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Introduction

Hairs for transcendental entire functions

Case of exponential maps z !→ λez

f : C → C : a transcendental entire function.

F (f) := {z ∈ C | ∃U : nbd of z, {fn|U}∞n=1 is normal} : Fatou set

J(f) := C ! F (f) : Julia set

= ∂I(f), where I(f) := {z | fn(z) → ∞} : escaping set (by Eremenko)

In this talk, we consider “structurally finite entire functions” of
the form f(z) = P (z)eQ(z), where P and Q are polynomials with
deg Q ≥ 1, and study the structure of “fast escaping points” in
I(f). We prove that those fast escaping points form “hairs” which
are C∞ curves.

Known case: f(z) = λez (λ '= 0).
Tracts: connected components of f−1({z : Re z ≥ L}) = f−2({z :

|z| > R = eL}) with L large.
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Theorem (Devaney-Krych, 1984) If s ∈ ZN satisfies a
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(ii) En
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We will see later how this estimate goes.
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We will see later how this estimate goes.

Tracts and Sub-tracts for d = 3.
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§3 C1 estimates

★ Observation :

From f ◦ hn+1(t) = hn ◦ g(t), we have

log h′
n+1 = log h′

n ◦ g + log g′ − log f ′ ◦ hn+1.

Define
ψn(t) := log h′

n(t), (1)

=⇒ ψn+1−ψn = (ψn −ψn−1)◦ g− (log f ′ ◦hn+1− log f ′ ◦hn).
(2)

• If ψn−ψn−1 → 0 as t → ∞, by composing g, (ψn−ψn−1)◦g
may go to 0 faster.
• This can be formulated in terms of || · ||ρ0,τ∗ with an appro-
priate weight function ρ0 : [τ∗,∞) → R+ (which is assumed
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Define ψn(t) := log h′
n(t). Then

ψn+1 − ψn = (ψn − ψn−1) ◦ g − (log f ′ ◦ hn+1 − log f ′ ◦ hn).

• If ψn−ψn−1 → 0 as t → ∞, by composing g, (ψn−ψn−1)◦g
may go to 0 faster.
• This can be formulated in terms of || · ||ρ0,τ∗ with an appro-
priate weight function ρ0 : [τ∗,∞) → R+ (which is assumed
to be increasing). In fact, for a function ψ : [τ∗,∞) → C (for
our case, ψ = ψn − ψn−1), we have

||ψ ◦ g||ρ0,τ = sup
t≥τ

|ψ(g(t))|ρ0(t) = sup
t≥τ

ρ0(t)

ρ0(g(t))
· |ψ(g(t))|ρ0(g(t))

≤
(

sup
t≥τ

ρ0(t)

ρ0(g(t))

)
·
(

sup
t′≥g(τ)

|ψ(t′)|ρ0(t
′)

)
=

(
sup
t≥τ

ρ0(t)

ρ0(g(t))

)
||ψ||ρ0,g(τ)

(1)
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to be increasing). In fact, for a function ψ : [τ∗,∞) → C (for
our case, ψ = ψn − ψn−1), we have
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So if we define ρ0 so that sup
t≥τ

ρ0(t)

ρ0(g(t))
< 1 then || · ||ρ0,τ -norm

is contracted by composing g.

For further estimates (Ck, k = 1, 2, . . . ), we need to pre-
pare the following.

Definition 1.

• ρk, σk : [τ∗,∞) → R+, (k = 0, 1, 2, . . . ) : weight functions

with σk(t) ≤ ρk(t)

(to measure the norm || · ||ρk,τ of ψ(k)
n+1−ψ(k)

n and the norm

|| · ||σk,τ of ψ(k)
n )

• For given weight functions ρk, σk, define

αk(t) :=
ρk(t)|g′(t)|k

ρk(g(t))
, ᾱk(τ) := sup

t≥τ
αk(t),

k = 0, 1, 2, . . . , t, τ ≥ τ∗,

Dk(t) := sup
z∈Bf (t)

∣∣∣(log f ′)(k) (z)
∣∣∣ ,

where Bf (t) := {z ∈ U : |f(z) − h0(g(t))| ≤ R(g(t))}

5
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≤ κ0||ψn − ψn−1||ρ0,g(τ) + C ≤ κ0||ψn − ψn−1||ρ0,τ + C.

This shows the convergence of ψn which implies that the limit
h = limn→∞ hn is C1.
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and R(t) ! |h1(t) − h0(t)|.

By the above (??), we have

||ψn+1−ψn||ρ0,τ ≤ ᾱ0(τ)||ψn−ψn−1||ρ0,g(τ)+|| log f ′◦hn+1−log f ′◦hn||ρ0,τ .

In order to estimate the last term, for each t ≥ τ , take a curve
γ so that γ joins hn and hn+1 within Bf (t) with

length(γ) ≤ (1 − κ)κnR(t).
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, ᾱk(τ) := sup

t≥τ
αk(t),

k = 0, 1, 2, . . . , t, τ ≥ τ∗,

Dk(t) := sup
z∈Bf (t)

∣∣∣(log f ′)(k) (z)
∣∣∣ ,

where Bf (t) := {z ∈ U : |f(z) − h0(g(t))| ≤ R(g(t))}
and R(t) ! |h1(t) − h0(t)|.

By the above (??), we have
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h = limn→∞ hn is C1.

Higher order derivatives

Differentiating
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and using h′
n+1 = eψn+1 , we have
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n ◦ g
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(
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where the coefficients “const” are some constants depending
the indices !, j1, j2, . . . .

For given weight functions ρk, σk, define

αk(t) :=
ρk(t)|g′(t)|k

ρk(g(t))
, ᾱk(τ) := sup

t≥τ
αk(t),

k = 0, 1, 2, . . . , t, τ ≥ τ∗,

Dk(t) := sup
z∈Bf (t)

∣∣∣(log f ′)(k) (z)
∣∣∣ ,

where Bf (t) := {z ∈ U : |f(z) − h0(g(t))| ≤ R(g(t))}
and R(t) ! |h1(t) − h0(t)|.

By the above (??), we have

||ψn+1−ψn||ρ0,τ ≤ ᾱ0(τ)||ψn−ψn−1||ρ0,g(τ)+|| log f ′◦hn+1−log f ′◦hn||ρ0,τ .

In order to estimate the last term, for each t ≥ τ , take a curve
γ so that γ joins hn and hn+1 within Bf (t) with

length(γ) ≤ (1 − κ)κnR(t).

By integrating (log f ′)′ along γ, we obtain the estimate

| log f ′◦hn+1(t)−log f ′◦hn(t)| ≤ D1(t) length(γ) ≤ D1(t)(1−κ)κnR(t).

(If Bf (t) is convex, the estimate can be done for a segment
γ.) Hence we conclude that

|| log f ′◦hn+1−log f ′◦hn||ρ0,g(τ) ≤ (1−κ)κn sup
t≥τ

D1(t)R(t)ρ0(t).

(1)
Now our inequality becomes

||ψn+1−ψn||ρ0,τ ≤ ᾱ0(τ)||ψn−ψn−1||ρ0,g(τ)+Cκn, C := K0(1−κ).
(2)

Take κ0 so that

max{κ, lim
τ→∞

ᾱ0(τ)} < κ0 < 1.

Choose τ0 ≥ τ∗ large so that ᾱ0(τ0) ≤ κ0. Thus we have

||ψn+1 − ψn||ρ0,τ0 ≤ κ0||ψn − ψn−1||ρ0,τ0 + Cκn

≤ κ0(κ0||ψn−1 − ψn−2||ρ0,τ0 + Cκn−1) + Cκn

≤ κn
0 ||ψ1 − ψ0||ρ0,τ0 + C(κn−1

0 κ + · · · + κ0κ
n + κn)

≤ κn
0 ||ψ1 − ψ0||ρ0,τ0 +

Cκκn−1
0

1 − κ/κ0
. (3)

Hence we have ||ψn+1 − ψn||ρ0,τ0 ≤ C ′κn
0 .

Since there exists m such that gm(τ∗) ≥ τ0, applying (??)
m times (shifting τ∗ by gj(τ∗), j = 1, . . . , m), we obtain

||ψn+1−ψn||ρ0,τ∗ ≤ ᾱ0(τ∗) · · · ᾱ0(g
m−1(τ∗))||ψn−m+1−ψn−m||ρ0,τ0+C ′′κn.

(4)
Hence ||ψn+1 − ψn||ρ0,τ∗ ≤ C0κn

0 .

6
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where the coefficients “const” are some constants depending
the indices !, j1, j2, . . . .

ψ(k)
n+1 − ψ(k)

n =
((

ψ(k)
n − ψ(k)

n−1

)
◦ g

)
(g′)k +

∑

1≤!<k
j1≥ ···≥ j!≥1
j1+···+j!=k

const
((

ψ(!)
n − ψ(!)

n−1

)
◦ g

)
g(j1) · · · g(j!)

−
∑

1≤!≤k, 0≤ν
j1≥ ···≥ jν≥1

!+j1+···+jν=k

const
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(log f ′)(!) ◦ hn+1 − (log f ′)(!) ◦ hn
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n+1 · · ·ψ
(jν)
n+1

+
(
(log f ′)(!) ◦ hn

)
(e!ψn+1 − e!ψn)ψ(j1)

n+1 · · ·ψ
(jν)
n+1

+
(
(log f ′)(!) ◦ hn

)
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n+1 − ψ(j1)
n )ψ(j2)

n+1 · · ·ψ
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+ · · · +
(
(log f ′)(!) ◦ hn
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n )

]
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.

In order to get a contraction from k-th order derivative term,

define αk(τ) := supt≥τ
ρk(t)|g′(t)|k

ρk(g(t)) and assume that
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τ→∞
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condition should be satisfied only when ν ≥ 1.

If these conditions are satisfied, {ψ(k)
n }∞n=0 converges with re-

spect to Ck-norm with weight ρk, and this implies that the
limit h(t) is Ck.
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By the above (??), we have

||ψn+1−ψn||ρ0,τ ≤ ᾱ0(τ)||ψn−ψn−1||ρ0,g(τ)+|| log f ′◦hn+1−log f ′◦hn||ρ0,τ .

In order to estimate the last term, for each t ≥ τ , take a curve
γ so that γ joins hn and hn+1 within Bf (t) with

length(γ) ≤ (1 − κ)κnR(t).

By integrating (log f ′)′ along γ, we obtain the estimate

| log f ′◦hn+1(t)−log f ′◦hn(t)| ≤ D1(t) length(γ) ≤ D1(t)(1−κ)κnR(t).

(If Bf (t) is convex, the estimate can be done for a segment
γ.) Hence we conclude that

|| log f ′◦hn+1−log f ′◦hn||ρ0,g(τ) ≤ (1−κ)κn sup
t≥τ

D1(t)R(t)ρ0(t).

(1)
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Future plan
Use the same estimates for the renormalization of irrationally indifferent 
fixed points of high type. 

Ui

ϕi

. . 

0-th

. . 

n-th to (n+1)-st

Ui,j
ϕi,j

Quadratic polynomial is transcendental if you consider renormalizations



Thank you!


