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Tally Game

• ?
• ‘a cruel, yet funny game played by employees in smaller

stores. to play, simply count the number of ugly, weird or
gross people who come into the store with tally marks on
receipt paper. accompany your mark by quickly shouting
"tally" or saying it loud enough to let your fellow
worker-bees know an awful being had just graced your
establishment with it’s yucky presence. the employee with
the most tally’s
at the end of the day is the winner. and should be rewarded.’
http://www.urbandictionary.com/define.php?term=tally20game

• ‘The score, or the stick with notches in it to keep a track of
the score or count.’ Merriam Webster

• Gra w Karbowego Tomasz Nowicki
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Generalized Tally Game

1 I choose probability measure µ on [0,1] with E = 1
2 .

2 My opponent knowing my µ chooses x ∈ R+
0 .

3 We draw s according to µ. If s ≥ x I pay x .
4 Otherwise x → x − s and we go back to step 3.

Obviously, I want to chose µ in such a way that given my
opponents best strategy I want to minimize the expected payoff.
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Joint Replenishment Problem with Time Windows
This is one of the fundamental problems in Inventory and
Supply Chain Management.
• We are given a warehouse and the set of retailers
{1, . . . ,n}.

• We are given the discrete time horizon {1, . . . ,T}.
• We are given a set of demands D consisting of triples

(i , r , t) for retailer of type i that arrives at time t and must
be satisfied by an order placed in the time interval [r , t ].

• To satisfy arbitrary many demands in some time period τ a
retailer i places an order at warehouse at time τ and incurs
the retailer ordering cost Ki , at the same time the
warehouse places an order and incurs the warehouse
ordering cost of K0. The goal is define the set set of
warehouse and retailer orders to satisfy all the demand.
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IP Formulation & LP Relaxation
•

min
T∑
τ=1

K0xτ0 +
n∑

i=1

T∑
τ=1

Kixτ i , (1.1)

t∑
τ=r

xτ i ≥ 1, ∀(i , r , t) ∈ D, (1.2)

xτ i ≤ xτ0 ∀i , τ, (1.3)
xτ0, xτ i ∈ {0,1}, ∀τ, i . (1.4)

• We relax the integrality condition (1.4) with the condition
xτ0, xτ i ∈ [0,1] for all τ, i and solve the resulting linear
programming relaxation using any efficient algorithm
(interior points, ellipsoid method). Let x∗ be an optimal
solution for the linear relaxation.
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Rounding Algorithm

Consider the following rounding algorithm that finds an integral
solution for our optimization problem:

1. Define intervals It = (
∑t−1

τ=1 x∗τ0,
∑t

τ=1 x∗τ0] for time t and
intervals Iti = (

∑t−1
τ=1 x∗τ i ,

∑t
τ=1 x∗τ i ] for time t and retailer i .

2. Consecutively draw random variable di from the random
distribution f (x). Define D0 = 0 and Di = Di−1 + di .

3. Let Λ be the set of times t such that there is an index i such
that Di ∈ It . Open warehouse orders at all times from Λ.

4. For each retailer independently apply the following
process. Initialize y = 0. Open retailer i order at the latest
time t ′′ from Λ such that t ′′ ≤ t ′ where y + 1 ∈ It ′i . Set
y =

∑t
τ=1 x∗τ i and repeat the process until

y + 1 >
∑T

τ=1 x∗τ i .
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Sketch of the Analysis

It is not hard to show that this algorithm finds a feasible
solution. The expected cost of this solution is upper bounded by

W1

1− ρ(f )
+

W2

α

where W1 =
∑n

i=1
∑T

τ=1 Kix∗τ i and W2 =
∑T

τ=1 K0x∗τ i , i.e.
W1 + W2 is the optimal cost of linear programming relaxation.
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Generalized Tally Game - revisited

1 I choose probability measure µ on [0,1] with E = 1
2 .

2 My opponent knowing my µ chooses x ∈ R+
0 .

3 We draw s according to µ. If s ≥ x I pay x .
4 Otherwise x → x − s and we go back to step 3.

Obviously, I want to chose µ in such a way that given my
opponents best strategy I want to minimize the expected payoff.
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Generalized Tally Game

• We have

E(x , µ) =

∫
[0,x)

E(x − s, µ)dµ(s) + xµ([x ,1])

• and our objective is:

arg min
µ

max
x

E(x , µ)

µ([0,1]) = 1 and
∫

[0,1]
xdµ(x) = 1

2
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Best known results so far
Approximation Algorithm for Joint Replenishment with
Deadlines, Tim Nonner, Alexander Souza
Conference on Combinatorial Optimization and Applications -
COCOA 2009
• Let µ0 have a density{

x 7→ 4x for x ∈ [0,1/2]
x 7→ 2− 4x for x ∈ [1/2,1].

Then E(x̄(µ0), µ0) ≈ 0.327. (exact)
• Let µ1 have a density{

x 7→ 12x2 for x ∈ [0,1/2]
x 7→ 12(1− x2) for x ∈ [1/2,1].

Then E(x̄(µ1), µ1) ≈ 0.327− ε (numerically).
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Results so far

It was conjectured that
• Optimal measure has to be absolutely continuous w/r to

Lebesgue measure.
• The density needs to be symmetric.
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Growth of x 7→ E(x , µ) bounded by 1

The analytic approach:

Lemma
Let µ ∈M and h(x) be a positive, measurable function, so
h(x) ≥ 0. Define H : [0,∞)→ R by H(x) := h(x) + H ∗ µ(x);
Then H is a positive function.

• write G(x) = x − E(x) = xµ([0, x))− E ∗ µ(x);
• then G(x) =

∫
[0,x) ydµ(y) + G ∗ µ(x), so G ≥ 0.

• Now put Hy (x) = G(x + y)−G(x) = y + E(x)− E(x + y).
• Then Hy (x) =

∫
[x ,x+y)(G(x + y − s) + s)dµ(s) + Hy ∗ µ(x);

• Conclusion: E(x + y) ≤ E(x) + y .
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Existence and left-continuity of x 7→ E(x , µ)
The series of convolutions approach:

given g, write g ∗ µ(x) =
∫
[0,x) g(x − z)dµ(z);

E(x , µ) = f (x) + E ∗ µ(x)

= f (x) + f ∗ µ(x) + (E ∗ µ) ∗ µ(x)

= f (x) + f ∗ µ(x) + (f ∗ µ) ∗ µ(x) + · · ·

= f (x) +
∞∑

j=1

f (∗µ)j(x)

Lemma
If g is left-continuous then g ∗ µ is left-continuous.

• f is left-cs, so f ∗ µ, f (∗µ)2, f (∗µ)3 . . . are all left-cs;
• just need to show that the higher terms are small:
• f (∗µ)k (x) =

∫
0≤

∑
zi<x f (x − (z1 + · · ·+ zk ))dµk (z1, . . . , zk );

• µk (
∑

zi < x) is exponentially small, by large deviations.
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We know now that E(x + y) ≤ E(x) + y and E is
left-continuous.

Lemma
The maximum of x 7→ E(x , µ) is realised.

Suppose µn → µ. How does fn(x) := xµn([x ,1]) behave?.
• lim supε→0 limµn→µ fn(x − ε) = f (x , µ).
• OR, for all ε > 0, there exists δ0 < y , and if 0 < δ < δ0,

there is N, breathe deeply, if n ≥ N, for all α ∈ [δ, δ0]

|f (y)− fn(y − α)| ≤ ε.

• “left-convergence”
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Lemma
If gn left-converges to g and µn → µ then gn ∗ µn left-converges
to g ∗ µ.

Theorem
If µn converges to µ then E(·, µn) left-converges to E(·, µ).

By Lemma, left-convergence of fn(∗µn)j → f (∗µ)j holds for all j .

Theorem
If µn converges to µ then E(·, µn) left-converges to E(·, µ).
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Theorem
µ 7→ maxx E(x , µ) is continuous, for probability measures µ
supported on [0,1].

• By left-convergence, given ε > 0, for large n there is a
point xn such that |E(xn, µn)− E(x , µ)| < ε;

• so lim maxy E(y , µn) ≥ maxy E(y , µ);
• Let xn maximise E(·, µn) and xn → x (subsequence).

E(xn − ε, µn) ≥ E(xn, µn)− ε. Take limε→0 limn→∞:
• Get E(x , µ) ≥ lim E(xn, µn), as required.

Corollary (Optimal measure exists)

There exists a measure µ0 minimising maxx E(x , µ) over all
probability measures with support on [0,1] and expected value
1/2.
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Local search

We consider discrete measures supported on points k
n ,

k = 1, . . . ,n.
We start with a measure µ with µ([0,1]) = 1 and E(µ) = 1

2 .
1 We chose 0 < k1 < k2 < k3 ≤ n at random.
2 We construct a unique measure ν supported on {k1

n ,
k2
n ,

k3
n }

with ν([0,1]) = 0 and E(ν) = 0.
3 We try to find t such that µ+ t · ν is a measure (no negative

values allowed!) and that sup
x

E(x , µ+ t · ν) < sup
x

E(x , µ).

4 If we succeed: we replace µ with µ+ t · ν.
Rinse & repeat
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Local Search in action
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Figure: Starting measure - "two parabolas"
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Local Search in action
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Figure: After 5 steps of optimization
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Local Search in action
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Figure: After 15 steps of optimization
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Local Search in action
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Figure: After ∼ 100 steps of optimization
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Local Search in action
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Figure: After ∼ 200 steps of optimization
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Local Search in action
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Figure: After� 1000 steps of optimization
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So...
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Figure: A payoff function for optimal measure?
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Indeed

A measure with density function

g(x) =



0 for x ∈ [0,h)
1
x for x ∈ [h,2h)
1
x

(
1− ln

( x
h − 1

))
for x ∈ [2h,3h)

Li2(2− x
h )+ln( x

h−2) ln( x
h−1)−ln( x

h−1)+π2
12 +1

x for x ∈ [3h,4h)
. . .

has expected payoff function

min(x ,h).
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Some calculations

• Recall:

min(x ,h) =

∫
[0,x)

min(x − s,h)dµ(s) + xµ((x ,+∞))

So µ|(0,h) = 0 and

h =

∫
(x−h,x)

(x − s)dµ(s) + hµ([0, x − h) + xµ((x ,+∞)).

• Differentiating by x we get

xg(x) = µ([x − h,+∞))

which we recursively solve.
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Conjecture

The function
min(x ,h0),

where h0 = 0.28166214011768503‘ is the optimal payoff
function in Generalized Tally Game.

0.28166214011768503‘� 0.327− ε
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What next?

Algorithms & applications

we are done
Hsort of L

Mathematics
optimality

properties

how and why?
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