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Pool boiling process background

Figure: Analyze the properties of heat flux in pool boiling process.
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Pool boiling process background

Pool boiling experiments

Figure: Left: Small number of sensors (Average information, TU Berlin);

Right: High resolution measurements (Local information, TU Darmstadt)
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Pool boiling process background

Unmeasurable local heat flux on the boiling surface (up surface) = ?

Figure: Up: Direct observation of bubble;

Down: Corresponding high-resolution temperature measurements (Lower

boundary layer, TU Darmstadt)
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Pool boiling process background

Figure: Schematic representation of a single-bubble nucleate boiling

experiment.
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Linear ill-posed problem formulation

Original system

S =



∂T(x,t)
∂ t = a∆T(x, t), (x, t) ∈Ω× [0, tf ],

T(x,0) = T0(x), x ∈Ω,

−λ
∂T(x,t)

∂n = qh(x, t), (x, t) ∈ ΓH× [0, tf ]

−λ
∂T(x,t)

∂n = qb(x, t), (x, t) ∈ ΓB× [0, tf ]

−λ
∂T(x,t)

∂n = 0, (x, t) ∈ ΓR× [0, tf ].

The system S provides a direct operator: S maps (T0, qh, qb)→ Tm.
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Linear ill-posed problem formulation

The original system S can be reformulated into two system

S1 =



∂T(x,t)
∂ t = a∆T(x, t), (x, t) ∈Ω× [0, tf ],

T(x,0) = T0(x), x ∈Ω,

−λ
∂T(x,t)

∂n = qh(x, t), (x, t) ∈ ΓH× [0, tf ],

−λ
∂T(x,t)

∂n = 0, (x, t) ∈ ΓB× [0, tf ],

−λ
∂T(x,t)

∂n = 0, (x, t) ∈ ΓR× [0, tf ],

and

S2 =



∂T(x,t)
∂ t = a∆T(x, t), (x, t) ∈Ω× [0, tf ],

T(x,0) = 0, x ∈Ω,

−λ
∂T(x,t)

∂n = 0, (x, t) ∈ ΓH× [0, tf ],

−λ
∂T(x,t)

∂n = qb(x, t), (x, t) ∈ ΓB× [0, tf ],

−λ
∂T(x,t)

∂n = 0, (x, t) ∈ ΓR× [0, tf ].
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Linear ill-posed problem formulation

Define the linear operator S2 = A (denote as A for simplicity), we can

write the exact operator equation as

Aqb(x, t) = T2m(x, t) = Tm(x, t)−T1m(x, t).

Tm is the data from system S and T1m is the data from S1. So the

linear ill-posed problem that we need to handle will be

Aqb(x, t) = T2δ
m(x, t) = Tδ

m(x, t)−T1m(x, t).
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Problem set-up

1 X, Y are real infinite-dimensional Hilbert spaces;

2 A : X→ Y, Range(A) 6= Range(A);

3 x0, y0 : Ax0 = y0;

4 yδ : ‖y0− yδ‖Y ≤ δ , δ is unknown.

Ill-posed operator equation

Ax = yδ .
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Regularization and parameter choice rules

Tikhonov regularization

minJ(α,x), J(α,x) := ‖Ax− yδ‖2 +α‖x‖2.

Parameter choice rules
a priori parameter choice

a posteriori parameter choice

δ -dependent criteriae: discrepancy principle, monotone error rule,

balancing principle;

δ -independent criteriae: quasi-optimality, GCV, L-curve,

Hanke-Raus rule, modified L-curve.
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L-curve and modified L-curve method

L-curve [Hansen and O’Leary 1993]

Let x(α) = argminJ(α,x). Plot ‖x(α)‖ versus ‖Ax(α)− yδ‖ in a log-log

scale for a large range of α values. The choice of a regularization

parameter is focused on the corner, where the vertical line turns to be

a horizontal one.
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L-curve and modified L-curve method

Modified L-curve [Regińska 1996]

If the curvature of the L-curve is maximized at α = α∗, and if the

tangent value of the L-curve at
(
log‖Ax(α∗)− yδ‖2, log‖x(α∗)‖2

)
has a

slope −1/µ, then the function

Ψµ(α) = ‖Ax(α)− yδ‖2‖x(α)‖2µ , µ > 0

has a minimum value at the same point α = α∗.
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Preliminary results: model function approach

We define a function J(α) with respect to α such that

J(α) := ‖Ax(α)− yδ‖2 +α‖x(α)‖2 = ‖yδ‖2−‖Ax(α)‖2−α‖x(α)‖2.

Lemma (Kunisch and Zou 1998)

The first derivative of J(α) with respect to α is given by

J′(α) = ‖x(α)‖2.
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Preliminary results: model function approach

For a fixed α, we locally approximate the term ‖Ax(α)‖2 by T‖x(α)‖2,

where T is a positive constant to be determined. It gives us

J(α)+αJ′(α)+TJ′(α)≈ ‖yδ‖2.

By a model function we mean a function m(α), for which this formula

is exact, that is, m(α) should solve differential equation

m(α)+(α +T)m′(α) = ‖yδ‖2.

14 / 28



Introduction Basic Algorithm Numerical examples Pool boiling process References

Preliminary results: model function approach

Model functions
A simple parametric family of the solutions is given as

m(α) = ‖yδ‖2 +
C

α +T
.

where C, T are constants to be determined.

Residual and solution norms

The first derivative of the model function m(α) can be used to

approximate the first derivative of J(α), i.e.,

J′(α) = ‖x(α)‖2 = m′(α) =− C
(α +T)2 .

The approximated residual norm ‖Ax(α)− yδ‖2 can also be given in

terms of the model function m(α) as

‖Ax(α)− yδ‖2 ≈ m(α)−αm′(α).
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Preliminary results: modified L-curve

Modified L-curve
In the modified L-curve method, the original function Ψµ is defined as

Ψµ(α) = ‖Ax(α)− yδ‖2‖x(α)‖2µ .

Model function approach

By introducing a model function m(α), Ψµ can be (locally)

approximated by the function ΨC,T,µ as

Ψµ(α)≈ΨC,T,µ(α) := (m(α)−αm′(α))(m′(α))µ

=
(
‖yδ‖2 +

C
α +T

+
αC

(α +T)2

)(
−C

(α +T)2

)µ

.
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Preliminary results: modified L-curve

Constants C and T

In the vicinity of any α = αk the constants can be easily calculated

using the knowledge of residual norm and regularized solution norm,

i.e., m(αk) = ‖yδ‖2 + Ck
αk+Tk

= J(αk) = ‖Ax(αk)− yδ‖2 +α‖x(αk)‖2;

m′(αk) =− Ck
(αk+Tk)2 = J′(αk) = ‖x(αk)‖2;

or more precisely,

Ck =− (‖Ax(αk)‖2 +αk‖x(αk)‖2)2

‖x(αk)‖2 , Tk =
‖Ax(αk)‖2

‖x(αk)‖2 .
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Performance of the Basic Algorithm
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Basic Algorithm

Algorithm 1: Model function approach in modified L-curve
Input: ε > 0, yδ , A, µ > 0.

1: Choose initial guess α1 > α∗, and set k = 1.

2: Do

3: Solve (AT A+αkI)x = AT yδ to find x = x(αk)

4: Update Ck and Tk, construct the corresponding model function

mk(α) = ‖yδ ‖2 +
Ck

α +Tk
.

5: Insert mk(α) into modified L-curve, update αk+1 as the minimizer of

ΨCk ,Tk ,µ (α), set k := k +1 (this step is equivalent to solving a quadratic

equation).

6: While
∣∣∣αk+1−αk

αk

∣∣∣≤ ε.

7: If the stopping rule is fulfilled return x, αk as the regularized solution xS

and αS.
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Numerical examples

We compare the model function approach in the modified L-curve

method (Algorithm 1) with the original L-curve method. The L-curve

method will be performed with the use of the Regularization toolbox

and its updated large-scale descendant Moore tools.

We consider the conjugate gradient least square (CGLS) method in

later computation to solve some linear systems appearing in the

Tikhonov regularization.
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Numerical examples

Figure: (Shaw(1000) with noisy data simulated 50 times) In each picture, the

first two lines from above correspond to the noise level δ = 0.1 while the other

two lines are for δ = 0.01. Each circle in the figures indicates the relative error

for one reconstruction by means of L-curve method or by the Algorithm 1

(with µ = 1 on the left picture, and µ = 1/2 on the right picture).
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Numerical examples

Figure: (baart(1000) with noisy data simulated 50 times) In each picture, the

first two lines from above correspond to the noise level δ = 0.1 while the other

two lines are for δ = 0.01. Each circle in the figures indicates the relative error

for one reconstruction by means of L-curve method or by the Algorithm 1

(with µ = 1 on the left picture, and µ = 1/2 on the right picture).
22 / 28



Introduction Basic Algorithm Numerical examples Pool boiling process References

Numerical examples

Table: Comparison of the Algorithm 1 with the L-curve method in terms of

the amount of computations. (Average data over 50 tests; Comp Time means

the computational time, units in seconds)

Noise Level A1 Iteration A1 Comp Time L-curve Comp Time

Shaw(1000)

µ = 1 δ = 0.1 3 2.1656 27.2446

δ = 0.01 4 2.6524 26.6567

µ = 1/2 δ = 0.1 3 2.2133 27.9781

δ = 0.01 4 2.6663 26.9823

Baart(1000)

µ = 1 δ = 0.1 3 1.9712 29.3494

δ = 0.01 4 2.3736 28.0244

µ = 1/2 δ = 0.1 3 1.9368 28.5860

δ = 0.01 3.16 1.9980 28.3343
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Case study: academic example

qb(x, t) = q1(t)q2(x) where q1(t) = 0.1sin(100π(t−0.02))+0.1 for

t ∈ [0.015,0.035], zero elsewhere, and q2(x) = 0.5sin(5π(0.3−|x−0.5|))+0.5

for |x−0.5| ≤ 0.4, zero elsewhere. Space discretization level is 25 and time

discretization level is 10.
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Case study: real data

Figure: Upper: Measured temperature field on the heating boundary of the

layer, Frame 24–27; Lower: Reconstructed surface boiling heat flux, Frame

24–27. 25 / 28
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Thank you for your attention!
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