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The speed or the bullet (the convergence rate of the regularization algoritiin,)

strongly depends on the properties of the desired subject
(5/1100L11IESS, SouUrce-wise representation. etc).
Jozef Brodsky, Nobel Prize Winner

Iterative andl direct methods

Example ofi acoustic inverse problem

Usage ofi a priori infermation — V.V. Vasin , A.G. Yagola

Linear algebraic systems — S.K. Goedunov scheme

Mathematics

Applications

Remark: well-known approaches are described in the well-known

books by A.N.Tikhonov et al, V.K. lvanov et al, M.M. Lavrentiev et al,
H. Engl et a/

We use some new lapproaches from the books and papers by:
Vasin, Ageev-Vasin, Eremin-Vasin
Yagola , Leonov
Kabanikhin-Scherzer-Shishlenin-Vasin
Kabanikhin-Schieck
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lll-Posed and Inverse Problems
Differential, Integral, Operator Equations Variational Form
Aq =1 J(q) = <Aq -, Aq - > - min

A(G +6q) —Aq =A@ éq +o(lléql]) J(@ =2[A@)]" (Ag—1)

e methods:
I iteration
q,- o [A'(9,)] *(Ag,-T)
methods
= 0,-a,J'(q,)
Newton-Kantorovich
On+1 = 90— [A'(9,)] * (Aq, - )

Direct methods:
4 Linearization: A’(q,)

O Finite-Difference Sche
Gelfand-Levitan method
L Boundary Control method

Levenberg-Marquardt

O Singular Value Decomposition
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INVENSENOIBRIEMSHNNNAEMEALCS
It can be said that specialists In inverse and ill-posed
problems study the properties of and regularization methods
for unstable problems.

In other words, they develop and study stable methods for
approximating unstable mappings.

In terms of linear algebra, this means developing
approximate methods of finding normal pseudo-solutions to
systems of linear algebraic equations with rectangular,
degenerate, or ill-conditioned matrices.

In functional analysis, the main example of ill-posed
problems is represented by an operator equation Ag = T,
where A is a compact (completely continuous) operator.

In some recent publications, certain problems of
mathematical statistics are viewed as inverse problems of
probability theory.

From the point of view of information theory, the theory of
iInverse and ill-posed problems deals with the properties of
maps from compact sets with high epsilon-entropy to tables
with low epsilon-entropy.
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It is well known that many mathematical concepts and problem formulations are products of
studying physical phenomena.

This Is certainly true for the theory of inverse and ill-posed problems.

Plato’s philosophical allegory about echo and shadows on the cave walls (i.e., the data of an
inverse problem) being the only reality available to human cognition was a precursor to
Aristotle’s solution to the problem of reconstructing the shape of the Earth from its shadow
on the moon (projective geometry).

The introduction of the physical concept of instantaneous speed led Isaac Newton to the
discovery of the derivative, and the instability (ill-posedness) of the problem of numerical
differentiation of an approximate function is still a subject of present-day research.

Lord Rayleigh’s research in acoustics led him to the question of whether it is possible to
determine the density of a non-uniform string from its sound (the inverse problem of
acoustics), which brought about the development of seismic prospecting on one hand, and
the theory of spectral inverse problems on the other hand.

The study of the motions of celestial objects and the problem of estimating unknown
parameters based on measurement results that contain random errors led Legendre and
Gauss to overdetermined systems of algebraic equations and to the method of least squares.

1g_:aucl_'ly proposed the steepest descent method for finding the minimum of a multivariate
unction.

In 1948, L.V. Kantorovich generalized, developed, and applied these ideas to operator
equations in Hilbert spaces. At present, the steepest descent method together with the
conjugate gradient method are among the most popular methods for solving ill-posed
problems. It should be noted that Kantorovich was the first to point out that if the problem is

]ill—posetjl, then the method he proposed converges only with respect to the objective
unctional.
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Well — Posed Problems

g=a+b g=a-b

f(x) = £(0) + [a(¢) dé

u"(x) — a(u(x) = Au(x),
u(0) + hu’(0) =0,
u@+Hu'@) =0

a(x) = () + [K(x,£)a(d)dé
Au=0 Dirichlet, Newman, Robin (mixed)

Au=u, Cauchy, Initial - boundary att =0

Cauchy
Initial - boundary

Il — Posed and Inverse Problems

g=a-b, a=b q:%, b<<a
Aq= f A is ill-conditioned
det A is very small
q(x) = £'(x)

Inverse Sturm-Liouville problem

o I, 112} a(x)
jmyy) q(&,m)ds = f(x,y)
0= f(x) + [K(x&)a(£)de

Au=0 Cauchy, Initial - boundary. Part of the boundary

Au =-u,
U= f (%)
u, = Au

U|X:0 = fl(yit)i ux|X:0 a fZ(yit)
Dirichlet, Newman, Cauchy. Time - like part
L,u=0 L, —elliptic operator of the second order

L,u=u,
L,u=u,



Least Squares Method
1806 - AM.legendre  Nouvelfes methodes pour 1a determination

des oréites des comeles. Paris, Courcier

1809- C.F. Gauss Theoria molus corporum coelestium in
sectionibus conicis. Solem ambientium, Hamburgi

1948~ | .V.Kantorovich Functional analysis and applied mathematics.
Uspehi Mal. Nauk, V.3, N26, pp. 89-187

1963~ AN.Tikhonov  Regularization of incorrectly posed probfems.
Russian Math Doklady, V.153 N21, pp.49-52

A Ag=§
J(g)=(Aq-§,Aq-§) = min /
Jf(q,)'—'Z[A'J*(Aq,-f) A(q+5q)—Aq= Alg)dg+o(ldgl)
Gradien! Methods Newton-Kantorovich Method
q,,=9,- % [AT"(Aq, - f) q,..= q.- [AT"(Ag,-§)




Regularization Methods for Inverse Problems
The pseudoinverse and the singular value decomposition of an operator

Theorem (on the singular value decomposition of a compact
operator.) If Q and F are separable Hilbert spaces and A: Q — F
is a compact linear operator, then there exist orthonormal
sequences of functions {v,} C Q (right singular vectors),

{un} C F (left singular vectors), and a nonincreasing sequence of
nonnegative numbers {o,} (singular values) such that

Avp = oplp,

A u, = opvp,
span {v,} = R(A*) = N(A)*,
span {u,} = R(A) = N(A*)*,

and the set {o,} has no nonzero limit points.



Regularization Methods for Inverse Problems
The pseudoinverse and the singular value decomposition of an operator

The sequence {up} is a complete orthonormal system of
eigenvectors of the operator AA* such that

Av, = opun, A*u, = opva, neN

and the following decompositions hold:

Aq:ZU,,<q, Vn) Un, A*f:ZJn<f, Un) V.



Regularization Methods for Inverse Problems
The pseudoinverse and the singular value decomposition of an operator

Let A: Q — F be a compact linear operator, where @ and F are
separable Hilbert spaces (i.e., Hilbert spaces with countable bases).
A system {0, up, vp} with n €N, 0, >0, u, € F, and v, € Q will
be called the singular system of the operator A if the following
conditions hold:

@ the sequence {o,} consists of nonnegative numbers such that
{02} is the sequence of eigenvalues of the operator A*A
arranged in the descending order with respect to multiplicity;

@ the sequence {v,} consists of the eigenvectors of the operator
A*A corresponding to {02} (and is orthogonal and complete,
R(A*) = R(A*A));

o the sequence {u,} is defined in terms of {v,} as
up = Avp/||Avy]|.




Regularization Methods for Inverse Problems
The pseudoinverse and the singular value decomposition of an operator

Let QF denote the set of all pseudo-solutions to the equation
Aq = f for a fixed f € F.
Then

P _ . _ _ _ — . — P
QF = {4p : 1Ay — ]| = inf [ Aq — [} = {0: Aq = Ppzf).

which implies that Q,’? is nonempty if and only if

f € R(A) ® N(A*). In this case, QY is a convex closed set, and it
contains the element of minimal length, gnp, — a pseudo-solution
of minimal norm (Nashed and Votruba, 1976), also called the
normal pseudo-solution to the equation Aq = f (with respect to
the zero element).



Regularization Methods for Inverse Problems
The pseudoinverse and the singular value decomposition of an operator

For example, the problem Aqg = f is said to be weakly ill-posed if
on = O0(n™7) for some v € Ry, and strongly ill-posed otherwise
(for instance, if 0, = O(e™")).

The singular value decomposition of the operator A can be used to
construct a regularization method for the problem Ag = f based
on the projections of

n
fsn, Uj
= B,
=t

and prove that

)
Hqén_qan:O(Un—l—l‘i‘Ui)v n — oo.
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Forward (Direct) Problem

@ c?(X,y)v, =AV—VIn p(X,y)- Vv,
yeR™, x>0, t>0;

(2) V|o=0;

(3) v, (+0,y,t)=h(y)-o(t), yeR", teR

0 <c, <cxy) (c, = const) - velocity;
0 < p, < p(xy) ( pp, = const) - density;
V(x,y,t) - exceeded pressure.

Inverse Problem: find coefficients of equation (1) using additional
information:

(4) v(+0,y,t)= f(y,1), yeR", teR.
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Projection Method
u, =u, +u, —VInp(x,y)vu, x>0,t>0
Ul.,=0;
Uyl =h(Y) 6(1)
Ul,o=T(y,1)
u(x,y,t) =S(x,y) @(t—x)+u(x,y,t)

S, (xy) _1 p(xY)
S(x,y) 2 p(x,y)

u(x, y,t) = Zuj (x,t)e”;  p(xy)= ij (x) e
Vtt :Vxx B A(X)Vx — B(X)V V = (V—N ’V—N+1"°'1V01---1VN )

VoSl A(x) and B(x) depend on
V,| _,=H () pi%), j = - Ny- N+#1,...,0,...,.N

V‘X:O - F(t)



Gel'fand-Levitan-Krein method — statement of the problem

The sequence of forward initial boundary value problems
keZ ={0,x£1,x2, ..} or keZ".

Uy =Ug +A U =VInp(x,y)Vu*, x>0, t>0;
uk t<0E O’

= o (t) exp{iky}.

p(X,Y) = pn(x) expfiky}

uk

X

Inverse problem: find p(X,y)>0 using the traces of the solutions:

u (40, y,t) = f“(y,1).

The necessary condition of existence of solution to the inverse problem:

f5(y,+0) = —exp{iky}, keZ.



Gel'fand-Levitan-Krein Method

We use the sequence of Green’s functions, which solves

m

Wy =Wg +A w" =VInp(x,y)vw", x>0,teR
w™ (0, y,t) = 5(t) exp{imy}, w"(0,y,t)=0

For every meZ
W™ (X, y,t) = S™(X, ) [(X+1) + S (X —t) |+ W" (X, y,1)

m 1 p(xy) :
8" (%, y) =7 w/p(o, o explimy}

The sequence {fw "} is some kind of a bridge between the original problem and
{ @™ (x,t) } - the solution of the system of Gel'fand-Levitan equations
(Kabanikhin, 1988) :

X a T iky
20" (x,t) - — f“(t—s) D" (x,s)ds =— dy, [tl<x, keZ
Zmlj ot _[TP(O, y) !

eimy

d
2 /o6 )p0.y)

d"(x,t) = Q W;E;’Z Z/’)t) dédy  @"(x,x-0) :Tﬁ
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Gel'fand-Levitan-Krein Method

The multidimensional analog of Gelfand-Levitan-Krein (GLK) equation

2(Dk(x,t)—zm:__[x % f“(t—s) d"(x,s)ds =—_J;p(e(;’yy) dy

M<K keZ

The solution of inverse problem can be obtained from the solution of
Gelfand-Levitan-Krein equation by formula

1 ] | T eimy
x0T

;\/,o(o y) e ZCD (x,x—0)e™

p(X y)

Therefore in order to find solution p(X,y) in the depth x, we solve GLK
equation with the fixed parameter x, and then calculate p(x,,)) .

=
=



Newton-Kantorovich Method 1D
qn+1 — qn _[Al (qn)]_l(Aqn — f )

Theorem. Let T >0 and for f e L, (T) there exists solution g * of equation
Aq = f. Then exist 6* > 0 and we (0,1) such that if g @ e B;. (q*) then NK
converges to the solution g* and

g -qg® [ <o’ [[q-q@[]

1. Chose approximation g,(x).
2. Let g (x) be known.

3. Solve the direct problem: Uy, =U, — 0, (X)-u,, (xt)eA()
u,(x,x)=s,(x); u, (0,t)=0

4. Find A'(g,) u,= u,(0,0) - f(1).
5. Solve linear inverse problem: Wy, =W, — 0, (X)-W,, — 2, (X)-u,,,  (x,t)eA(T)

w000 =29 [ de w,0.=0

w, (0,t) =u, (0,t) - f (1)

6. Put ql7+1(X) = (7/7()() _/un(X)

N

|—



Landweber Iterations
Ot =0, —[A'(0,)] (A, - T)

1. Chose the approximation g,(x)
2. Let g, (x) be known

3. Solve the direct problem: Upy =Up — 0, (X) U, (X,1) e A(T)
u,(x,x)=s,(x); u,/(0,t)=0

4. Find the discrepancy 7n,.(t) = u, (0,t) - (©)

5. Solve the adjoint problem:
whtt =anx +(qn (X)Wn )x’ (X’t) = A(-I—)

v, (X,2T —x)=0
Wy (0,8) +0(0) - w(0,t) + 2[u, (0,1) - f ()] =0
6. Find

2T —X T

3'(0,)00) == [lwatn, Joxt)dt =[ [u, (7, + 70 Kt )l —% [0, ©uw, It tdt

X

7.Put q..,(x)=q,x)-aJ@,

s
L9



Numerical results — 2D-acoustics. MGL.
Exact, N=10, N=50




Numerical results — 2D acoustics. MGL.
Noise=0.05, N=10, N=50

|—
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Numerical results — 2D-acoustics. MGL.

=10, N=50

Exact, N
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Regularization Methods for Inverse Problems
Landweber iteration

We consider as the simpliest example the following inverse
problem: find function g(x, y) in domain (0, ¢) x (—m, m), which
satisfies the following conditions

Ut = Uxx + Uy — q(x,y)u, (x,y,t) € Q; (2)
Ult<o =0, tx|x=0 = 76(t); (3)

uly=r = uly=—z; (4)

u(0,y,t) =f(y,t), te(0,20). (5)

Here Q = {x,y,t : (x,t) € A({), y e (—m,m)} and

Al) ={(x,t): 0 < x <t <2l—x}.

Approximate solution of the inverse problem will be found in the
form of finite Fourier series (Py-approximation):

N N

q(x,y) = Z CIn(X)ei"y, u(x,y, t) = Z un(x, t)ei”y. (6)

n=—N n=—N



Regularization Methods for Inverse Problems
Landweber iteration

Let us introduce: U(x,t) = (u_pn, U_N41y---5 U .-, UN),
Q(x) =(g-n,---,90--.,qn) and consider inverse problem in
vector form:

U = U — B(x)U, (x,t) € A(Y); (7)
Uelxeo = 0, t € (0,20); (8)
U(x,x) = S(x), x¢€(0,¢); (9)
U(0,t) = F(t), te(0,2¢). (10)

Here B(x) is defined as follows (n = —N,..., N):

[B)Uln = rPun(x, t) + Y gnow(X)uk(x, t).
|k|<N,|k=n|<N

S(x) and F(x) are vector functions consisting of the Fourier
coefficients of functions —y + (3q(x, y) and f(y, t) correspondingly.
In inverse problem (7)—(10) we need to find the vector-function
Q(x) by known data F(t).



Regularization Methods for Inverse Problems
Landweber iteration

Let us consider inverse problem (7)—(10) as nonlinear operator
equation

A(Q) =F. (11)

Properties of operator A have been investigated in [6].
Due to the uniqueness of the solution to the inverse problem
(7)—(10) it is enough to find the minimum of cost functional

Q) = IIA(Q) = FIE 0.0 (12)

Here

”FH%z(ze) = Z ||fk”%2(0,2£)'
[k|<N



Regularization Methods for Inverse Problems
Landweber iteration

For solving minimization problem J(g) — inf we apply Landweber
iteration

QD) = Q) — A (QUI'(AQ™ — F)), n=0,1,.... (13)

Landweber iteration method can be considered as optimization
method with fixed descent parameter «,. Indeed it is easy to show
that

/(@) = 2[4 (@] (A@) - ).



Regularization Methods for Inverse Problems
Landweber iteration

Let us consider the following adjoint problem
Vi =V — [B(X)]'V, (x,t) € A(Y);
W, |x=0 = 2[U(0,t) — F(t)], t€(0,20);
V(x,20 —x) =0, x€(0,7).

One can easily check that the component of the gradient of (12) is
defined by formula

[ (@)]m(x) = 28(%my + Pme ) (x, x)+
20—x
. / U (s )b, ). (14)

[kISN,|k—m|<N



Regularization Methods for Inverse Problems
Landweber iteration

The scheme of Landweber iteration method
O Let QO(x) is initial guess.
Q Let Q(”)(x) be known, then solve the forward problem:

Ul = U — B (U™, (x,t) € AL);
Ul =0, te(0,20);

UM(x,x) = $M(x), xe(0,0).
@ Find discrepancy 7("(t) = U(M(0, t) — F(t) and its norm.
@ Solve the adjoint problem:
Wi = vl — BOGOIW, (x,1) € AY);

W) o = 2[UM(0,t) — F(t)], t e (0,20);
vN(x,2¢0 —x) =0, xe(0,90).
Define the gradient [J/(Q(™)](x) by formula (14)
@ Find QU (x) = Q" (x) — o[/ (QM)](x).



Regularization Methods for Inverse Problems
Modification of algorithm

The usual convergence theorem can be proved as in [5, 6].
Theorem(convergence of Landweber iteration). Let ¢ > 0 and

F € Ly(¢). Suppose that there exists a solution Qt € L(¢) of the
problem A(Q) = F. Then one can find such v, € (0,1), 6, > 0,
o, > 0, that if Q©) € B(Qt,6.) and a € (0, ) then the
approximations Q(" of Landweber iteration converge to the
solution Q1 as n — oo at the rate

1QT — QU|IF, ¢y < w162,



Regularization Methods for Inverse Problems
Modification of algorithm

Using constant r (||Q7/|1,(¢) < r) we modify the Landweber
iteration as follows. First, given the approximation Q(" we

calculate
Olnt1) — ln) _ a[A/(Q(m)r(A(Q(n)) _ F).
Then we put
Qnt+1) — { ; 8 O(iﬂ)’ !f H@(nﬂ)HLz(Z) <r
O(n+1) rHQ("H)HL:@)a if HQnHHLz(E) >

Theorem (convergence of modified algorithm). Suppose that there
exists a solution Qt € B(0, r) () L2(¢) of the problem A(Q) = F.
Then one can find such v, € (0,1), C. > 0, o, > 0, that for any
initial guess @©) and any a € (0, ) the approximations Q") of
Landweber iteration converge to the solution Q1 as n — oo at the
rate

1T = Q| < vZCZ.
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