Smoothness of hairs for some transcendental entire functions

Mitsuhiro Shishikura
(Kyoto University)
work in progress, joint work with Masashi Kisaka
Transcendental Dynamics
CODY Autumn in Warsaw
November 12, 2010
The Institute of Mathematics of Polish Academy of Sciences

Goal

Hairs for transcendental entire functions
Case of exponential maps $z \mapsto \lambda e^{z}$

Devaney-Krych (1984) existence of hairs (Cantor bouquet) for symbol sequences satisfying "admissibility condition"

Viana (1988) hairs are C^{∞}-curves
Our case: $f(z)=P(z) e^{Q(z)}$, where P and Q are polynomials with $\operatorname{deg} Q \geq 1 \quad$ ("structurally finite")

Construction and C^{∞}-smoothness of hairs

Compare with A Classical Theorem (Dichotomy) by Fatou?:
If the Julia set J_{f} of a rational function f is a Jordan curve and f is expanding on J_{f}, then either J_{f} is a round circle or it has no tangent at any point. (Round or fractal)
$f: \mathbb{C} \rightarrow \mathbb{C}:$ a transcendental entire function.
$F(f):=\left\{z \in \mathbb{C} \mid \exists U:\right.$ nbd of $z,\left\{\left.f^{n}\right|_{U}\right\}_{n=1}^{\infty}$ is normal $\}$ Fatou set $J(f):=\mathbb{C} \backslash F(f)$ Julia set
$I(f):=\left\{z \mid f^{n}(z) \rightarrow \infty\right\}$ escaping set
Eremenko $J(f)=\partial I(f)$
Let $f(z)=P(z) e^{Q(z)}$, where P, Q are polyn. and $\operatorname{deg} Q \geq 1$. Define the reference function $g(t)=t^{m} e^{t^{d}}$, where $m=\operatorname{deg} P$, $d=\operatorname{deg} Q$. Take t_{*} large so that $g:\left[t_{*}, \infty\right) \rightarrow\left[t_{*}, \infty\right)$ and $g(t)>t$.

$$
\begin{aligned}
& I_{\text {fast }}^{0}(f):=\left\{z| | f^{n}(z)\left|\geq\left|g^{n}\left(t_{*}\right)\right|(n \geq 0)\right\}\right. \\
& I_{\text {fast }}(f):=\left\{z \mid \exists n \text { such that } f^{n}(z) \in I_{\text {fast }}^{0}(f)\right\}
\end{aligned}
$$

Theorem. If t_{*} is very large, then $I_{\text {fast }}^{0}(f)$ consists of C^{∞} _ curves. $\left(I_{\text {fast }}(f)\right.$ consists of their inverse images, which may have branching via critical points.)

Case of exponential maps $E_{\lambda}: z \mapsto \lambda e^{z}$

Theorem (Devaney-Krych, 1984) If $s \in \mathbb{Z}^{\mathbb{N}}$ satisfies a growth condition ("admissibility")
$\Longrightarrow \exists h_{\boldsymbol{s}}(t) \subset J\left(E_{\lambda}\right)$ s.t.
(i) $E_{\lambda}\left(h_{\boldsymbol{s}}(t)\right)=h_{\sigma(s)}(g(t)), \quad g(t):=|\lambda| e^{t}, \quad \sigma$: shift map
(ii) $E_{\lambda}^{n}\left(h_{s}(t)\right) \rightarrow \infty(n \rightarrow \infty)$
$h_{\boldsymbol{s}}(t)$ is called a hair.
Theorem (Viana, 1988) $\quad h_{\boldsymbol{s}}(t)$ is a C^{∞} curve.
In the proof, many estimates were exponential specific.

We need to reformulate the proof and we will see how different the proofs are. In fact, the estimates for exponential maps turned out to be simpler than general cases.

Strategy

Set up an appropriate symbolic dynamics $\left((\mathbb{Z} / d \mathbb{Z} \times \mathbb{Z})^{\mathbb{N}}\right)$. Fix a symbol sequence $\boldsymbol{s}=\left(s_{n}\right)$. Symbol \Leftrightarrow Subtract.

Define initial curves $h_{n, n}(t)$ corresponding to symbol s_{n} and parametrized by $t \in\left[g^{n}\left(t_{*}\right), \infty\right)$. Need to satisfy the conditions below.

Pull-back by the dynamics to define $h_{n, n-1}, h_{n, n-2}, \ldots, h_{n, 1}, h_{n, 0}$. The inverse branches are specified by symbols $s_{n-1}, s_{n-2}, \ldots, s_{1}, s_{0}$.

$$
\begin{gathered}
h_{n, j}(t) \text { is defined on }\left[g^{j}\left(t_{*}\right), \infty\right), \\
f \circ h_{n, j}(t)=h_{n, j+1} \circ g(t) \quad(0 \leq j<n)
\end{gathered}
$$

Show that $h_{n, n}(t)$ and $h_{n+1, n}$ have bounded C^{r} distance. (initial distance)

By pull-back, show that $h_{n, j}(t)$ and $h_{n+1, j}$ have exponentially small C^{r} distance with respect to $n-j$.

If $\left\|h_{n, j}-h_{n+1, j}\right\|_{C^{r}} \leq$ const κ_{r}^{n-j} with $\kappa_{r}<1$, then for each j, $\left\{h_{n, j}\right\}_{n=j}^{\infty}$ converges in C^{r}-topology and the limit h_{j} satisfies $f \circ h_{j}(t)=h_{j+1} \circ g(t)$.

However, usual C^{r}-norm does not work. So we consider weighted C^{r}-norms: for an weight function $\rho:[\tau, \infty) \rightarrow \mathbb{R}_{>0}$, define

$$
\|\psi\|_{\rho, \tau}=\sup _{t \in[\tau, \infty)}|\psi(t)| \rho(t) .
$$

For suitable weight functions ρ_{r}, C^{0}-distance will be measured by $\|\cdot\|_{\rho_{*}, \tau}$ and C^{r+1}-distance $(r \geq 0)$ between $h(t)$ and $\tilde{h}(t)$ will be measured by $\left\|\left(\log h^{\prime}(t)\right)^{(r)}-\left(\log \tilde{h}^{\prime}(t)\right)^{(r)}\right\|_{\rho_{r}, \tau}$.

We will see later how this estimate goes.

Tracts and Sub-tracts for $d=3$.

Initial curves are given by

$$
f(\zeta t(1+w(t)))=\zeta^{\prime} t^{m} e^{t^{d}}
$$

where ζ, ζ^{\prime} are roots of unity determined by the symbol sequence and $w(t)$ is small.

Estimates of differentiability

For simplicity, let us consider the case $s_{0}=s_{1}=s_{2}=\ldots$. $h_{m, n}$'s are renamed so that $h_{m, m-n}$ becomes new h_{n}.

Initial curve: $h_{0}(t)$;
Initial distance: $h_{0}(t)-h_{1}(t)$.

Suppose $h_{n}(t)$ are already defined and C^{0}-distance $h_{n+1}-h_{n}$ is exponentially small with respect to some weight function.

From $f \circ h_{n+1}(t)=h_{n} \circ g(t)$, we have

$$
\log h_{n+1}^{\prime}=\log h_{n}^{\prime} \circ g+\log g^{\prime}-\log f^{\prime} \circ h_{n+1} .
$$

Define $\psi_{n}(t):=\log h_{n}^{\prime}(t)$. Then

$$
\psi_{n+1}-\psi_{n}=\left(\psi_{n}-\psi_{n-1}\right) \circ g-\left(\log f^{\prime} \circ h_{n+1}-\log f^{\prime} \circ h_{n}\right) .
$$

If $\psi_{n}-\psi_{n-1} \rightarrow 0$ as $t \rightarrow \infty$, by composing $g,\left(\psi_{n}-\psi_{n-1}\right) \circ g$ may go to 0 faster.

$$
\begin{aligned}
\|\psi \circ g\|_{\rho_{0}, \tau} & =\sup _{t \geq \tau}|\psi(g(t))| \rho_{0}(t)=\sup _{t \geq \tau} \frac{\rho_{0}(t)}{\rho_{0}(g(t))} \cdot|\psi(g(t))| \rho_{0}(g(t)) \\
& \leq\left(\sup _{t \geq \tau} \frac{\rho_{0}(t)}{\rho_{0}(g(t))}\right) \cdot\left(\sup _{t^{\prime} \geq g(\tau)}\left|\psi\left(t^{\prime}\right)\right| \rho_{0}\left(t^{\prime}\right)\right) \\
& =\left(\sup _{t \geq \tau} \frac{\rho_{0}(t)}{\rho_{0}(g(t))}\right)\|\psi\|_{\rho_{0}, g(\tau)}
\end{aligned}
$$

So if we define ρ_{0} so that $\sup _{t \geq \tau} \frac{\rho_{0}(t)}{\rho_{0}(g(t))}<1$ then $\|\cdot\|_{\rho_{0}, \tau}$-norm is contracted by composing g.

Now let $\alpha_{0}(\tau):=\sup _{t \geq \tau} \frac{\rho_{0}(t)}{\rho_{0}(g(t))}$ and assume $\alpha_{0}\left(t_{*}\right) \leq \kappa_{0}<1$. In addition, assume that $\left|\left(\log f^{\prime}\right)^{\prime}(z)\right| \times\left|h_{1}(t)-h_{0}(t)\right| \leq C$ for z near $h_{0}(t)$. Then

$$
\begin{aligned}
\left\|\psi_{n+1}-\psi_{n}\right\|_{\rho_{0}, \tau} & \leq \alpha_{0}(\tau)\left\|\psi_{n}-\psi_{n-1}\right\|_{\rho_{0}, g(\tau)}+\left\|\log f^{\prime} \circ h_{n+1}-\log f^{\prime} \circ h_{n}\right\|_{\rho_{0}, \tau} \\
& \leq \kappa_{0}\left\|\psi_{n}-\psi_{n-1}\right\|_{\rho_{0}, g(\tau)}+C \leq \kappa_{0}\left\|\psi_{n}-\psi_{n-1}\right\|_{\rho_{0}, \tau}+C .
\end{aligned}
$$

This shows the convergence of ψ_{n} which implies that the limit $h=\lim _{n \rightarrow \infty} h_{n}$ is C^{1}.

Higher order derivatives

Differentiating

$$
\psi_{n+1}-\psi_{n}=\left(\psi_{n}-\psi_{n-1}\right) \circ g-\left(\log f^{\prime} \circ h_{n+1}-\log f^{\prime} \circ h_{n}\right) .
$$

and using $h_{n+1}^{\prime}=e^{\psi_{n+1}}$, we have

$$
\begin{aligned}
\psi_{n+1}^{\prime}= & \left(\psi_{n}^{\prime} \circ g\right) \cdot g^{\prime}+\left(\log g^{\prime}\right)^{\prime}-\left(\left(\log f^{\prime}\right)^{\prime} \circ h_{n+1}\right) e^{\psi_{n+1}}, \\
\psi_{n+1}^{\prime \prime}= & \left(\psi_{n}^{\prime \prime} \circ g\right) \cdot\left(g^{\prime}\right)^{2}+\left(\psi_{n}^{\prime} \circ g\right) \cdot g^{\prime \prime}+\left(\log g^{\prime}\right)^{\prime \prime} \\
& -\left(\left(\log f^{\prime}\right)^{\prime \prime} \circ h_{n+1}\right) e^{2 \psi_{n+1}}-\left(\left(\log f^{\prime}\right)^{\prime} \circ h_{n+1}\right) e^{\psi_{n+1}} \psi_{n+1}^{\prime} .
\end{aligned}
$$

More generally, for $k=1,2, \ldots$, we have

$$
\begin{aligned}
& \psi_{n+1}^{(k)}=\left(\psi_{n}^{(k)} \circ g\right)\left(g^{\prime}\right)^{k}+\sum_{\substack{1 \leq \ell<k \\
j_{1} \geq \ldots \geq j \geq 1 \\
j_{1}+\cdots+j_{\ell}=k}} \operatorname{const}\left(\psi_{n}^{(\ell)} \circ g\right) g^{\left(j_{1}\right)} \ldots g^{\left(j_{\ell}\right)}+\left(\log g^{\prime}\right)^{(k)} \\
& -\sum_{1 \leq \rho \leq k_{0} \leq \nu} \text { cost }\left(\left(\log f^{\prime}\right)^{(\ell)} \circ h_{n+1}\right) e^{\ell \psi_{n+1}} \psi_{n+1}^{\left(j_{1}\right)} \ldots \psi_{n+1}^{\left(j_{\nu}\right)} \text {, } \\
& \sum_{\substack{1 \leq \ell \leq k, 0 \leq \nu \\
j_{1} \geq \cdots \geq j_{v} \geq 1}}=0 \text { for exponential }
\end{aligned}
$$

where the coefficients "const" are some constants depending the indices $\ell, j_{1}, j_{2}, \ldots$

$$
\begin{aligned}
& \psi_{n+1}^{(k)}-\psi_{n}^{(k)}=\left(\left(\psi_{n}^{(k)}-\psi_{n-1}^{(k)}\right) \circ g\right)\left(g^{\prime}\right)^{k}+\sum_{1 \leq \ell<k} \operatorname{const}\left(\left(\psi_{n}^{(\ell)}-\psi_{n-1}^{(\ell)}\right) \circ g\right) g^{\left(j_{1}\right)} \cdots g^{\left(j_{\ell}\right)}
\end{aligned}
$$

$$
\begin{aligned}
-\sum_{\substack{1 \leq \ell \leq k, 0 \leq \nu \\
\text { jil } \\
\ell+j_{1}+\cdots+j_{j} \geq 1 \\
j_{\nu}=k}} \text { const } & {\left[\left(\left(\log f^{\prime}\right)^{(\ell)} \circ h_{n+1}-\left(\log f^{\prime}\right)^{(\ell)} \circ h_{n}\right) e^{\ell \psi_{n+1}} \psi_{n+1}^{\left(j_{1}\right)} \cdots \psi_{n+1}^{\left(j_{\nu}\right)}\right.} \\
& +\left(\left(\log f^{\prime}\right)^{(\ell)} \circ h_{n}\right)\left(e^{\ell \psi_{n+1}}-e^{\ell \psi_{n}}\right) \psi_{n+1}^{\left(j_{1}\right)} \cdots \psi_{n+1}^{\left(j_{\nu}\right)} \\
& +\left(\left(\log f^{\prime}\right)^{(\ell)} \circ h_{n}\right) e^{\ell \psi_{n}}\left(\psi_{n+1}^{\left(j_{1}\right)}-\psi_{n}^{\left(j_{1}\right)}\right) \psi_{n+1}^{\left(j_{2}\right)} \cdots \psi_{n+1}^{\left(j_{\nu}\right)} \\
& \left.+\cdots+\left(\left(\log f^{\prime}\right)^{(\ell)} \circ h_{n}\right) e^{\ell \psi_{n}} \psi_{n}^{\left(j_{1}\right)} \cdots \psi_{n}^{\left(j_{\nu-1}\right)}\left(\psi_{n+1}^{\left(j_{\nu}\right)}-\psi_{n}^{\left(j_{\nu}\right)}\right)\right] .
\end{aligned}
$$

In order to get a contraction from k-th order derivative term, define $\alpha_{k}(\tau):=\sup _{t \geq \tau} \frac{\rho_{k}(t) \mid g^{\prime}(t){ }^{k}}{\rho_{k}(g(t))}$ and assume that

$$
\lim _{\tau \rightarrow \infty} \alpha_{k}(\tau)<\kappa_{k}<1
$$

In order to control other terms, we need more assumptions involving the weight functions and derivatives of g.

$$
\begin{aligned}
& D_{k}(t):=\sup _{z \in B_{f}(t)}\left|\left(\log f^{\prime}\right)^{(k)}(z)\right|, \\
& \text { where } B_{f}(t):=\left\{z \in U:\left|f(z)-h_{0}(g(t))\right| \leq R(g(t))\right\} \\
& \text { and } R(t) \doteqdot\left|h_{1}(t)-h_{0}(t)\right| .
\end{aligned}
$$

$\mathbf{C}_{k}: h_{0}, h_{1}$ are C^{k+1} and $\psi_{0}=\log h_{0}^{\prime}$ and $\psi_{1}=\log h_{1}^{\prime}$ satisfy

$$
\left\|\psi_{1}^{(k)}-\psi_{0}^{(k)}\right\|_{\rho_{k}, \tau_{*}}<\infty \quad \text { and } \quad\left\|\psi_{0}^{(k)}\right\|_{\sigma_{k}, \tau_{*}}<\infty .
$$

$\mathrm{D}_{k}: \lim _{\tau \rightarrow \infty} \alpha_{k}(\tau)<1$.
E_{k} : For $1 \leq \ell<k$ and $j_{1}, \ldots, j_{\ell} \geq 1$ with $j_{1}+\cdots+j_{\ell}=k$,

$$
\sup _{t \geq \tau_{*}} \frac{\rho_{k}(t)\left|g^{\left(j_{1}\right)}(t) \cdots g^{\left(j_{\ell}\right)}(t)\right|}{\rho_{\ell}(g(t))}<\infty .
$$

F_{k} : For $1 \leq \ell \leq k, \nu \geq 0, j_{1}, \ldots, j_{\nu} \geq 1$ with $\ell+j_{1}+\cdots+j_{\nu}=k$,

$$
\begin{aligned}
& \sup _{t \geq \tau_{*}} D_{\ell+1}(t) R(t) \frac{\rho_{k}(t)}{\sigma_{j_{1}}(t) \cdots \sigma_{j_{\nu}}(t)}<\infty ; \\
& \sup _{t \geq \tau_{*}} D_{\ell}(t) \frac{\rho_{k}(t)}{\rho_{0}(t) \sigma_{j_{1}}(t) \cdots \sigma_{j_{\nu}}(t)}<\infty ;
\end{aligned}
$$

if $\nu \geq 1$, then for $1 \leq i \leq \nu, \sup _{t \geq \tau_{*}} D_{\ell}(t) \frac{\rho_{k}(t)}{\sigma_{j_{1}}(t) \cdots \sigma_{j_{\nu}}(t)} \frac{\sigma_{j_{i}}(t)}{\rho_{j_{i}}(t)}<\infty$.
Here if $\nu=0$, set $\sigma_{j_{1}}(t) \cdots \sigma_{j_{\nu}}(t)=1$. Note that the last condition should be satisfied only when $\nu \geq 1$.
If these conditions are satisfied, $\left\{\psi_{n}^{(k)}\right\}_{n=0}^{\infty}$ converges with respect to C^{k}-norm with weight ρ_{k}, and this implies that the limit $h(t)$ is C^{k}.
For $f(z)=P(z) e^{Q(z)}$, we can take weight functions of the form $\rho_{k}(t)=$ const $\frac{e^{\varepsilon t}}{t^{\mu_{k}}}$ with suitable $\mu_{k}>0$.

Future plan
Use the same estimates for the renormalization of irrationally indifferent fixed points of high type.

Quadratic polynomial is transcendental if you consider renormalizations

Thank you!

