Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References

Model function approach in the modified L-curve method–case study: identification of heat transfer in pool boiling process

Yi Heng¹, Shuai Lu^{2,*}, Adel Mhamdi¹, Sergei V. Pereverzev²

Supported by the Austrian National Science Foundation, FWF Grant P20235-N18

¹ AVT-Process Systems Engineering, RWTH Aachen University, Germany
² Johann Radon Institute for Computational and Applied Mathematics, Austria

Workshop IP-TA 2010, Warsaw, February 9-12, 2010

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
•000000000				

Figure: Analyze the properties of heat flux in pool boiling process.

・ロット (雪) (コ) (コ)

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000				

Pool boiling experiments

Figure: Left: Small number of sensors (Average information, TU Berlin); Right: High resolution measurements (Local information, TU Darmstadt)

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000		000

Unmeasurable local heat flux on the boiling surface (up surface) = ?

Figure: Up: Direct observation of bubble;

Down: Corresponding high-resolution temperature measurements (Lower boundary layer, TU Darmstadt)

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000				

Figure: Schematic representation of a single-bubble nucleate boiling . =

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000	00	000

Linear ill-posed problem formulation

Original system

$$\mathbb{S} = \begin{cases} \frac{\partial T(\mathbf{x},t)}{\partial t} &= a\Delta T(\mathbf{x},t), \quad (\mathbf{x},t) \in \Omega \times [0,t_f], \\ T(\mathbf{x},0) &= T_0(\mathbf{x}), \quad \mathbf{x} \in \Omega, \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= q_h(\mathbf{x},t), \quad (\mathbf{x},t) \in \Gamma_H \times [0,t_f] \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= q_b(\mathbf{x},t), \quad (\mathbf{x},t) \in \Gamma_B \times [0,t_f] \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= 0, \qquad (\mathbf{x},t) \in \Gamma_R \times [0,t_f]. \end{cases}$$

The system \mathbb{S} provides a direct operator: \mathbb{S} maps $(T_0, q_h, q_b) \rightarrow T_m$.

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000	00	000

Linear ill-posed problem formulation

The original system $\ensuremath{\mathbb{S}}$ can be reformulated into two system

$$\mathbb{S}1 = \begin{cases} \frac{\partial T(\mathbf{x},t)}{\partial t} &= a\Delta T(\mathbf{x},t), \quad (\mathbf{x},t) \in \Omega \times [0,t_f], \\ T(\mathbf{x},0) &= T_0(\mathbf{x}), \quad \mathbf{x} \in \Omega, \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= q_h(\mathbf{x},t), \quad (\mathbf{x},t) \in \Gamma_H \times [0,t_f], \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= 0, \quad (\mathbf{x},t) \in \Gamma_B \times [0,t_f], \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= 0, \quad (\mathbf{x},t) \in \Gamma_R \times [0,t_f], \end{cases}$$

and

$$\mathbb{S}2 = \begin{cases} \frac{\partial T(\mathbf{x},t)}{\partial t} &= a\Delta T(\mathbf{x},t), \quad (\mathbf{x},t) \in \Omega \times [0,t_f], \\ T(\mathbf{x},0) &= 0, \qquad \mathbf{x} \in \Omega, \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= 0, \qquad (\mathbf{x},t) \in \Gamma_H \times [0,t_f], \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= q_b(\mathbf{x},t), \quad (\mathbf{x},t) \in \Gamma_B \times [0,t_f], \\ -\lambda \frac{\partial T(\mathbf{x},t)}{\partial n} &= 0, \qquad (\mathbf{x},t) \in \Gamma_R \times [0,t_f]. \end{cases}$$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
00000000000				

Linear ill-posed problem formulation

Define the linear operator S2 = A (denote as *A* for simplicity), we can write the exact operator equation as

$$Aq_b(\mathbf{x},t) = T2_m(\mathbf{x},t) = T_m(\mathbf{x},t) - T1_m(\mathbf{x},t).$$

 T_m is the data from system S and $T1_m$ is the data from S1. So the linear ill-posed problem that we need to handle will be

$$Aq_b(\mathbf{x},t) = T2_m^{\delta}(\mathbf{x},t) = T_m^{\delta}(\mathbf{x},t) - T1_m(\mathbf{x},t).$$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
Droblom				

Problem set-up

- X, Y are real infinite-dimensional Hilbert spaces;

•
$$y_{\delta} : ||y_0 - y_{\delta}||_Y \le \delta$$
, δ is unknown.

Ill-posed operator equation

$$Ax = y_{\delta}.$$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
00000000000	0000000	0000	00	000

Regularization and parameter choice rules

Tikhonov regularization

$$\min J(\alpha, x), \quad J(\alpha, x) := \|Ax - y_{\delta}\|^2 + \alpha \|x\|^2.$$

Parameter choice rules

- a priori parameter choice
- a posteriori parameter choice
 - δ-dependent criteriae: discrepancy principle, monotone error rule, balancing principle;
 - δ-independent criteriae: quasi-optimality, GCV, L-curve, Hanke-Raus rule, modified L-curve.

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
00000000000	0000000	0000	00	000

L-curve and modified L-curve method

L-curve [Hansen and O'Leary 1993]

Let $x(\alpha) = \arg \min J(\alpha, x)$. Plot $||x(\alpha)||$ versus $||Ax(\alpha) - y_{\delta}||$ in a log-log scale for a large range of α values. The choice of a regularization parameter is focused on the corner, where the vertical line turns to be a horizontal one.

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000	00	000

L-curve and modified L-curve method

Modified L-curve [Regińska 1996]

If the curvature of the L-curve is maximized at $\alpha = \alpha^*$, and if the tangent value of the L-curve at $(\log ||Ax(\alpha^*) - y_{\delta}||^2, \log ||x(\alpha^*)||^2)$ has a slope $-1/\mu$, then the function

$$\Psi_{\mu}(\alpha) = \|Ax(\alpha) - y_{\delta}\|^2 \|x(\alpha)\|^{2\mu}, \qquad \mu > 0$$

has a minimum value at the same point $\alpha = \alpha^*$.

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
	000000			

Preliminary results: model function approach

We define a function $J(\alpha)$ with respect to α such that

$$J(\alpha) := \|Ax(\alpha) - y_{\delta}\|^{2} + \alpha \|x(\alpha)\|^{2} = \|y_{\delta}\|^{2} - \|Ax(\alpha)\|^{2} - \alpha \|x(\alpha)\|^{2}$$

Lemma (Kunisch and Zou 1998)

The first derivative of $J(\alpha)$ with respect to α is given by

$$J'(\alpha) = \|x(\alpha)\|^2.$$

Introduction	Basic Algorithm ○●○○○○○	Numerical examples	Pool boiling process	References

Preliminary results: model function approach

For a fixed α , we locally approximate the term $||Ax(\alpha)||^2$ by $T||x(\alpha)||^2$, where *T* is a positive constant to be determined. It gives us

 $J(\alpha) + \alpha J'(\alpha) + TJ'(\alpha) \approx ||y_{\delta}||^2.$

By a model function we mean a function $m(\alpha)$, for which this formula is exact, that is, $m(\alpha)$ should solve differential equation

 $m(\alpha) + (\alpha + T)m'(\alpha) = ||y_{\delta}||^2.$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	000000	0000	00	000

Preliminary results: model function approach

Model functions

A simple parametric family of the solutions is given as

$$m(\alpha) = \|y_{\delta}\|^2 + \frac{C}{\alpha + T}.$$

where C, T are constants to be determined.

Residual and solution norms

The first derivative of the model function $m(\alpha)$ can be used to

approximate the first derivative of $J(\alpha)$, i.e.,

$$J'(\alpha) = ||x(\alpha)||^2 = m'(\alpha) = -\frac{C}{(\alpha+T)^2}$$

The approximated residual norm $||Ax(\alpha) - y_{\delta}||^2$ can also be given in terms of the model function $m(\alpha)$ as

 $||Ax(\alpha) - y_{\delta}||^2 \approx m(\alpha) - \alpha m'(\alpha).$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000	00	000

Preliminary results: modified L-curve

Modified L-curve

In the modified L-curve method, the original function Ψ_{μ} is defined as

$$\Psi_{\mu}(\alpha) = \|Ax(\alpha) - y_{\delta}\|^2 \|x(\alpha)\|^{2\mu}.$$

Model function approach

By introducing a model function $m(\alpha)$, Ψ_{μ} can be (locally) approximated by the function $\Psi_{C,T,\mu}$ as

$$\begin{split} \Psi_{\mu}(\alpha) &\approx \Psi_{C,T,\mu}(\alpha) &:= (m(\alpha) - \alpha m'(\alpha))(m'(\alpha))^{\mu} \\ &= \left(\|y_{\delta}\|^2 + \frac{C}{\alpha + T} + \frac{\alpha C}{(\alpha + T)^2} \right) \left(\frac{-C}{(\alpha + T)^2} \right)^{\mu}. \end{split}$$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000	00	000

Preliminary results: modified L-curve

Constants C and T

In the vicinity of any $\alpha = \alpha_k$ the constants can be easily calculated using the knowledge of residual norm and regularized solution norm, i.e.,

$$\begin{cases} m(\alpha_k) = \|y_{\delta}\|^2 + \frac{C_k}{\alpha_k + T_k} = J(\alpha_k) = \|Ax(\alpha_k) - y_{\delta}\|^2 + \alpha \|x(\alpha_k)\|^2; \\ m'(\alpha_k) = -\frac{C_k}{(\alpha_k + T_k)^2} = J'(\alpha_k) = \|x(\alpha_k)\|^2; \end{cases}$$

or more precisely,

$$C_k = -\frac{(\|Ax(\alpha_k)\|^2 + \alpha_k \|x(\alpha_k)\|^2)^2}{\|x(\alpha_k)\|^2}, \qquad T_k = \frac{\|Ax(\alpha_k)\|^2}{\|x(\alpha_k)\|^2}.$$

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
0000000000	0000000	0000	00	000

Performance of the Basic Algorithm

Introduction	Basic Algorithm 000000●	Numerical examples	Pool boiling process	References

Basic Algorithm

Algorithm 1: Model function approach in modified L-curve Input: $\varepsilon > 0$, y_{δ} , A, $\mu > 0$.

1: Choose initial guess $\alpha_1 > \alpha_*$, and set k = 1.

2: Do

- 3: Solve $(A^T A + \alpha_k I)x = A^T y_{\delta}$ to find $x = x(\alpha_k)$
- 4: Update C_k and T_k , construct the corresponding model function

$$m_k(\alpha) = \|y_{\delta}\|^2 + \frac{C_k}{\alpha + T_k}.$$

- 5: Insert m_k(α) into modified L-curve, update α_{k+1} as the minimizer of Ψ_{C_k,T_k,μ}(α), set k := k + 1 (this step is equivalent to solving a quadratic equation).
- 6: While $\left|\frac{\alpha_{k+1}-\alpha_k}{\alpha_k}\right| \leq \varepsilon$.
- 7: If the stopping rule is fulfilled return *x*, α_k as the regularized solution x_S and α_S .

Introduction	E	Basic Algorithm	Numerical examples ●○○○	P	ool boiling process	References

We compare the model function approach in the modified L-curve method (Algorithm 1) with the original L-curve method. The L-curve method will be performed with the use of the *Regularization toolbox* and its updated large-scale descendant *Moore tools*.

We consider the conjugate gradient least square (CGLS) method in later computation to solve some linear systems appearing in the Tikhonov regularization.

Introduction	Basic Algorithm	Numerical examples ○●○○	Pool boiling process	References

Figure: (*Shaw*(1000) with noisy data simulated 50 times) In each picture, the first two lines from above correspond to the noise level $\delta = 0.1$ while the other two lines are for $\delta = 0.01$. Each circle in the figures indicates the relative error for one reconstruction by means of L-curve method or by the Algorithm 1 (with $\mu = 1$ on the left picture, and $\mu = 1/2$ on the right picture).

21/28

Introduction	Basic Algorithm	Numerical examples ○○●○	Pool boiling process	References

Figure: (*baart*(1000) with noisy data simulated 50 times) In each picture, the first two lines from above correspond to the noise level $\delta = 0.1$ while the other two lines are for $\delta = 0.01$. Each circle in the figures indicates the relative error for one reconstruction by means of L-curve method or by the Algorithm 1 (with $\mu = 1$ on the left picture, and $\mu = 1/2$ on the right picture).

22/28

Introduction	Basic Algorithm	Numerical examples 000●	Pool boiling process	References
Numorioo				

Table: Comparison of the Algorithm 1 with the L-curve method in terms of the amount of computations. (Average data over 50 tests; Comp Time means the computational time, units in seconds)

	Noise Level	A1 Iteration	A1 Comp Time	L-curve Comp Time
Shaw(1000)				
$\mu = 1$	$\delta = 0.1$	3	2.1656	27.2446
	$\delta = 0.01$	4	2.6524	26.6567
$\mu = 1/2$	$\delta = 0.1$	3	2.2133	27.9781
	$\delta = 0.01$	4	2.6663	26.9823
Baart(1000)				
$\mu = 1$	$\delta = 0.1$	3	1.9712	29.3494
	$\delta = 0.01$	4	2.3736	28.0244
$\mu = 1/2$	$\delta = 0.1$	3	1.9368	28.5860
	$\delta = 0.01$	3.16	1.9980 < 🗇 >	< ≣> < €28.3343 ୬۹୯

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
			••	

Case study: academic example

 $q_b(x,t) = q^1(t)q^2(x)$ where $q^1(t) = 0.1 \sin(100\pi(t-0.02)) + 0.1$ for $t \in [0.015, 0.035]$, zero elsewhere, and $q^2(x) = 0.5 \sin(5\pi(0.3 - |x-0.5|)) + 0.5$ for $|x-0.5| \le 0.4$, zero elsewhere. Space discretization level is 25 and time discretization level is 10.

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References

Case study: real data

Figure: Upper: Measured temperature field on the heating boundary of the layer, Frame 24–27; Lower: Reconstructed surface boiling heat flux, Frame 24–27.

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References ●○○
Reference				

Hansen P. C. and O'Leary D. P. (1993)

The use of the L-curve in the regularization of discrete ill-posed problems SIAM J. Sci. Comput. 14, 1487-1503

Regińska T. (1996)

A regularization parameter in discrete ill-posed problems

SIAM J. Sci. Comput. 17, 740-749

\mu Hansen P. C.

Moore tools

http://www2.imm.dtu.dk/~pch/

Ito K. and Kunisch K. (1992)

On the choice of the regularization parameter in nonlinear inverse problems SIAM J. Optim. 2, 376-404

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References ○●○
Reference	es			

- Kunisch K. and Zou J. (1998)
 Iterative choices of regularization parameters in linear inverse problems
 Inverse Problems 14, 1247-1264
- LS, Pereverzev S. V. and Tautenhahn U. (2008)
 Dual regularized total least squares and multi-parameter regularization
 Comput. Meth. Appl. Math. 8, 253-263
- Heng Y., LS, Mhamdi A. and Pereverzev S. V. (2009) Model function approach in the modified L-curve method for the choice of the regularization parameter RICAM report 2009-08, submitted
- LS and Mathe P. (2009) Heuristic parameter selection based on functional minimization: Optimality and model function approach WIAS report 1413, submitted

Introduction	Basic Algorithm	Numerical examples	Pool boiling process	References
				000

Thank you for your attention!