Model function approach in the modified L-curve method—case study:

identification of heat transfer in pool boiling process

Yi Heng!, Shuai Lu>*, Adel Mhamdi', Sergei V. Pereverzev?
Supported by the Austrian National Science Foundation, FWF Grant P20235-N18

! AVT-Process Systems Engineering, RWTH Aachen University, Germany
2 Johann Radon Institute for Computational and Applied Mathematics, Austria

RICAM FLUF

Workshop IP-TA 2010, Warsaw, February 9—12, 2010



Introduction
©0000000000

Pool boiling process background

Nucleate boiling Transition boiling  Film boiling

X

e
k L e

heat flux (W/cm?)

70

AT (K)

Figure: Analyze the properties of heat flux in pool boiling process.
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Pool boiling process background

Pool boiling experiments

Figure: Left: Small number of sensors (Average information, TU Berlin);
Right: High resolution measurements (Local information, TU Darmstadt)
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Pool boiling process background

Unmeasurable local heat flux on the boiling surface (up surface) = ?
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Figure: Up: Direct observation of bubble;

Down: Corresponding high-resolution temperature measurements (Lower
boundary layer, TU Darmstadt)
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Pool boiling process background
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Figure: Schematic representation of a single-bubble nucleate boiling

5/28



Introduction
0000®000000

Linear ill-posed problem formulation

Original system

T = aAT(x,1), (x,1) € Qx[0,17],
T(x,0) = To(x), x€Q,
S=q -4 aTa(Z’t) = qu(x,1), (x,1) €Ty x[0,1]
—AED = gy(x,0), (x,1) €T % [0,4]
_kw = 0 (x,1) € Tg x [0,1].
The system S provides a direct operator: S maps (7o, gn, gp) — Tim-
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Linear ill-posed problem formulation

The original system S can be reformulated into two system

and

S1 =

S2 =

dT(x,1)
Jat
T(x,0)
AT(x,1)
A5
IT(x,1)
A5

dT(x,t
el

T (x,1)
dt
T(x,0)

IT(x,1)
—A an

dT(x,t
a2

aAT(x,1), (x,1) € Qx[0,1],
To(x), xXeQ,
an(x,1), (x,1) € Ty x [0,1],
0, (x,1) €eTp x [0,1],
0, (x,1) e Tr x [0,1],
aAT(x,1), (x,1) € Qx[0,1],
0, X €Q,
0, (x,1) € Ty x [0,17],
ap(x,1),  (x,1) € T x [0, 1],
0, (x,1) €T x [0,1].
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Linear ill-posed problem formulation

Define the linear operator S2 = A (denote as A for simplicity), we can
write the exact operator equation as

Aqp(X,1) = T2y (X,1) = Ty (X, 1) — Tl (X,1).

T,, is the data from system S and T1,, is the data from S1. So the
linear ill-posed problem that we need to handle will be

Agp(x,1) = T28 (x,1) = T2 (x,1) — T1,(x,1).

28
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Problem set-up

@ X, Y are real infinite-dimensional Hilbert spaces;
Q A:X Y, Range(A) # Range(A);

Q x0, yo : Axg = yo;

Q ys5: |lyo—yslly <8, & is unknown.

lll-posed operator equation

Ax=ys.
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Regularization and parameter choice rules

Tikhonov regularization

minJ(a,x), J(o,x) = [|Ax—ys|* + al|x]?.

4

Parameter choice rules

@ a priori parameter choice

@ a posteriori parameter choice
e §-dependent criteriae: discrepancy principle, monotone error rule,
balancing principle;
@ J-independent criteriae: quasi-optimality, GCV, L-curve,

Hanke-Raus rule, modified L-curve.

A\
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L-curve and modified L-curve method

L-curve [Hansen and O’Leary 1993]

Let x(o) = argminJ (e, x). Plot ||x(e)|| versus ||Ax(e) —ys|| in a log-log
scale for a large range of a values. The choice of a regularization
parameter is focused on the corner, where the vertical line turns to be
a horizontal one.

=olution nomm

10 w 10
rezidual norm
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L-curve and modified L-curve method

Modified L-curve [Reginska 1996]
If the curvature of the L-curve is maximized at o = o*, and if the

tangent value of the L-curve at (log[|Ax(a*) —ys||%,log [|x(a*)||*) has a

slope —1/u, then the function

Pu(a) = [Ax(@) —ys|[x(@)[#,  p>0

has a minimum value at the same point a = o/*.
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Preliminary results: model function approach

We define a function J(a) with respect to o such that

J (@) = |Ax(a) — y5|1* + arllx(@) > = [lys ]| ~ llAx(e) |* — atllx( ) |-

Lemma (Kunisch and Zou 1998)
The first derivative of J(a.) with respect to a is given by

J'(@) = ().
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Preliminary results: model function approach

For a fixed o, we locally approximate the term ||Ax(a)||? by T'||x(e)||?,
where T is a positive constant to be determined. It gives us

J(o) + o () +T7 (a) = ||ys||*.

By a model function we mean a function m(a), for which this formula

is exact, that is, m(a) should solve differential equation

m(a) + (oc+T)m'(a) = [|ys]|*.
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Preliminary results: model function approach

Model functions

A simple parametric family of the solutions is given as

C
2
m(a) = [|ys||~ + ot T

where C, T are constants to be determined.

Residual and solution norms
The first derivative of the model function m(a) can be used to

approximate the first derivative of J(a), i.e.,

J' (o) = |Ix(a)]* = m' (@) = ~

(a+T)?*

The approximated residual norm ||Ax(«) —ys||> can also be given in
terms of the model function m(o) as

1Ax(a) = 5> = m(er) — el (av).
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Preliminary results: modified L-curve

Modified L-curve
In the modified L-curve method, the original function ¥, is defined as

Wu () = | Ax(a) = s *[|x(a) [ )

Model function approach

By introducing a model function m(a), ¥, can be (locally)

approximated by the function ¥¢ 7 as

Pu(a) »¥eru(a) = (m(a)—am'(a))(m'(a))*

- (i i) (@) )
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Preliminary results: modified L-curve

Constants Cand T

In the vicinity of any a = oy the constants can be easily calculated

using the knowledge of residual norm and regularized solution norm,
ie.,

C
{ m(o) = llys P+ 55 = J(0%) = Ax(0) - y3 12 + edllx(os) I

il (04) = = 15y = ' (e) = Ix(e) |1

or more precisely,

(lAx(o)|? + oxllx(e) 7). _ llAx(e)|?

Ce=— ; k= :
[lc(ou) 12 ¢ (o) |2
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Performance of the Basic Algorithm

200 T T T T
WC‘,T“i @
Test result for shaw(100), 8 = 0.5, £ = 0.001;
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Basic Algorithm

Algorithm 1: Model function approach in modified L-curve

Input: € >0, y5, A, u > 0.

1: Choose initial guess o > @, and set k = 1.

2: Do
3: Solve (ATA + ogl)x = ATys to find x = x(ay)
4

Update C; and T, construct the corresponding model function

C

_ 2 k

mi(@) = sl + 555

5: Insert my (o) into modified L-curve, update oy ; as the minimizer of

Ye, 1.u(a), set k:=k+1 (this step is equivalent to solving a quadratic

equation).
6: While %1% <eg
k
7: If the stopping rule is fulfilled return x, o as the regularized solution xg

and ag.
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Numerical examples

We compare the model function approach in the modified L-curve
method (Algorithm 1) with the original L-curve method. The L-curve
method will be performed with the use of the Regularization toolbox
and its updated large-scale descendant Moore tools.

We consider the conjugate gradient least square (CGLS) method in
later computation to solve some linear systems appearing in the
Tikhonov regularization.
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Figure: (Shaw(1000) with noisy data simulated 50 times) In each picture, the
first two lines from above correspond to the noise level § = 0.1 while the other
two lines are for 6 = 0.01. Each circle in the figures indicates the relative error

for one reconstruction by means of L-curve method or by the Algorithm 1

(with u =1 on the left picture, and u = 1/2 on the right-picture).
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Numerical examples
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Figure: (baart(1000) with noisy data simulated 50 times) In each picture, the
first two lines from above correspond to the noise level § = 0.1 while the other
two lines are for 6 = 0.01. Each circle in the figures indicates the relative error
for one reconstruction by means of L-curve method or by the Algorithm 1
(with u =1 on the left picture, and u = 1/2 on the right-picture).
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Numerical examples

Table: Comparison of the Algorithm 1 with the L-curve method in terms of
the amount of computations. (Average data over 50 tests; Comp Time means
the computational time, units in seconds)

Noise Level | A1 lteration | A1 Comp Time | L-curve Comp Time

Shaw(1000)
u=1 6=0.1 3 2.1656 27.2446
6 =0.01 4 2.6524 26.6567
u=1/2 6=0.1 3 2.2133 27.9781
6 =0.01 4 2.6663 26.9823

Baart(1000)
u=1 6=0.1 3 1.9712 29.3494
6 =0.01 4 2.3736 28.0244
u=1/2 6=0.1 3 1.9368 28.5860
6 =0.01 3.16 1.9980 28.3343

23728



Pool boiling process
[ 1]

Case study: academic example

ap(x,1) = ¢ (t)g*(x) where ¢' (¢) = 0.1sin(1007(r — 0.02)) + 0.1 for
1 €[0.015,0.035], zero elsewhere, and ¢*(x) = 0.5sin(57(0.3 — [x—0.5)) +0.5

for [x—0.5] < 0.4, zero elsewhere. Space discretization level is 25 and time

discretization level is 10.
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Case study: real data

%2 & 8 8 § 8 3 &
01
b
“.
|

.
g
— C— L —

.
> o
5 &
I3 HER R R !_HS”E“E~:

Figure: Upper: Measured temperature field on the heating boundary of the
layer, Frame 24-27; Lower: Reconstructed surface boiling heat flux, Frame
24-27. 2528
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Thank you for your attention!
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