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The speed of the bulletThe speed of the bullet (the convergence rate of the regularization algorithm(the convergence rate of the regularization algorithm))
strongly depends on the properties of the desired subjectstrongly depends on the properties of the desired subject

(smoothness, source(smoothness, source--wise representation etc).wise representation etc).
JozefJozef Brodsky, Nobel Prize WinnerBrodsky, Nobel Prize Winner

Iterative and direct methodsIterative and direct methods
Example of acoustic inverse problemExample of acoustic inverse problem
Usage of Usage of a prioria priori information information –– V.V. V.V. VasinVasin , A.G. , A.G. YagolaYagola
Linear algebraic systems Linear algebraic systems –– S.K. Godunov schemeS.K. Godunov scheme
MathematicsMathematics
ApplicationsApplications

RemarkRemark: well: well--known approaches are described in the wellknown approaches are described in the well--known known 
books by books by A.N.TikhonovA.N.Tikhonov et alet al, V.K. , V.K. IvanovIvanov et alet al, M.M. , M.M. LavrentievLavrentiev et alet al, , 
H. H. EnglEngl et alet al
We use some new We use some new iapproachesiapproaches from the books and papers by:from the books and papers by:

VasinVasin, , AgeevAgeev--VasinVasin, , EreminEremin--VasinVasin
YagolaYagola , , LeonovLeonov
KabanikhinKabanikhin--ScherzerScherzer--ShishleninShishlenin--VasinVasin
KabanikhinKabanikhin--SchieckSchieck
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Iterative methods:
Landweber iteration 

qn+1 = qn - α [A’(qn )] *(Aqn - f)

Gradient methods
qn+1 = qn - αn J’(qn )

Newton-Kantorovich
qn+1 = qn – [A’(qn )] -1 (Aqn - f)

Levenberg-Marquardt

Direct methods:
Linearization:  A’(q0 ) q1 = f1

Finite-Difference Scheme Inversion

Gelfand-Levitan method

Boundary Control method

Singular Value Decomposition

Ill-Posed and Inverse Problems

Differential, Integral, Operator Equations

Aq = f

A(q + δq) – Aq = A’(q) δq + o(|| δq ||)

Variational Form

J(q) = <Aq - f, Aq - f> → min

J’(q) = 2 [ A’(q) ] * (Aq – f)
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Inverse problems in mathematicsInverse problems in mathematics

It can be said that specialists in inverse and illIt can be said that specialists in inverse and ill--posed posed 
problems problems study the properties of and regularization methods study the properties of and regularization methods 
for unstable problemsfor unstable problems..

In other words, they develop and study In other words, they develop and study stable methods for stable methods for 
approximating unstable mappings.approximating unstable mappings.

In terms of In terms of linear algebralinear algebra, this means developing , this means developing 
approximate methods of finding approximate methods of finding normal pseudonormal pseudo--solutionssolutions to to 
systems of linear algebraic equations with systems of linear algebraic equations with rectangular, rectangular, 
degenerate, or illdegenerate, or ill--conditioned matrices. conditioned matrices. 
In In functional analysisfunctional analysis, the main example of ill, the main example of ill--posed posed 
problems is represented by an operator equation problems is represented by an operator equation AqAq = = ff, , 
where where AA is a is a compact (completely continuous) operator. compact (completely continuous) operator. 
In some recent publications, certain problems of In some recent publications, certain problems of 
mathematical statistics are viewed as inverse problems of mathematical statistics are viewed as inverse problems of 
probability theory.probability theory.
From the point of view of From the point of view of information theoryinformation theory, the theory of , the theory of 
inverse and illinverse and ill--posed problems deals with the properties of posed problems deals with the properties of 
maps from compact sets with high epsilonmaps from compact sets with high epsilon--entropy to tables entropy to tables 
with low epsilonwith low epsilon--entropy.entropy.
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Historical PerspectiveHistorical Perspective
It is well known that many mathematical concepts and problem forIt is well known that many mathematical concepts and problem formulations are products of mulations are products of 
studying studying physical phenomenaphysical phenomena. . 

This is certainly true for the theory of inverse and illThis is certainly true for the theory of inverse and ill--posed problems.posed problems.

PlatoPlato’’ss philosophical allegory about echo and shadows on the cave wallsphilosophical allegory about echo and shadows on the cave walls (i.e., the data of an (i.e., the data of an 
inverse problem) being the only reality available to human cogniinverse problem) being the only reality available to human cognition was a precursor to tion was a precursor to 
AristotleAristotle’’s solution to the problem of reconstructing the shape of the Ears solution to the problem of reconstructing the shape of the Earth from its shadow th from its shadow 
on the moonon the moon (projective geometry). (projective geometry). 

The introduction of the The introduction of the physical concept of instantaneous speed physical concept of instantaneous speed ledled Isaac Newton to the Isaac Newton to the 
discovery of the derivativediscovery of the derivative, and the instability (ill, and the instability (ill--posednessposedness) of the problem of numerical ) of the problem of numerical 
differentiation of an approximate function is still a subject ofdifferentiation of an approximate function is still a subject of presentpresent--day research.day research.

Lord RayleighLord Rayleigh’’s research in acousticss research in acoustics led him to the question of whether it is possible led him to the question of whether it is possible to to 
determine the density of a nondetermine the density of a non--uniform string from its sounduniform string from its sound (the inverse problem of (the inverse problem of 
acoustics), which brought about the development of seismic prospacoustics), which brought about the development of seismic prospecting on one hand, and ecting on one hand, and 
the theory of spectral inverse problems on the other hand.the theory of spectral inverse problems on the other hand.

The study of the motions of celestial objects and the problem ofThe study of the motions of celestial objects and the problem of estimating unknown estimating unknown 
parameters based on measurement results that parameters based on measurement results that contain random errorscontain random errors led led Legendre and Legendre and 
Gauss to Gauss to overdeterminedoverdetermined systems of algebraic equations and to the method of least squarsystems of algebraic equations and to the method of least squareses. . 
CauchyCauchy proposed the steepest descent method for finding the minimum ofproposed the steepest descent method for finding the minimum of a multivariate a multivariate 
function. function. 
In 1948, In 1948, L.V. Kantorovich generalizedL.V. Kantorovich generalized, developed, and , developed, and appliedapplied these ideas to operator these ideas to operator 
equations in Hilbert spaces. At present, the steepest descent meequations in Hilbert spaces. At present, the steepest descent method together with the thod together with the 
conjugate gradient method are among the most popular methods forconjugate gradient method are among the most popular methods for solving illsolving ill--posed posed 
problems. It should be noted that problems. It should be noted that KantorovichKantorovich was the first to point outwas the first to point out that if the that if the problem is problem is 
illill--posedposed, then, then the method he proposed converges only with respect to the objectthe method he proposed converges only with respect to the objectiveive
functional.functional.
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WellWell –– PosedPosed ProblemsProblems Ill Ill –– Posed and Inverse ProblemsPosed and Inverse Problems

ArithmeticArithmetic

AlgebraAlgebra

AnalysisAnalysis

DifferentialDifferential
EquationsEquations

Inverse SturmInverse Sturm--LiouvilleLiouville problemproblem

Integral GeometryIntegral Geometry

IntegralIntegral
EquationsEquations

Elliptic EquationsElliptic Equations

Parabolic Parabolic 
EquationsEquations

Hyperbolic Hyperbolic 
EquationsEquations

CoefficientCoefficient
Inverse ProblemsInverse Problems
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Regularization Methods for Inverse Problems

The pseudoinverse and the singular value decomposition of an operator

Theorem (on the singular value decomposition of a compact
operator.) If Q and F are separable Hilbert spaces and A : Q → F
is a compact linear operator, then there exist orthonormal
sequences of functions {vn} ⊂ Q (right singular vectors),
{un} ⊂ F (left singular vectors), and a nonincreasing sequence of
nonnegative numbers {σn} (singular values) such that

Avn = σnun,

A∗un = σnvn,

span {vn} = R(A∗) = N(A)⊥,

span {un} = R(A) = N(A∗)⊥,

and the set {σn} has no nonzero limit points.



Regularization Methods for Inverse Problems

The pseudoinverse and the singular value decomposition of an operator

The sequence {un} is a complete orthonormal system of
eigenvectors of the operator AA∗ such that

Avn = σnun, A∗un = σnvn, n ∈ N

and the following decompositions hold:

Aq =
∑
n

σn〈q, vn〉un, A∗f =
∑
n

σn〈f , un〉vn.



Regularization Methods for Inverse Problems

The pseudoinverse and the singular value decomposition of an operator

Let A : Q → F be a compact linear operator, where Q and F are
separable Hilbert spaces (i.e., Hilbert spaces with countable bases).
A system {σn, un, vn} with n ∈ N, σn ≥ 0, un ∈ F , and vn ∈ Q will
be called the singular system of the operator A if the following
conditions hold:

the sequence {σn} consists of nonnegative numbers such that
{σ2

n} is the sequence of eigenvalues of the operator A∗A
arranged in the descending order with respect to multiplicity;

the sequence {vn} consists of the eigenvectors of the operator
A∗A corresponding to {σ2

n} (and is orthogonal and complete,
R(A∗) = R(A∗A) );

the sequence {un} is defined in terms of {vn} as
un = Avn/‖Avn‖.



Regularization Methods for Inverse Problems

The pseudoinverse and the singular value decomposition of an operator

Let Qp
f denote the set of all pseudo-solutions to the equation

Aq = f for a fixed f ∈ F .
Then

Qp
f = {qp : ‖Aqp − f ‖ = inf

q∈Q
‖Aq − f ‖} = {q : Aq = PR(A)f },

which implies that Qp
f is nonempty if and only if

f ∈ R(A)⊕ N(A∗). In this case, Qp
f is a convex closed set, and it

contains the element of minimal length, qnp — a pseudo-solution
of minimal norm (Nashed and Votruba, 1976), also called the
normal pseudo-solution to the equation Aq = f (with respect to
the zero element).



Regularization Methods for Inverse Problems

The pseudoinverse and the singular value decomposition of an operator

For example, the problem Aq = f is said to be weakly ill-posed if
σn = O(n−γ) for some γ ∈ R+, and strongly ill-posed otherwise
(for instance, if σn = O(e−n)).
The singular value decomposition of the operator A can be used to
construct a regularization method for the problem Aq = f based
on the projections of

qδn =
n∑

j=1

〈fδn, uj〉
σj

vj ,

and prove that

‖qδn − qnp‖ = O
(
σn+1 +

δ

σn

)
, n →∞.
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0 < c0 ≤ c(x,y) ( c0 = const) - velocity; 
0 < ρ0 ≤ ρ(x,y) ( ρ0 = const) - density; 
v(x,y,t) - exceeded pressure. 

Inverse Problem: find coefficients of equation (1) using additional 
information:

Forward (Direct) Problem
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We use the sequence of Green’s functions, which solves
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Therefore in order to find solution ρ(x,y) in the depth x0  we solve GLK 
equation with the fixed parameter x0 and then calculate ρ(x0 ,y) .

The multidimensional analog of Gelfand-Levitan-Krein (GLK) equation

GelGel’’fandfand--LevitanLevitan--KreinKrein MethodMethod
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NewtonNewton--Kantorovich Method 1DKantorovich Method 1D
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μ
4. Find  A’(qn) μn = un(0,t) - f(t).
5. Solve linear inverse problem:

Theorem. Let T > 0 and for f ∈ L2 (T)  there exists solution q *  of equation  
Aq = f. Then exist δ* > 0 and ω∈ (0,1) such that if q (0) ∈ Bδ* (q*)  then NK 
converges to the solution q*   and  

|| q* - q (n) || ≤ ω n || q* - q (0) || 

1. Chose approximation q0(x).
2. Let qn(x) be known.
3. Solve the direct problem:

6. Put  qn+1(x) = qn(x) - μn(x)
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LandweberLandweber IterationsIterations
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3. Solve the direct problem:

4. Find the discrepancy ηn(t) = un (0,t) - f(t) 
5. Solve the adjoint problem:

6. Find 
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Numerical results Numerical results –– 2D2D--acoustics. MGL. acoustics. MGL. 
Exact, N=10, N=50 Exact, N=10, N=50 
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Numerical results Numerical results –– 2D acoustics. MGL. 2D acoustics. MGL. 
Noise=0.05, N=10, N=50Noise=0.05, N=10, N=50
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Regularization Methods for Inverse Problems

Landweber iteration

We consider as the simpliest example the following inverse
problem: find function q(x , y) in domain (0, `)× (−π, π), which
satisfies the following conditions

utt = uxx + uyy − q(x , y)u, (x , y , t) ∈ Ω; (2)

u|t<0 ≡ 0, ux |x=0 = γδ(t); (3)

u|y=π = u|y=−π; (4)

u(0, y , t) = f (y , t), t ∈ (0, 2`). (5)

Here Ω = {x , y , t : (x , t) ∈ ∆(`), y ∈ (−π, π)} and
∆(`) = {(x , t) : 0 < x < t < 2`− x}.
Approximate solution of the inverse problem will be found in the
form of finite Fourier series (PN -approximation):

q(x , y) ∼=
N∑

n=−N

qn(x)e iny , u(x , y , t) ∼=
N∑

n=−N

un(x , t)e
iny . (6)



Regularization Methods for Inverse Problems

Landweber iteration

Let us introduce: U(x , t) = (u−N , u−N+1, . . . , u0 . . . , uN),
Q(x) = (q−N , . . . , q0 . . . , qN) and consider inverse problem in
vector form:

Utt = Uxx − B(x)U, (x , t) ∈ ∆(`); (7)

Ux |x=0 = 0, t ∈ (0, 2`); (8)

U(x , x) = S(x), x ∈ (0, `); (9)

U(0, t) = F (t), t ∈ (0, 2`). (10)

Here B(x) is defined as follows (n = −N, . . . ,N):[
B(x)U]n = n2un(x , t) +

∑
|k|≤N,|k−n|≤N

qn−k(x)uk(x , t).

S(x) and F (x) are vector functions consisting of the Fourier
coefficients of functions −γ + βq(x , y) and f (y , t) correspondingly.
In inverse problem (7)–(10) we need to find the vector-function
Q(x) by known data F (t).



Regularization Methods for Inverse Problems

Landweber iteration

Let us consider inverse problem (7)–(10) as nonlinear operator
equation

A(Q) = F . (11)

Properties of operator A have been investigated in [6].
Due to the uniqueness of the solution to the inverse problem
(7)–(10) it is enough to find the minimum of cost functional

J(Q) = ‖A(Q)− F‖2
L2(0,2`). (12)

Here
‖F‖2

L2(2`) =
∑
|k|≤N

‖fk‖2
L2(0,2`).



Regularization Methods for Inverse Problems

Landweber iteration

For solving minimization problem J(q) → inf we apply Landweber
iteration

Q(n+1) = Q(n) − α[A′(Q(n))]∗(A(Q(n) − F )), n = 0, 1, . . . . (13)

Landweber iteration method can be considered as optimization
method with fixed descent parameter α∗. Indeed it is easy to show
that

J ′(Q) = 2
[
A′(Q)

]∗
(A(Q)− F ).



Regularization Methods for Inverse Problems

Landweber iteration

Let us consider the following adjoint problem

Ψtt = Ψxx − [B(x)]∗Ψ, (x , t) ∈ ∆(`);

Ψx |x=0 = 2[U(0, t)− F (t)], t ∈ (0, 2`);

Ψ(x , 2`− x) = 0, x ∈ (0, `).

One can easily check that the component of the gradient of (12) is
defined by formula

[J ′(Q)]m(x) = 2β(ψmx + ψmt)(x , x)+

+
∑

|k|≤N,|k−m|≤N

∫ 2`−x

x
um−k(x , t)ψm(x , t)t.. (14)



Regularization Methods for Inverse Problems

Landweber iteration

The scheme of Landweber iteration method
1 Let Q(0)(x) is initial guess.
2 Let Q(n)(x) be known, then solve the forward problem:

U
(n)
tt = U

(n)
xx − B(n)(x)U(n), (x , t) ∈ ∆(`);

U
(n)
x

∣∣∣
x=0

= 0, t ∈ (0, 2`);

U(n)(x , x) = S (n)(x), x ∈ (0, `).

3 Find discrepancy η(n)(t) = U(n)(0, t)− F (t) and its norm.
4 Solve the adjoint problem:

Ψ
(n)
tt = Ψ

(n)
xx − [B(n)(x)]∗Ψ(n), (x , t) ∈ ∆(`);

Ψ
(n)
x |x=0 = 2[U(n)(0, t)− F (t)], t ∈ (0, 2`);

Ψ(n)(x , 2`− x) = 0, x ∈ (0, `).

Define the gradient [J ′(Q(n))](x) by formula (14)
5 Find Q(n+1)(x) = Q(n)(x)− α[J ′(Q(n))](x).



Regularization Methods for Inverse Problems

Modification of algorithm

The usual convergence theorem can be proved as in [5, 6].
Theorem(convergence of Landweber iteration). Let ` > 0 and
F ∈ L2(`). Suppose that there exists a solution QT ∈ L2(`) of the
problem A(Q) = F . Then one can find such ν∗ ∈ (0, 1), δ∗ > 0,
α∗ > 0, that if Q(0) ∈ B(QT , δ∗) and α ∈ (0, α∗) then the
approximations Q(n) of Landweber iteration converge to the
solution QT as n →∞ at the rate

‖QT − Q(n)‖2
L2(`)

≤ νn
∗ δ

2
∗ .



Regularization Methods for Inverse Problems

Modification of algorithm

Using constant r (‖QT‖L2(`) ≤ r) we modify the Landweber

iteration as follows. First, given the approximation Q(n) we
calculate

Q̃(n+1) = Q(n) − α
[
A′(Q(n))

]∗(
A(Q(n))− F

)
.

Then we put

Q(n+1) =

{
Q̃(n+1), if ‖Q̃(n+1)‖L2(`) < r ;

Q̃(n+1) r ‖Q̃(n+1)‖−1
L2(`)

, if ‖Q̃n+1‖L2(`) ≥ r .

Theorem(convergence of modified algorithm). Suppose that there
exists a solution QT ∈ B(0, r)

⋂
L2(`) of the problem A(Q) = F .

Then one can find such ν∗ ∈ (0, 1), C∗ > 0, α∗ > 0, that for any
initial guess Q(0) and any α ∈ (0, α∗) the approximations Q(n) of
Landweber iteration converge to the solution QT as n →∞ at the
rate

‖QT − Q(n)‖2
L2(`)

≤ ν2
∗C

2
∗ .
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