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Abstract

Five different methods for determining optimum fluid
temperature changes during heating or cooling thick plate
are examined. The first method presented in this paper is
based on the discrete form of Duhamel’s integral. The
method can be easily applied to bodies of complex shapes
and is recommended for use, while three other methods: the
Laplace Transform, Burggraf analytical method, and space
marching method can be applied to only a very limited
number of optimum control problems. In the fifth approach,
the optimum fluid temperature changes are approximated by
a function with unknown parameters, which are determined
using the least squares method.



These five techniques were used to determine time changes
of fluid temperature assuring linear increase of the slab wall
temperature at the given location inside the body. No one
approach is perfect. The optimum fluid temperature changes
are burdened with a large uncertainty at the beginning of the
heating process.



1. Introduction

Large thermal stresses can occur at the inner surface
of thick walled pressure components of steam boilers during
the start-up and shut-down operations. Measurements of
strains or stresses on the inner component surface, which is
exposed to hot fluid under high pressure, is extremely
difficult. For this reason, the thermal stresses at the inner
surface are monitored indirectly by measurements of time
variations of the component wall temperature at the interior
location or at the outer thermally insulated surface, which are
easily accessible. From the solution of the inverse heat
conduction problem (IHCP) the spatial temperature
distribution in the whole component for any time is
determined.



In computer monitoring systems used in power plants, the
time-space temperature and stress distribution in the
pressure components is calculated sequentially in an on-line
mode in order to inform the operator or the control system to
take measures to speed up or slow down the start-up or
shutdown process.

Determination of optimum fluid temperature changes
is also an inverse heat conduction problem. To avoid excess
thermal stresses, the temperature of the component wall
should be increased or decreased according to the prescribed
function of time. Another option is to adjust the fluid
temperature changes in such a way that the thermal stress at
the point of stress concentration does not exceed the
allowable values.



With the exception of the earliest time period, the optimum
rate of fluid and wall temperature changes is constant, if the
physical properties of the component material and allowable
stress are constant. This optimum rate of fluid temperature
changes can easily be determined based on the quasi-steady
state theory. However, determininig fluid temperature
changes at the earliest time of the transient process, which
assure that the calculated temperature at the outer
component surface is equal to the measured values or
changes according to the prescribed time function, is a very
difficult task.



Many numerical, analytical, and semi-analytical [14] 
approaches have been developed for solving IHCPs. Explicit 
analytical solutions are limited to simple geometries, but are 
very efficient computationally and are of fundamental 
importance for investigating basic properties of IHCPs. 

The problem of optimum heating or cooling will be 
solved under the assumption that physical properties of the 
component material and the heat transfer coefficient are 
constant.



The aim of the paper is to show how difficult the
inverse heat conduction problem (IHCP) is. Even for the
simple IHCP, when the temperature changes are exactly
known at the interior point, it is impossible to find a unique
solution at the initial stage of the transient process. The
discussion focuses on sequential inverse methods, which are
widely used in on-line thermal stress monitoring systems.
Whole domain estimation procedures, based on
simultaneously determining all the unknown parameters for
the total time interval, are less appropriate for on-line
applications, since the entire time history of the measured
temperature is not known in advance. Data points are only
available over the time interval from initial time till the
moment under consideration. In addition, the time of
computation should be smaller than the data sampling
period.



A new procedure for the solution of the linear IHCP
based on a numerical approximation of Duhamel’s integral in
conjuction with future time steps is presented.

This method and four other techniques: the Laplace
Transform method, the modified Burggraf solution, the space
marching method, and the whole domain least squares
method will be used for solving optimum heating problem
when linear time temperature variation is prescribed at the
insulated rear surface of the plate. New solutions for the fluid
temperature changes for this specific problem will be found.

Moreover, the optimum fluid temperature changes
obtained by the various methods considered in the paper will
be compared.



It must be emphasized that all the methods analyzed
in the paper exhibit some problems in determining initial
optimum fluid temperature changes if the wall temperature
changes are prescribed at the rear insulated surface. The
optimum fluid temperature changes, obtained by various
methods, differ significantly. The problems encountered in
the methods used in the paper will be discussed in detail.



2. Mathematical formulation of the problem

In the case of time-dependent boundary conditions,
the solution for the linear initial-boundary problem can be
significantly simplified by applying Duhamel’s integral
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where is the solution of the initial-boundary problem
with time-dependent fluid temperature at the location
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The initial value is a constant and does not depend on the
location. Function is the solution for the initial-
boundary problem with unit step increase of the fluid
temperature , . When the solution for
the unit fluid temperature change described by the Heaviside
function is known, it is easy to determine the solution

or the time-dependent fluid temperature . In
optimization of heating or cooling of the construction
element, the desired system response at the
inner point is given and the time changes of the fluid
temperature
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is searched for. 



The optimization problem is reduced to the solution of the 
Volterra integral equation of the first kind.

To evaluate the convolution integral in equation (2),
the real changes of the function are
replaced by a step-wise function
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where M  is the number of time steps.



A simple way of determining the integral in equation
(2) is the method of rectangles. However, in case of too small
integration time steps unexpected instabilities
can appear in the estimated function .

To assure the stability of the calculations, the time step
of determining the fluid temperature should be

larger than the critical value evaluated from the
condition
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where and is the distance between
the point and the body surface and denotes the thermal
diffusivity of the body.
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In practice, time step given by equation (4) is too big,
making it impossible to reconstruct the rapidly changing
fluid temperature that causes a specified output y(t)
inside the body or on its surface.

This problem is especially important at the beginning of the
optimum heating or cooling process. In this paper, so-called
future time steps are used for stabilising the solution of the
inverse problem. These were introduced by Beck in the
inverse problem analysis. The efficiency of the future time
steps results from the artificial extension of the basic time
step . This approach is very useful in inverse problems
because the time changes of the fluid temperature

received in the interior point are significantly
delayed and damped.
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Evaluation of will be performed step by step.
First, will be evaluated, then , etc. In each case it is
assumed that the values of and are known.
The value remains to be calculated in the time interval

(Fig. 1). The time interval will be artificially
extended by future time steps, with the assumption, that
in the extended interval, the value of the
function remains constant and equals , i. e.,
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Fig.1. Stepwise approximation for and use of
future temperatures to stabilise the inverse problem of optimum
heating
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The value of the fluid temperature (input signal)
is determined from the equation (2) which can

be written in the form:
M f Mf T t
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It is assumed that the value evaluated in this way is valid
only in the interval .
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The convolution integral in equation (1) can be calculated
numerically using the method of rectangles
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Substituting (7) into (6) yields
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Equations (9) and (10) allow us to sequentially calculate
etc. The time interval does not

have to be as large as given by equation (4). If , the
time step can be several times smaller. Stable
solutions are already obtained at . In
comparison with denotes a
significant increase in the frequency of determining

. Future time steps increase the stability of
the calculations, however they diminish the accuracy of

estimation.
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The Laplace Transform is another method that allows
determining optimum fluid temperature changes. By taking
the Laplace Transforms of both sides of the equation (2) we
obtain
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Where is the complex variable.s



The initial value of is . In order to find
the corresponding function of time , an inversion of the
Laplace Transform (12) can be performed analytically or
numerically. In the numerical procedures for finding the
inverse Laplace Transforms, the time sampling interval

must be sufficiently large enough to obtain stable results
for . This is the main drawback of using the Laplace
Transform based method to determine the optimum changes
of . If the point is situated at a large distance from
the heated surface, then the time interval should be large
enough to assure the stability of the solution. The
requirement of large time steps does not allow determining
quick changes of the fluid temperature , which occur
at the initial period of optimum heating.
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The third method, which can be used to determine
the optimum fluid temperature , is the analytical
solution of the inverse heat conduction problem presented
by Burggraf. The Burggraf method is appropriate only for
one-dimensional problems and does not allow us to
determine the optimum temperature at the initial
time period.

The same drawback has the solution obtained by the
space marching method, which is identical to that obtained
by the Burggraf method.

In the fifth method a time function representing
optimum changes of the fluid temperature is assumed and
unknown parameters are estimated using the least squares
method.
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3. Example of applications

The objective of this example is to determine the
optimum temperature changes for which the
temperature of the slab in the point increases linearly with
time

fT t
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where vT is the constant temperature rate (Fig.2).



Fig.2. Location , at
which temperature
changes according to
the prescribed function
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The mathematical formulation of the problem is
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The boundary condition of the third kind is given at the
exposed surface. The time varying fluid temperature

will be determined from the solution of the problem
(14-18).

Calculations were carried out for the slab of thickness
m with the uniform initial temperature . The

physical properties of the slab made from carbon steel are:
=7800 kg/m3, c=482 J/(kgK), k=42 W/(mK), where
- density, c - specific heat capacity and k - thermal

conductivity. The heat transfer coefficient at the exposed slab
surface is h=2000 W/m2 K. The rear surface of the slab is
thermally insulated. The temperature of the rear surface
(xT = 0) increases with the constant rate . The
methods described above will be used for determining .
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3.1. Approximate solution based on the 
numerical integration of the convolution integral

In order to calculate by using formulas (9-10) it
is necessary to solve the heat conduction equation (14) with
the conditions (15), (16) and (18) for , . The
exact analytical solution of this problem is:
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where: is thermal diffusivity, are the positive
roots of , and is the Biot number.
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Optimum fluid temperature changes are shown in
Fig. 7. Since the point P is located on the rear, insulated
surface not directly adjacent to the fluid, the future time
steps were used (F=5). The phenomenon of strong damping
and delaying of temperature changes at the body
inside causes large discrepancies in the estimated changes of

for small time values. After the initial allowable
temperature increase over , a rapid decrease in
temperature to about occurs, and then the
temperature rises with a constant rate of .
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Fig.3. Optimum fluid temperature changes obtained by using
the Burggraf solution and space marching method



3.2. Determination of the optimum fluid 
temperature changes using the Laplace 
Transform

If the prescribed temperature changes of the slab at location
are given by the equation (13), then the Laplace Transform

(12) becomes
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Applying the inverse Laplace Transforms to the equation (20) 
gives
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The expression (21) represents the exact solution of the
problem (14-18). In practice, it is difficult to find temperature

for , because the exponential term in (21)
is close to zero and the equation (21) reduces to the quasi-
steady-state solution
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Thus, the form of the equation (21) is not appropriate for
determining optimum temperature changes of the fluid in
the early time stages of the slab heating, if / 1.Tx L



3.3. Determination of the optimum fluid 
temperature changes by using the Burggraf and 
space marching methods 

Burggraf presented one of the earliest analytical solutions of
the one-dimensional inverse heat conduction problem.
When , then applying the Burggraf method to the
inverse problem yields
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Thus, the obtained result (24) is identical with the quasi-
steady-state solution (22) and is not adequate for small time
values. It is worth mentioning that the same solution (24)
gives the space marching method.

Examining the function (23) at shows, that the initial
temperature distribution is non-uniform
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In order to alleviate this difficulty the general problem given
by equations (14-17) may be separated in accordance with the
superposition method into a set of simpler problems
containing: a homogenous transient problem and quasi-
steady-state problem.



The optimum fluid temperature changes , which were
calculated using Eq. (24) and the space marching method
developed in [14], are shown in Fig. 3. Taking into account
that that the temperatures at the boundaries are:
TB(0, t) = vTt and TB(L, t) = vT [t +L2/(2 )], the method of
superposition will be used to satisfy the initial condition
given by Eq.(15). The transient temperature distribution TT

is the solution of the heat conduction equation
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with the boundary conditions
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Solving the initial-boundary value problem defined by Eqs
(26)-(29) using the method of variable separation yields the
transient temperature distribution TT(x,t). The complete
solution for temperature distribution , that
satisfies the initial condition (15), can be expressed as
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The transient part of the complete solution T which is
needed to improve the quasi-steady-state solution (Burggraf
solution) is shown in Fig. 4.

TT



Fig.4. Transient part of temperature distribution which is 
needed for modifying the Burggraf solution



The heat flux is given by,q x t
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The optimum heat flux at the exposed surface is shown in
Fig. 5.



Fig.5. Heat flux at the exposed surface during optimum
heating



The optimum fluid temperature is determined from
equation (18) as
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Where and are defined by equations (30) and
(31), respectively. The optimum temperature history

calculated according to equation (30) is compared in
Fig.3 with the approximate solution based on the numerical
integration of the convolution integral. The deviations
between the estimated and optimum temperatures

were found to decrease with increasing time intervals.
The temperature distribution across the slab thickness
during the optimum heating is shown in Fig.6.
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Fig.6. Transient temperature distribution in a slab during
optimum heating



3.4. Determination of the optimum fluid
temperature changes by solving the parametric
least squares problem

Optimum changes of the fluid temperature
during heating of the slab, which are shown in Fig. 7,

are very difficult to carry out in practice for the initial
stage of the component heating. However, optimum
fluid temperature changes can be approximated by a
ramp function consisting of a step increase in fluid
temperature Ts followed by the temperature increase
with a constant rate vT.
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Fig.7. Optimum changes
of the fluid temperature

during heating of the
slab with the prescribed
temperature of the
insulated rear side:
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The solution of the direct heat conduction problem, which is
defined by the heat conduction equation (14), initial
condition (15), boundary conditions (16) and (18) with the
fluid temperature given by
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is as follows
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where the influence function u(x,t) is defined by Eq.(19).



Substituting Eqs (19) and (33) into Eq. (34) and integrating
gives
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In the inverse problem, the unknown parameters Ts and vT

are to be adjust to satisfy approximately the following system
of equations

0i T i t y t T x ,t , i 1, ,n . (38)

where the prescribed temperature y(t) changes at the
location xT are given by Eq. (17).
The least squares method is used to estimate parameters Ts

and vT. The parameters Ts and vT are computed by
minimizing the sum of squares of the differences between
values given by the model (39) and those obtained from
Eq. (17):

2

1

tn

L i T i

i

S y t T x ,t . (39)



It is necessary to find the values of Ts and vT, for which the
two partial derivatives are simultaneously zero:
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Finding dervatives (40) gives a set of linear equations in the
unknowns Ts and vT, which has the following solution
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The discrepancy between the prescribed function y(t) and
the fitting function T(xT,t) can be quantified by the mean
square error (standard deviation), defined as
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The symbol m denotes the number of parameters to be
estimated. In this example, m is 2. The values of Ts and vT are
also determined by the modified Levenberg-Marquardt
method using the subroutine BCLSF from the IMSL
mathematical library.
As an example, we shall fit the solution (35) to the function
y = 0.1t .



As the time points ti are equally distributed with the time
step t, the time points ti are given by

1i tt i t , i ,...,n (45)

The number of time points nt is 100. Parameters Ts and vT

were computed for three different time steps t : 12 s, 30 s,
and 60 s. The following results were obtained:

•

•

•

The same results were obtained using the Levenberg-
Marquardt method.
The computed fluid and wall temperatures are shown in Figs. 
8a, 8b, and 8c.
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Fig.8a. Fluid and slab temperature changes when optimum fluid
temperature changes are approximated by a ramp function; t = 12s.



Fig.8b. Fluid and slab temperature changes when optimum fluid
temperature changes are approximated by a ramp function; t = 30s.



Fig.8c. Fluid and slab temperature changes when optimum fluid
temperature changes are approximated by a ramp function; t = 60s.



4. Examples of calculation of optimum fluid 
temperature with respect to thermal stresses 

Firstly, the optimum medium temperature changes
over time, during the heating of a plate, of the thickness
H = 0.1 m will be determined. The edges of the infinitely
large plate can expand freely, but they cannot bend. The
following data was assumed for the calculations: the thermal
conductivity: k = 41.1 W/(m·K), the specific heat:
c = 532 J/(kg·K), the density: ρ = 7782 kg/m3, The Young
modulus is E = 1.966·1011 N/m2, the linear thermal expansion
coefficient b = 1.32·10-5 1/K and the Poisson ratio n = 0.29.
The heat transfer coefficient at the surface of the heated plate
equals: h = 2000 W/(m2·K). The other surface of the plate is
thermally insulated.



Fig. 9. Plot of the influence function for the 0.1 m thick plate



The allowable compressive stress on the heated surface of the
plate is: = - 109.1 MPa. At the start time, the plate
temperature is even and equals 0o C. The time changes of the
influence function for various heat transfer coefficients are
presented in Fig. 9. The time point, at which the influence
function reaches the maximum absolute value, depends on
the heat transfer coefficient. The greater the value of the heat
transfer coefficient, the earlier will the absolute maximum
value of the stress occur. The maximum absolute value of the
influence function also increases with the increase of the
value of the h coefficient. The optimum changes of the
medium temperature are shown in Fig. 10.

a



Fig. 10. Optimum medium temperature during the heating 
process of a thick walled plate



From the analysis of the results presented in Fig. 10 can be
seen, that it is impossible to achieve the optimum medium
temperature at the beginning of the heating process, because
this temperature is very high. Thus, the optimum
temperature was approximated, using a ramp function
consisting of the step temperature rise at time t = 0 and a
linear temperature increase for time t > 0. The value of the
initial medium temperature jump and the rate of the linear
medium temperature rise were determined using the least
squares methods, in such a way that assures that the integral
over time from the square of the difference between the
actual stress and the allowable stress on the heated surface of
the plate is minimised.



In the estimated optimum medium temperature
Tf,ramp = 54.94 + 0.0998 t time t is expressed in seconds. This
optimum ramp heating can easily be conducted in power
plants. The step increase of the medium temperature by
54.94 K can also be achieved without difficulty in real life by
flooding the component with water at a temperature higher
by 54.94 K than the initial temperature of the component.



Fig. 11. Longitudinal section of
the boiler drum – downcomer
junction



In the second example, optimum water temperature changes
will be determined with respect to total stress at the points P1

and P2 on the edge of the boiler drum-downcomer
intersection. The following boiler drum dimensions were
assumed for the calculation: D = 1.7m, d = 0.09m, H = 0.09m
and h = 0.006m (Fig. 11). Also, the following properties of
steel were assumed: k = 42 W/(m·K); c = 538.5 J/(kg·K); =
7800 kg/m3; E =1 .96 1011 N/m2; = 1.32 10-5 1/K and = 0.3.
The heat transfer coefficient on the inner surface of the drum
and downcomer is h = 1000W/(m2·K). The outer surfaces of
the boiler drum-downcomer intersection are thermally
insulated. The stress distribution analysis was done for the
elastic state.



The stress concentration coefficients are: p = 2.65 at the
point P1 and p = 0.51 at the point P2, respectively. Since the
diameter and wall thickness of the downcomer tube is much
smaller than the diameter and wall thickness of the boiler
drum, the intersection resembles a plate with a hole
subjected to biaxial stretching stresses with 2:1 ratio. For a
plate with such a load, the stress concentration coefficient is
2.5 at the point P1 and 0.5 at the point P2. The thermal stress
concentration coefficients in quasi-steady state are T = 1.86
at the point P1 and T = 2.074 at the point P2, respectively.
Numerical model has been used for the determination of the
influence function at points P1 and P2.



FEM analysis was carried out by means of the ANSYS
software. The maximum absolute value of the function u(r,t)
is larger at the point P2 in comparison with its value at the
point P1. Since total compressive stresses at the point P2 reach
a larger value, the optimum medium temperature change rate
with regard to circumferential stresses at point P2 is smaller
than the temperature change rate at point P1. Furthermore,
the temperature jump at the beginning of the process is
smaller at the point P2. If stresses at the point P2 affect the
course of heating and cooling, the start-up operation is
longer, while shut-down lasts shorter in contrast to durations
obtained by means of the approach, when P1 is the criterion
point.



Fig. 12. Optimum medium temperature
(a) and pressure (b) of the saturated
water and total circumferential stresses
(c) at the points P1 and P2 when optimum
medium temperature changes are
determined from the condition that the
total circumferential stress at the point P1

is equal to the allowable stress a



Fig. 13. Optimum medium temperature
(a) and pressure (b) of the saturated water
and total circumferential stresses (c) at the
points P1 and P2 when optimum medium
temperature changes are determined from
the condition that the total
circumferential stress at the point P2 is
equal to the allowable stress a



Next, the changes of total stresses, in conjunction with
determined optimum temperatures, was determined by
means of the 3D FEM analysis to check that total stresses do
not exceed the allowable stresses. From the analysis of the
results, one can see that allowable stresses are exceeded at the
point P2 (Fig 12c), when the optimum medium temperature is
determined with respect to total stresses at point P1 If the
optimum heating and cooling of a boiler drum is carried out
with respect to total stresses at the point P2, the maximum
stresses on the edge of a hole at the points P1 and P2 are
smaller than the allowable stresses (Fig. 13c). It is
advantageous when the boiler drum is heated with respect to
stresses at the point P2 , since the allowable stresses both at
the point P1 and P2 are not exceeded and the lifetime of the
pressure component is longer.



4. Conclusions

Five different methods for predicting optimum
temperature changes of the heating fluid were presented.
The solutions based on the numerical approximation of the
convolution integral compare favourably with other methods
and can be used to determine the optimum fluid
temperature with respect to the prescribed temperature or
stress histories at the interior location. This method is
appropriate for bodies with complex shapes. The influence
function can be computed using the Finite Element Method.



The solution for the optimum temperature of the fluid
obtained by using the Laplace Transform method is accurate,
if the desired temperature history is prescribed at locations
near the heated surface. The Burggraf method is inaccurate
to predict optimum temperature changes in the early stages
of heating. It requires an improvement of the inverse
problem solution to account for the non-uniform
temperature distribution resulting from the quasi-steady-
state temperature distribution. The identical results to those
obtained by the Burggraf method gives the space marching
method. In the fifth method the optimum fluid temperature
is approximated by an appropriate function of time and
unknown parameters.



All the analyzed methods are not able to find an exact or
accurate optimum fluid temperature changes at the
beginning of the heating process.

The difficulties encountered in searching of the solution of
the transient IHCP realize us, that we can find very often only
very approximate solution.


