands in some time period τ a retailer i places an order at warehouse at time τ and incurs the retailer ordering cost K_{i}, at the same time the warehouse places an order and incurs the warehouse ordering cost of K_{0}. The goal is define the set set of warehouse and retailer orders to satisfy all the demand.

Joint Replenishment Problem with Time Windows

This is one of the fundamental problems in Inventory and Supply Chain Management.

- We are given a warehouse and the set of retailers $\{1, \ldots, n\}$.
- We are given the discrete time horizon $\{1, \ldots, T\}$.
- We are given a set of demands \mathcal{D} consisting of triples (i, r, t) for retailer of type i that arrives at time t and must be satisfied by an order placed in the time interval $[r, t]$
- To satisfy arbitrary many demands in some time period τ a retailer i places an order at warehouse at time τ and incurs
the retailer ordering cost K_{i}, at the same time the
warehouse places an order and incurs the warehouse ordering cost of K_{0}. The goal is define the set set of
warehouse and retailer orders to satisfy all the demand

Joint Replenishment Problem with Time Windows

This is one of the fundamental problems in Inventory and Supply Chain Management.

- We are given a warehouse and the set of retailers $\{1, \ldots, n\}$.
- We are given the discrete time horizon $\{1, \ldots, T\}$.
- We are given a set of demands \mathcal{D} consisting of triples (i, r, t) for retailer of type i that arrives at time t and must be satisfied by an order placed in the time interval $[r, t]$.
retailer i places an order at warehouse at time τ and incurs
the retailer ordering cost K_{i}, at the same time the
warehouse places an order and incurs the warehouse
ordering cost of K_{0}. The goal is define the set set of
warehouse and retailer orders to satisfy all the demand.

Joint Replenishment Problem with Time Windows

This is one of the fundamental problems in Inventory and Supply Chain Management.

- We are given a warehouse and the set of retailers $\{1, \ldots, n\}$.
- We are given the discrete time horizon $\{1, \ldots, T\}$.
- We are given a set of demands \mathcal{D} consisting of triples (i, r, t) for retailer of type i that arrives at time t and must be satisfied by an order placed in the time interval $[r, t]$.
- To satisfy arbitrary many demands in some time period τ a retailer i places an order at warehouse at time τ and incurs the retailer ordering cost K_{i}, at the same time the warehouse places an order and incurs the warehouse ordering cost of K_{0}. The goal is define the set set of warehouse and retailer orders to satisfy all the demand.

IP Formulation \& LP Relaxation

$$
\begin{align*}
\min \sum_{\tau=1}^{T} K_{0} x_{\tau 0}+\sum_{i=1}^{n} \sum_{\tau=1}^{T} K_{i} x_{\tau i}, & \tag{1.1}\\
\sum_{\tau=r}^{t} x_{\tau i} \geq 1, & \forall(i, r, t) \in \mathcal{D}, \tag{1.2}\\
x_{\tau i} \leq x_{\tau 0} & \forall i, \tau, \tag{1.3}\\
x_{\tau 0}, x_{\tau i} \in\{0,1\}, & \forall \tau, i . \tag{1.4}
\end{align*}
$$

- We relax the integrality condition (1.4) with the condition $x_{\tau 0}, x_{\tau i} \in[0,1]$ for all τ, i and solve the resulting linear programming relaxation using any efficient algorithm (interior points, ellipsoid method). Let x^{*} be an optimal solution for the linear relaxation.

IP Formulation \& LP Relaxation

$$
\begin{align*}
\min \sum_{\tau=1}^{T} K_{0} x_{\tau 0}+\sum_{i=1}^{n} \sum_{\tau=1}^{T} K_{i} x_{\tau i}, & \tag{1.1}\\
\sum_{\tau=r}^{t} x_{\tau i} \geq 1, & \forall(i, r, t) \in \mathcal{D} \tag{1.2}\\
x_{\tau i} \leq x_{\tau 0} & \forall i, \tau, \tag{1.3}\\
x_{\tau 0}, x_{\tau i} \in\{0,1\}, & \forall \tau, i \tag{1.4}
\end{align*}
$$

- We relax the integrality condition (1.4) with the condition $x_{\tau 0}, x_{\tau i} \in[0,1]$ for all τ, i and solve the resulting linear programming relaxation using any efficient algorithm (interior points, ellipsoid method). Let x^{*} be an optimal solution for the linear relaxation.

Rounding Algorithm

Consider the following rounding algorithm that finds an integral solution for our optimization problem:

1. Define intervals $I_{t}=\left(\sum_{\tau=1}^{t-1} x_{\tau 0}^{*}, \sum_{\tau=1}^{t} x_{\tau 0}^{*}\right]$ for time t and intervals $I_{t i}=\left(\sum_{\tau=1}^{t-1} x_{\tau}^{*}, \sum_{\tau=1}^{t} x_{\tau i}^{*}\right]$ for time t and retailer i.
2. Consecutively draw random variable d_{i} from the random distribution $f(x)$. Define $D_{0}=0$ and $D_{i}=D_{i-1}+d_{j}$.
3. Let \wedge be the set of times t such that there is an index i such that $D_{i} \in I_{t}$. Open warehouse orders at all times from \wedge.
4. For each retailer independently apply the following process. Initialize $y=0$. Open retailer i order at the latest time $t^{\prime \prime}$ from \wedge such that $t^{\prime \prime} \leq t^{\prime}$ where $y+1 \in I_{t^{\prime} \prime}$. Set $y=\sum_{\tau=1}^{t} x_{\tau i}^{*}$ and repeat the process until $y+1>\sum_{\tau=1}^{T} x_{\tau i}^{*}$.

Sketch of the Analysis

It is not hard to show that this algorithm finds a feasible solution. The expected cost of this solution is upper bounded by

$$
\frac{W_{1}}{1-\rho(f)}+\frac{W_{2}}{\alpha}
$$

where $W_{1}=\sum_{i=1}^{n} \sum_{\tau=1}^{T} K_{i} x_{\tau i}^{*}$ and $W_{2}=\sum_{\tau=1}^{T} K_{0} x_{\tau i}^{*}$, i.e. $W_{1}+W_{2}$ is the optimal cost of linear programming relaxation.

Generalized Tally Game - revisited

1 I choose probability measure μ on $[0,1]$ with $\mathbb{E}=\frac{1}{2}$.
2 My opponent knowing my μ chooses $x \in \mathbb{R}_{0}^{+}$.
3 We draw s according to μ. If $s \geq x$ I pay x.
4 Otherwise $x \rightarrow x-s$ and we go back to step 3.
Obviously, I want to chose μ in such a way that given my opponents best strategy I want to minimize the expected payoff.

Generalized Tally Game

- We have

$$
E(x, \mu)=\int_{[0, x)} E(x-s, \mu) d \mu(s)+x \mu([x, 1])
$$

- and our objective is:

$$
\arg \min \max E(x, \mu)
$$

Generalized Tally Game

- We have

$$
E(x, \mu)=\int_{[0, x)} E(x-s, \mu) d \mu(s)+x \mu([x, 1])
$$

- and our objective is:

$$
\begin{array}{r}
\arg \min _{\mu} \max _{x} E(x, \mu) \\
\mu([0,1])=1 \text { and } \int_{[0,1]} x d \mu(x)=\frac{1}{2}
\end{array}
$$

Best known results so far

Approximation Algorithm for Joint Replenishment with
Deadlines, Tim Nonner, Alexander Souza
Conference on Combinatorial Optimization and Applications COCOA 2009

- Let μ_{0} have a density

Then $E\left(\bar{x}\left(\mu_{0}\right), \mu_{0}\right) \approx 0.327$. (exact)

- Let μ_{1} have a density

Then $E\left(\bar{x}\left(\mu_{1}\right), \mu_{1}\right) \approx 0.327-\epsilon$ (numerically).

Best known results so far

Approximation Algorithm for Joint Replenishment with
Deadlines, Tim Nonner, Alexander Souza
Conference on Combinatorial Optimization and Applications COCOA 2009

- Let μ_{0} have a density

$$
\left\{\begin{array}{lll}
x \mapsto 4 x & \text { for } & x \in[0,1 / 2] \\
x \mapsto 2-4 x & \text { for } & x \in[1 / 2,1]
\end{array}\right.
$$

Then $E\left(\bar{x}\left(\mu_{0}\right), \mu_{0}\right) \approx 0.327$. (exact)

Best known results so far

Approximation Algorithm for Joint Replenishment with
Deadlines, Tim Nonner, Alexander Souza
Conference on Combinatorial Optimization and Applications COCOA 2009

- Let μ_{0} have a density

$$
\left\{\begin{array}{lll}
x \mapsto 4 x & \text { for } & x \in[0,1 / 2] \\
x \mapsto 2-4 x & \text { for } & x \in[1 / 2,1]
\end{array}\right.
$$

Then $E\left(\bar{x}\left(\mu_{0}\right), \mu_{0}\right) \approx 0.327$. (exact)

- Let μ_{1} have a density

$$
\left\{\begin{array}{lll}
x \mapsto 12 x^{2} & \text { for } & x \in[0,1 / 2] \\
x \mapsto 12\left(1-x^{2}\right) & \text { for } & x \in[1 / 2,1]
\end{array}\right.
$$

Then $E\left(\bar{x}\left(\mu_{1}\right), \mu_{1}\right) \approx 0.327-\epsilon$ (numerically).

Best known results so far

Approximation Algorithm for Joint Replenishment with
Deadlines, Tim Nonner, Alexander Souza
Conference on Combinatorial Optimization and Applications COCOA 2009

- Let μ_{0} have a density

$$
\left\{\begin{array}{lll}
x \mapsto 4 x & \text { for } & x \in[0,1 / 2] \\
x \mapsto 2-4 x & \text { for } & x \in[1 / 2,1]
\end{array}\right.
$$

Then $E\left(\bar{x}\left(\mu_{0}\right), \mu_{0}\right) \approx 0.327$. (exact)

- Let μ_{1} have a density

$$
\left\{\begin{array}{lll}
x \mapsto 12 x^{2} & \text { for } & x \in[0,1 / 2] \\
x \mapsto 12\left(1-x^{2}\right) & \text { for } & x \in[1 / 2,1]
\end{array}\right.
$$

Then $E\left(\bar{x}\left(\mu_{1}\right), \mu_{1}\right) \approx 0.327-\epsilon$ (numerically).

Results so far

It was conjectured that

- Optimal measure has to be absolutely continuous w/r to Lebesgue measure.
- The density needs to be symmetric.

Results so far

It was conjectured that

- Optimal measure has to be absolutely continuous w/r to Lebesgue measure.
- The density needs to be symmetric.

Results so far

It was conjectured that

- Optimal measure has to be absolutely continuous w/r to Lebesgue measure.
- The density needs to be symmetric.

Growth of $x \mapsto E(x, \mu)$ bounded by 1

The analytic approach:

Lemma

Let $\mu \in \mathcal{M}$ and $h(x)$ be a positive, measurable function, so $h(x) \geq 0$. Define $H:[0, \infty) \rightarrow \mathbb{R}$ by $H(x):=h(x)+H * \mu(x)$; Then H is a positive function.

- write $G(x)=x-E(x)=x \mu([0, x))-E * \mu(x)$;
- then $G(x)=\int_{[0, x)} y d \mu(y)+G * \mu(x)$, so $G \geq 0$.
- Now put $H_{y}(x)=G(x+y)-G(x)=y+E(x)-E(x+y)$.
- Then $H_{y}(x)=\int_{[x, x+y)}(G(x+y-s)+s) d \mu(s)+H_{y} * \mu(x)$;
- Conclusion: $E(x+y) \leq E(x)+y$.

Existence and left-continuity of $x \mapsto E(x, \mu)$
The series of convolutions approach:
given g, write $g * \mu(x)=\int_{[0, x)} g(x-z) d \mu(z)$;

$$
\begin{aligned}
E(x, \mu) & =f(x)+E * \mu(x) \\
& =f(x)+f * \mu(x)+(E * \mu) * \mu(x) \\
& =f(x)+f * \mu(x)+(f * \mu) * \mu(x)+\cdots \\
& =f(x)+\sum_{i=1}^{\infty} f(* \mu)^{j}(x)
\end{aligned}
$$

Lemma
If g is left-continuous then $g * \mu$ is left-continuous.

- f is left-cs, so $f * \mu, f(* \mu)^{2}, f(* \mu)^{3} \ldots$ are all left-cs;
- just need to show that the higher terms are small:

Existence and left-continuity of $x \mapsto E(x, \mu)$
The series of convolutions approach:
given g, write $g * \mu(x)=\int_{[0, x)} g(x-z) d \mu(z)$;

$$
\begin{aligned}
E(x, \mu) & =f(x)+E * \mu(x) \\
& =f(x)+f * \mu(x)+(E * \mu) * \mu(x) \\
& =f(x)+f * \mu(x)+(f * \mu) * \mu(x)+\cdots \\
& =f(x)+\sum_{i=1}^{\infty} f(* \mu)^{j}(x)
\end{aligned}
$$

Lemma

If g is left-continuous then $g * \mu$ is left-continuous.

- f is left-cs, so $f * \mu, f(* \mu)^{2}, f(* \mu)^{3} \ldots$ are all left-cs;
- just need to show that the higher terms are small:

Existence and left-continuity of $x \mapsto E(x, \mu)$

The series of convolutions approach:
given g, write $g * \mu(x)=\int_{[0, x)} g(x-z) d \mu(z)$;

$$
\begin{aligned}
E(x, \mu) & =f(x)+E * \mu(x) \\
& =f(x)+f * \mu(x)+(E * \mu) * \mu(x) \\
& =f(x)+f * \mu(x)+(f * \mu) * \mu(x)+\cdots \\
& =f(x)+\sum_{i=1}^{\infty} f(* \mu)^{j}(x)
\end{aligned}
$$

Lemma

If g is left-continuous then $g * \mu$ is left-continuous.

- f is left-cs, so $f * \mu, f(* \mu)^{2}, f(* \mu)^{3} \ldots$ are all left-cs;
- just need to show that the higher terms are small:
- $f(* \mu)^{k}(x)=\int_{0 \leq \sum z_{i}<x} f\left(x-\left(z_{1}+\cdots+z_{k}\right)\right) d \mu^{k}\left(z_{1}, \ldots, z_{k}\right)$;
- $\mu^{k}\left(\sum z_{i}<x\right)$ is exponentially small, by large deviations.

We know now that $E(x+y) \leq E(x)+y$ and E is left-continuous.

Lemma

The maximum of $x \mapsto E(x, \mu)$ is realised.
Suppose $\mu_{n} \rightarrow \mu$. How does $f_{n}(x):=x \mu_{n}([x, 1])$ behave?.

- $\lim \sup _{\varepsilon \rightarrow 0} \lim _{\mu_{n} \rightarrow \mu} f_{n}(x-\varepsilon)=f(x, \mu)$.
- OR, for all $\varepsilon>0$, there exists $\delta_{0}<y$, and if $0<\delta<\delta_{0}$, there is N, breathe deeply, if $n \geq N$, for all $\alpha \in\left[\delta, \delta_{0}\right]$

We know now that $E(x+y) \leq E(x)+y$ and E is left-continuous.

Lemma

The maximum of $x \mapsto E(x, \mu)$ is realised.
Suppose $\mu_{n} \rightarrow \mu$. How does $f_{n}(x):=x \mu_{n}([x, 1])$ behave?.

- $\lim \sup _{\varepsilon \rightarrow 0} \lim _{\mu_{n} \rightarrow \mu} f_{n}(x-\varepsilon)=f(x, \mu)$.
- OR, for all $\varepsilon>0$, there exists $\delta_{0}<y$, and if $0<\delta<\delta_{0}$, there is N, breathe deeply, if $n \geq N$, for all $\alpha \in\left[\delta, \delta_{0}\right]$

$$
\left|f(y)-f_{n}(y-\alpha)\right| \leq \varepsilon
$$

- "left-convergence"

We know now that $E(x+y) \leq E(x)+y$ and E is left-continuous.

Lemma

The maximum of $x \mapsto E(x, \mu)$ is realised.
Suppose $\mu_{n} \rightarrow \mu$. How does $f_{n}(x):=x \mu_{n}([x, 1])$ behave?.

- $\lim \sup _{\varepsilon \rightarrow 0} \lim _{\mu_{n} \rightarrow \mu} f_{n}(x-\varepsilon)=f(x, \mu)$.
- OR, for all $\varepsilon>0$, there exists $\delta_{0}<y$, and if $0<\delta<\delta_{0}$, there is N, breathe deeply, if $n \geq N$, for all $\alpha \in\left[\delta, \delta_{0}\right]$

$$
\left|f(y)-f_{n}(y-\alpha)\right| \leq \varepsilon
$$

- "left-convergence"

We know now that $E(x+y) \leq E(x)+y$ and E is left-continuous.

Lemma

The maximum of $x \mapsto E(x, \mu)$ is realised.
Suppose $\mu_{n} \rightarrow \mu$. How does $f_{n}(x):=x \mu_{n}([x, 1])$ behave?.

- $\lim \sup _{\varepsilon \rightarrow 0} \lim _{\mu_{n} \rightarrow \mu} f_{n}(x-\varepsilon)=f(x, \mu)$.
- OR, for all $\varepsilon>0$, there exists $\delta_{0}<y$, and if $0<\delta<\delta_{0}$, there is N, breathe deeply, if $n \geq N$, for all $\alpha \in\left[\delta, \delta_{0}\right]$

$$
\left|f(y)-f_{n}(y-\alpha)\right| \leq \varepsilon
$$

- "left-convergence"

Lemma

If g_{n} left-converges to g and $\mu_{n} \rightarrow \mu$ then $g_{n} * \mu_{n}$ left-converges to $g * \mu$.

Theorem
If μ_{n} converges to μ then $E\left(,, \mu_{n}\right)$ left-converges to $E(,, \mu)$, By Lemma, left-convergence of $f_{n}\left(* \mu_{n}\right)^{J} \rightarrow f(* \mu)^{\prime}$ holds for all j.

Theorem
If μ_{n} converges to μ then $E\left(,, \mu_{n}\right)$ left-converges to $E(,, \mu)$

Lemma

If g_{n} left-converges to g and $\mu_{n} \rightarrow \mu$ then $g_{n} * \mu_{n}$ left-converges to $g * \mu$.

Theorem
If μ_{n} converges to μ then $E\left(\cdot, \mu_{n}\right)$ left-converges to $E(\cdot, \mu)$.
By Lemma, left-convergence of $f_{n}\left(* \mu_{n}\right)^{j} \rightarrow f(* \mu)^{j}$ holds for all j.
Theorem
If μ_{n} converges to μ then $E\left(\cdot, \mu_{n}\right)$ left-converges to $E(\cdot, \mu)$.

Lemma

If g_{n} left-converges to g and $\mu_{n} \rightarrow \mu$ then $g_{n} * \mu_{n}$ left-converges to $g * \mu$.

Theorem

If μ_{n} converges to μ then $E\left(\cdot, \mu_{n}\right)$ left-converges to $E(\cdot, \mu)$. By Lemma, left-convergence of $f_{n}\left(* \mu_{n}\right)^{j} \rightarrow f(* \mu)^{j}$ holds for all j.

Theorem

If μ_{n} converges to μ then $E\left(\cdot, \mu_{n}\right)$ left-converges to $E(\cdot, \mu)$.

Theorem

$\mu \mapsto \max _{x} E(x, \mu)$ is continuous, for probability measures μ supported on $[0,1]$.

- By left-convergence, given $\varepsilon>0$, for large n there is a point x_{n} such that $\left|E\left(x_{n}, \mu_{n}\right)-E(x, \mu)\right|<\varepsilon$;
- so $\lim \max _{y} E\left(y, \mu_{n}\right) \geq \max _{y} E(y, \mu)$;
- Let x_{n} maximise $E\left(\cdot, \mu_{n}\right)$ and $x_{n} \rightarrow x$ (subsequence). $E\left(x_{n}-\varepsilon, \mu_{n}\right) \geq E\left(x_{n}, \mu_{n}\right)-\varepsilon$. Take $\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}$:
- Get $E(x, \mu) \geq \lim E\left(x_{n}, \mu_{n}\right)$, as required.

Corollary (Optimal measure exists)

There exists a measure μ_{0} minimising $\max _{x} E(x, \mu)$ over all probability measures with support on $[0,1]$ and expected value 1/2.

Local search

We consider discrete measures supported on points $\frac{k}{n}$, $k=1, \ldots, n$.
We start with a measure μ with $\mu([0,1])=1$ and $\mathbb{E}(\mu)=\frac{1}{2}$.
1 We chose $0<k_{1}<k_{2}<k_{3} \leq n$ at random.
2 We construct a unique measure ν supported on $\left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}, \frac{k_{3}}{n}\right\}$ with $\nu([0,1])=0$ and $\mathbb{E}(\nu)=0$.
3 We try to find t such that $\mu+t \cdot \nu$ is a measure values allowed!) and that $\sup E(x, \mu+t \cdot \nu)<\sup E(x, \mu)$.

1 If we succeed we replace μ with $\mu+t \cdot \nu$.

Local search

We consider discrete measures supported on points $\frac{k}{n}$, $k=1, \ldots, n$.
We start with a measure μ with $\mu([0,1])=1$ and $\mathbb{E}(\mu)=\frac{1}{2}$.
1 We chose $0<k_{1}<k_{2}<k_{3} \leq n$ at random.
2 We construct a unique measure ν supported on $\left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}, \frac{k_{3}}{n}\right\}$ with $\nu([0,1])=0$ and $\mathbb{E}(\nu)=0$.
3 We try to find t such that $\mu+t \cdot \nu$ is a measure) and that $\sup E(x, \mu+t \cdot \nu)<\sup E(x, \mu)$.

4 If we succeed: we replace μ with $\mu+t \cdot \nu$.
Rinse \& repeat

Local search

We consider discrete measures supported on points $\frac{k}{n}$, $k=1, \ldots, n$.
We start with a measure μ with $\mu([0,1])=1$ and $\mathbb{E}(\mu)=\frac{1}{2}$.
1 We chose $0<k_{1}<k_{2}<k_{3} \leq n$ at random.
2 We construct a unique measure ν supported on $\left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}, \frac{k_{3}}{n}\right\}$ with $\nu([0,1])=0$ and $\mathbb{E}(\nu)=0$.

4 If we succeed: we replace μ with $\mu+t \cdot \nu$.
Rinse \& repeat

Local search

We consider discrete measures supported on points $\frac{k}{n}$, $k=1, \ldots, n$.
We start with a measure μ with $\mu([0,1])=1$ and $\mathbb{E}(\mu)=\frac{1}{2}$.
1 We chose $0<k_{1}<k_{2}<k_{3} \leq n$ at random.
2 We construct a unique measure ν supported on $\left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}, \frac{k_{3}}{n}\right\}$ with $\nu([0,1])=0$ and $\mathbb{E}(\nu)=0$.
3 We try to find t such that $\mu+t \cdot \nu$ is a measure (no negative values allowed!) and that $\sup _{x} E(x, \mu+t \cdot \nu)<\sup _{x} E(x, \mu)$.

$$
4 \text { If we succeed: we replace } \mu \text { with } \mu+t \cdot \nu \text {. }
$$

Rinse \& repeat

Local search

We consider discrete measures supported on points $\frac{k}{n}$, $k=1, \ldots, n$.
We start with a measure μ with $\mu([0,1])=1$ and $\mathbb{E}(\mu)=\frac{1}{2}$.
1 We chose $0<k_{1}<k_{2}<k_{3} \leq n$ at random.
2 We construct a unique measure ν supported on $\left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}, \frac{k_{3}}{n}\right\}$ with $\nu([0,1])=0$ and $\mathbb{E}(\nu)=0$.
3 We try to find t such that $\mu+t \cdot \nu$ is a measure (no negative values allowed!) and that $\sup _{x} E(x, \mu+t \cdot \nu)<\sup _{x} E(x, \mu)$.
4 If we succeed: we replace μ with $\mu+t \cdot \nu$.
Rinse \& repeat

Local search

We consider discrete measures supported on points $\frac{k}{n}$,
$k=1, \ldots, n$.
We start with a measure μ with $\mu([0,1])=1$ and $\mathbb{E}(\mu)=\frac{1}{2}$.
1 We chose $0<k_{1}<k_{2}<k_{3} \leq n$ at random.
2 We construct a unique measure ν supported on $\left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}, \frac{k_{3}}{n}\right\}$ with $\nu([0,1])=0$ and $\mathbb{E}(\nu)=0$.
3 We try to find t such that $\mu+t \cdot \nu$ is a measure (no negative values allowed!) and that $\sup _{x} E(x, \mu+t \cdot \nu)<\sup _{x} E(x, \mu)$.
4 If we succeed: we replace μ with $\mu+t \cdot \nu$.
Rinse \& repeat

Local Search in action

Figure: Starting measure - "two parabolas"

Local Search in action

Figure: After 5 steps of optimization

Local Search in action

Figure: After 15 steps of optimization

Local Search in action

Figure: After ~ 100 steps of optimization

Local Search in action

Figure: After ~ 200 steps of optimization

Local Search in action

Figure: After $\gg 1000$ steps of optimization

So...

Figure: A payoff function for optimal measure?

Indeed

A measure with density function
$g(x)=\left\{\begin{array}{lll}0 & \text { for } & x \in[0, h) \\ \frac{1}{\frac{1}{x}} & \text { for } & x \in[h, 2 h) \\ \frac{1}{x}\left(1-\ln \left(\frac{x}{h}-1\right)\right) & \text { for } & x \in[2 h, 3 h) \\ \frac{\mathrm{L}_{2}\left(2-\frac{x}{\hbar}\right)+\ln \left(\frac{x}{h}-2\right) \ln \left(\frac{x}{h}-1\right)-\ln \left(\frac{x}{h}-1\right)+\frac{\pi^{2}}{12}+1}{x} & \text { for } & x \in[3 h, 4 h) \\ \cdots & & \end{array}\right.$
has expected payoff function

$$
\min (x, h) .
$$

Some calculations

- Recall:

$$
\min (x, h)=\int_{[0, x)} \min (x-s, h) d \mu(s)+x \mu((x,+\infty))
$$

- Differentiating by x we get

Some calculations

- Recall:

$$
\min (x, h)=\int_{[0, x)} \min (x-s, h) d \mu(s)+x \mu((x,+\infty))
$$

So $\left.\mu\right|_{(0, h)}=0$ and

$$
h=\int_{(x-h, x)}(x-s) d \mu(s)+h \mu([0, x-h)+x \mu((x,+\infty)) .
$$

- Differentiating by x we get

Some calculations

- Recall:

$$
\min (x, h)=\int_{[0, x)} \min (x-s, h) d \mu(s)+x \mu((x,+\infty))
$$

So $\left.\mu\right|_{(0, h)}=0$ and

$$
h=\int_{(x-h, x)}(x-s) d \mu(s)+h \mu([0, x-h)+x \mu((x,+\infty)) .
$$

- Differentiating by x we get

$$
x g(x)=\mu([x-h,+\infty))
$$

Some calculations

- Recall:

$$
\min (x, h)=\int_{[0, x)} \min (x-s, h) d \mu(s)+x \mu((x,+\infty))
$$

So $\left.\mu\right|_{(0, h)}=0$ and

$$
h=\int_{(x-h, x)}(x-s) d \mu(s)+h \mu([0, x-h)+x \mu((x,+\infty))
$$

- Differentiating by x we get

$$
x g(x)=\mu([x-h,+\infty))
$$

which we recursively solve.

Conjecture

The function

$$
\min \left(x, h_{0}\right)
$$

where $h_{0}=0.28166214011768503^{\prime}$ is the optimal payoff function in Generalized Tally Game.

$$
0.28166214011768503^{‘} \ll 0.327-\epsilon
$$

What next?

Algorithms \& applications

Mathematics

we are done

optimality

properties
how and why?

