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Brief Introduction

Asymptotic Regularization

Rewriting Af = g ε to autonomous ODE

ḟ (t) = A∗(g ε − Af (t)), f (t0) = f0, ‖g − g ε‖ ≤ ε.

That kind of ODE has a stationary state f∞ = (f +), which
coincides with the solution of Normal Eq. A∗Af∞ = A∗g ε. The
regularization here consists in choosing a proper finite time topt.

Application to Nonlinear Problems F (w) = g ε

ẇ(t) = F ′(w(t))∗ [g ε − F (w(t))] , w(t0) = w0

Now, the problem obviously consists in solving those ODEs.

Tautenhahn U., On the asymptotical regularization of nonlinear ill-posed problems. Inverse Problems,
10(6):1405-18, 1994.
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Christine Böckmann, Pornsarp Pornsawad Co-authors: L. Osterloh, A. Kammanee, A. Amodeo1, A. Papayannis2Iterative Runge-Kutta type Methods for Nonlinear ill-posed Problems and Applications



Inverse Ill-posed Problems
Runge-Kutta Iterative Regularization Methods

Application in Atmospheric Physics
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ODE Solvers

Application of Runge-Kutta family to asymptotic regularization

Applying a RKM
c A

bT ,i.e., a general s-stage method yields

fi+1 = r(−τi+1A
∗A)fi + τi+1t

−1(−τi+1A
∗A)A∗g ε

with rational functions r(s) and t(s)

A. Rieder, Runge-Kutta integrators yield optimal regularization schemes. Inverse Problems, 21(2005)pp. 453-71.

Stability Function r(s)

Is a rational approximation to the exponential function, so we write
r(s) = p(s)/q(s) with polynomials p(s) and q(s).
If a Runge-Kutta method has the stability function r(s) and is of
consistency order ψ, then r(s) = exp(s) + O(tψ+1) for t → 0 holds.

Christine Böckmann, Pornsarp Pornsawad Co-authors: L. Osterloh, A. Kammanee, A. Amodeo1, A. Papayannis2Iterative Runge-Kutta type Methods for Nonlinear ill-posed Problems and Applications



Inverse Ill-posed Problems
Runge-Kutta Iterative Regularization Methods

Application in Atmospheric Physics
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ODE Solvers

Main Goal: Fast Iterative Regularization Method

While in solving ODEs one main goal is maximal consistency order,
for iteratively solving ill-posed problems it is less important.

Butcher Barriers

The classical Runge-Kutta method is a 4-stage method of order 4
and has the stability function r(s) =

∑4
i=0

s i

i! ,
but it does not exist an explicit RK method of order 5 with the
stability function r∗(s) =

∑5
i=0

s i

i! due to the Butcher barrier.

Padé approximations

But it is still possible to construct an iteration for ill-posed
problems from this stability function. This leads to the concept of
iterative regularization methods via Padé approximations.
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Padé Iterative Regularization

Preconditioner

Padé iteration is a generalization of the Landweber iteration with
T = I (Euler method) via preconditioners. Thus, our equation
becomes

fi+1 = fi + τT−1(A∗g ε − A∗Afi ),

with T an invertible preconditioner. For the Padé iteration, the
preconditioner is defined via two polynomials. Those rational
functions are rational approximations to the exponential function.

A. Kirsche and C.B., Rational approximation for ill-conditioned equation system Appl. Math. Comput. 171 (2005)
385–97.
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Padé Iterative Regularization

Definition

Preconditioner for the (k, j)−Padé iteration method from the
polynomials

pk,j (s) =
∑j

i=0

(k+j
i

)−1(j
i

)
s i

i! and qk,j (s) = pj ,k (−s)

and

hk,j (s) =
∑max{k,j}−1

i=0
1

i+1

(j+k
i+1

)−1
[( j

i+1

)
− (−1)i+1

( k
i+1

)]
s i

i!

Setting t(s) = q(s)/h(s) and T−1 = t−1(−τA∗A), yields the
iteration equation

fi+1 = fi + τ t−1(−τA∗A)(A∗g ε − A∗Afi ).
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Padé Iterative Regularization

Convergence Properties

The (k , j)−Padé method has the following convergence behavior.

i If k ≥ j then the (k , j)−Padé method converges for all
stepsizes τ ∈ R+.

ii If k < j then τ1 ∈ R+ exists such that for all τ < τ1 the
(k , j)-Padé method is convergent and for all τ ≥ τ1 the
method is not convergent.

iii If k ≤ j then a unique effective stepsize (relaxation
parameter) τeff exists.

iv If k > j we have lims→−∞ |r(s)| = 0 and hence
no effective parameter τeff needs to be determined.
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Example

Convergence condition:
Spectral radius ρ(r(−τA∗A)) < 1
τeff = argmin ρ(r(−τA∗A))
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Padé Regularization for Linear Problems
Investigations of Nonlinear Problems

Padé Iterative Regularization

Optimal Convergence Rate

Let X ,Y be infinite dimensional separable Hilbert spaces and
A ∈ K(X ,Y ), k , j ∈ N+, g ∈ R(A), ‖g − g ε‖Y ≤ ε, τ < τ1 and
A+g ∈ Xµ = R((K ∗K )µ), µ > 0.
Then the discrepancy principle applied to the (k, j)−Padé iteration
method delivers a finite stopping index.
The Padé iteration method is order optimal for all µ ∈ (0,∞) and
has infinite qualification∗.

Filter: Fi (λ) =
1−rk,j (−τλ)i

λ

The (1, 0)−Padé and (2, 1)−Padé methods proved to have good
convergence properties.

∗ in classical sense

A. Kirsche and C.B., Padé iteration method for regularization Appl. Math. Comput. 180 (2006) 648–63.
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Applying to nonlinear Problems F (w) = g ε

Runge-Kutta Family

Applying RKM
c A

bT we obtain

w ε
n+1 = w ε

n + τn
∑s

i=1 biF
′(ki )

∗(g ε − F (ki ))
and
ki = w ε

n + τn
∑s

j=1 aijF
′(kj )

∗(g ε − F (kj )).

Define zi = ki − w ε
n. We approximate zi by using Taylor’s formula

and the fact that F ′(·) is a linear operator. We have

zi ≈ τn

s∑
j=1

aijF
′(w ε

n)∗(g ε − F (w ε
n))− τn

s∑
j=1

aijF
′(w ε

n)∗F ′(w ε
n)zj .
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Applying to nonlinear Problems

Family of iterative Regularization

With the notations Z := (z1 . . . zs)T and Sn := F ′(w ε
n) as well as

the operators Πn := δ + τnAS∗nSn and Hn := δ + τnASnS
∗
n which

are a linear ones we get

Z = τnΠ−1
n A1S∗n (g ε − F (w ε

n)),

w ε
n+1 = w ε

n + τnb
T 1S∗n (g ε − F (w ε

n))− τnb
T S∗nSnZ .

Finally,
w ε

n+1 = w ε
n + τnb

T Π−1
n 1S∗n (g ε − F (w ε

n)).

In particular, the well-known nonlinear Landweber and
Levenberg-Marquardt methods correspond to the 1-stage explicit
and implicit Euler method.

Hanke M, A regularizing Levenberg Marquardt scheme, with applications to inverse groundwater filtration
problems. Inverse Problems 13(1997)79-95.

Christine Böckmann, Pornsarp Pornsawad Co-authors: L. Osterloh, A. Kammanee, A. Amodeo1, A. Papayannis2Iterative Runge-Kutta type Methods for Nonlinear ill-posed Problems and Applications



Inverse Ill-posed Problems
Runge-Kutta Iterative Regularization Methods

Application in Atmospheric Physics
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Convergence Behavior

Assumptions to the Operator

Local condition on F (as usual)

‖F (w̃)− F (w)− F ′(w)(w̃ − w)‖Y ≤ η‖F (w̃)− F (w)‖Y (1)

w , w̃ ∈ Bρ(w0) ⊂ D(F ) with 0 < η < (c2
1 − τc2

aτ )/(2c1) ≤ 1/2.

Upper and Lower Bounds

c1√
2
‖y‖Y ≤ ‖bT H−1

n 1y‖Y ≤ c1‖y‖Y , (2)

‖bT (A− I )S∗nH−1
n 1y‖X ≤ caτ‖y‖Y .

with c1 > 0, caτ > 0.
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Convergence Behavior

Hölder Source Condition

w †−w0 = (F ′(w †)∗F ′(w †))γv , 0 < γ ≤ 1
2 , ‖v‖ sufficiently small

Note this is a particular case with ϕ(t) = tγ of a general source
condition w † − w0 = ϕ(F ′(w †)∗F ′(w †))v with a continuous,
strictly increasing index function ϕ with ϕ(t)→ as t → 0+.

Others e.g.: ϕ(t) = tγ ln−p( 1
t ) and ϕ(t) = exp( p

t )

• Mathè P, Pereverzev S V, Geometry of linear ill posed problems in variable Hilbert scales. Inverse Problems
19(2003) 789-803.
• Hofmann B, Mathè P, Analysis of profile functions for general linear regularization methods. SIAM J. Numer.
Anal. 45(2007)1122-41.
• Hohage,T., Logarithmic convergence rates of the iteratively regularized Gauss - Newton method for an inverse

potential and an inverse scattering problem Inverse Problems, 13(1997)1279-1299.
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Convergence Behavior

a-posteriori PCR: Discrepancy principle

‖g ε − F (w ε
n∗)‖Y ≤ µε < ‖g ε − F (w ε

n)‖Y , 0 ≤ n < n∗,

with µ ≥ (2(η + 1)c1) /
(
c1(c1 − 2η)− τc2

aτ

)
> 0

Convergence Theorem

It holds‖w∗ − w ε
n+1‖X ≤ ‖w∗ − w ε

n‖X , 0 ≤ n < n∗ (exists finitely).

If ε = 0 then
∑∞

n=0 ‖g − F (wn)‖2
Y <∞.

If w† is the unique solution of minimal distance to w0 and if
N (F ′(w†)) ⊂ N (F ′(w)) for w ∈ Bρ(w0) then wn → w†.

If ε > 0 one gets w ε
n∗(ε) → w† as ε→ 0.

C.B., P. Pornsawad, Iterative Runge-Kutta-type methods for nonlinear ill-posed problems.

Inverse Problems, 24(2008)(17pp).
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Convergence Rate Analysis first stage RKM

Adaption to s = 1

Applying RKM
c a

1
with a ∈

(
3− 2

√
2, 3 + 2

√
2
)

then

µ ≥ 8a(η + 1)/(4a(1− 2η)− (1− a)2) and
η < (4a− (1− a)2)/(8a) since caτ ≥ |1− a|/(2

√
τa) and c1 = 1.

Thus the stepsize parameter is not limited.

Usual Operator Assumptions

‖F ′(w)‖Y ≤ cF < 1 and F ′(w) = RwF ′(w †) hold for w ∈ Bρ(w0).

Moreover, we assume ‖Rw − E‖ ≤ cL‖w − w †‖, cL > 0, and
0 < cR ≤ |‖Rw‖ − ‖E‖|.

We have ‖Rw‖ ≤ cr since Rw is linear bounded.
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Convergence Rate Analysis first stage RKM

Main Theorem: Order Optimal Rate

There exists a positive constant c∗, depending on γ only,

‖w † − w ε
k‖X ≤ c∗‖v‖X (k + 1)−γ

‖g ε − F (w ε
k )‖Y ≤ 3c∗‖v‖X (k + 1)−γ−

1
2 for 0 ≤ k < k∗ where k∗

is the termination index. Moreover,

k∗ ≤ c∗∗ (‖v‖X/ε)2/(2γ+1) (3)

and
‖w † − w ε

k∗‖X ≤ c∗∗∗‖v‖1/(2γ+1)
X ε2γ/(2γ+1). (4)

with c∗∗, c∗∗∗ > 0 depending on γ ∈ (0, 1
2 ].

• P. Pornsawad and C.B., On the convergence rate analysis of the first stage Runge-Kutta-type regularization.
Inverse Problems,26(2010)(12pp).
• Hochbruck M, Hönig M and Ostermann A, A convergence analysis of the exponential Euler iteration for
nonlinear ill posed problems. Inverse Problems,25(2009)(18pp).
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Padé Regularization for Linear Problems
Investigations of Nonlinear Problems

Example
Radau τ̄ n∗ [sn∗−1]sn∗ [en∗−1]en∗
Method 10 22 [1.0194]0.9259 [0.1156]0.1053

102 3 [1.1009]0.4702 [0.1245]0.0563

[F (w)] (s) = exp
∫ 1

0 k(s, t)w(t)dt 103 2 [1.0161]0.3178 [0.1139]0.0364

noisy data gε(s) =
(

s4 − 2s3 + s
)
/12 + ε cos(100s) 104 1 [–]0.4044 [–]0.0423

s ∈ [0, 1], ε = 0.001,m = 65, µ = 2.1,w0(t) = 0 105 1 [–]0.3257 [–]0.0529

106 1 [–]0.3164 [–]0.4273
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Padé Regularization for Linear Problems
Investigations of Nonlinear Problems

Example

[F (w)] (s) = exp

∫ 1

0
k(s, t)w(t)dt (5)

with the noisy data gε(s) =
(

s4 − 2s3 + s
)
/12 + ε cos(100s), s ∈ [0, 1] and the exact solution

w†(t) = t(1− t), t ∈ [0, 1]. The kernel function is given by

k(s, t) =

{
s(1− t) if s < t;
t(1− s) if t ≤ s.

(6)
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Example

We can see that the values of k∗ and the L2−error do not fit to a perfect straight line because random noise is

involved in setting the perturbed data. However, the asymptotic behavior can be observed for both figures.
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observed aerosol layer in March 2000

Scattering and absorption of solar and 
infrared radiation

(Direct Aerosol Effect)

Changes in clouds 
(Indirect Aerosol Effect)

This cloud has only few cloud 
droplets, hence, reflects less 
sunlight (darker cloud).

This cloud has more cloud 
droplets, hence, reflects more 
sunlight (lighter cloud).

1. Why Aerosols 

are Important ?
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2. Lidar System Set Up

NTUA 6-Wavelength Raman Lidar: 
Member of EARLINET Lidar Network

355, 532, and 1064 nm, 10 Hz repetition rate

Elastic: 355 , 532 , 1064 nm
+ Inelastic (Raman): 387nm (N2) and 607nm (N2)

Detection:Emission 
(Nd:YAG laser)
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3. Retrieval of Aerosol Optical Properties

Raman lidar equation:

Numerical Derivative:    (P. Pornsawad, C.B. , C. Ritter, Appl. Opt. 2008)
ill-posed Problem – very sensitive to data errors Regularization helps
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Padé (1,0) – Iteration
with L-curve

Potenza, Italy 40°36‘N 15°44‘E

26 May 2008 19:43 - 20:43 UTC
30 Aug 2007 18:06 - 18:18 UTC
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4. Retrieval of Microphysical Properties

Fredholm system of two integral equations of the first kind 
for the backscatter (π) and extinction (ext) coefficients:

max max

min min
/ /

3( ) ( , , ) ( ) d ( , , ) ( ) d
4

r rv
ext extr r

K r m v r r Q r m v r r
rπ πλ λ λΓ = =∫ ∫βaer or αaer =

again an ill-posed problem

2

2 2 2 2
1 1

1 2(2 1)( 1) ( ) , (2 1) Re( )n
n n ext n n

n n
Q n a b Q n a b

k r k rπ

∞ ∞

= =

= + − − = + +∑ ∑where (for homogeneous 
spheres)

β(λ):   aerosol backscatter coefficient
α(λ):   aerosol extinction coefficient
v(r):    particle volume distribution
m:         refractive index
Q (λ,r,m): efficiency of sphere (backscatter or extinction)
rmin , rmax:    particle radius (realistic lower, upper limits)

Regularization helps

(C.B., Appl. Opt. 2001, 2006)
( C.B. et al., JOSAA 2005)
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5.  Iterative Regularization by Adaptive Base Points

max max

min min
/ /

3( ) ( , , ) ( ) d ( , , ) ( ) d
4

r rv
ext extr r

K r m v r r Q r m v r r
rπ πλ λ λΓ = =∫ ∫Integral Equations:

ill-posed
Discretization
by Collocation Using B splines of order 3 or 4

Linear Equation System:
ill-conditioned KT K = KT Γ

Solving by an iterative regularization method

- Number of iteration steps serves as regularization parameter
- Using adaptive base points
- Non-negativity restriction by projection during iteration steps 

(L. Osterloh, C.B., SPIE 7475 (2009)1-8)
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Projected
Padé (2,1)
Iteration with
Discrepancy
Principle
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Error on refractive index grid
The true (input) refractive index for this
simulation was 1.55 + 0.015i. The data was 
disturbed by 1% Gaussian noise.

All solutions for chosen
refractive index points

Tables containing the
calculated microphysical
properties for chosen
refractive index points

radius (µm)
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Refractive index

Solution domain

input
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Case Study : Forest fire aerosols (29 06 07)

MODIS 290607 

(UT)

Aerosol backscatter coefficient @532 nm (1/m*sr)
(Qualitative figure only)

(A. Papayannis et al, Proc. 24. ILRC 2008)
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A bimodal reconstruction has 
been calculated for the best data

point.

The average microphysical properties for
the 50 best data points.

Layer height: 1200 – 2650 m

Case Study : Forest fire aerosols (29 06 07)

Refractive index

Output

imaginary part

re
al

 p
ar

t

volume distribution
error: exp(x)%

v(
r)

 v
ol

um
e 

di
st

ri
bu

tio
n 

(µ
m

3 /c
m

3 µ
m

)

radius (µm)

Retrieved average microphysical properties (around the best point):
m=1.386(±0.019)+0.006(±0.004)i, reff=0.1±0.023 (µm)
vol.conc.=34.771±5.873 (µm3cm-3), surf.conc.=1124.64±472.43 (µm2cm-3)
SSA(355nm)=0.956±0.029, SSA(532nm)=0.938±0.039

In good agreement with an additional chemical analysis.

Solution domain
coarse mode

fine mode

The diagonal structure is an important
feature meaning good measurement data.

A. Nenes and C. Fountoukis are acknowledged
for the provision of the ISORROPIA II model.
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Thank you very much for your interest and your attention.
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