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INVERSE PROBLEMS  

I.  Design Problem (Cauchy Problem) 
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SOLUTION OF INVERSE DESIGN PROBLEM OF COOLING OF 
ANNULUS BY THE METHOD OF FUNDAMENTAL SOLUTIONS AND 

MINIMIZATION OF INTENSITY OF ENTROPY PRODUCTION 

 

 

 

 

  

   1.Motivation 
 

 

 

 

 

 

 

 

 

 

 

 

 



2. FORMULATION OF PROBLEM 

Consider a steady field of temperature, without sources, described by equation 
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which by a Kirchoff transformation 
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changes to a Laplace equation with an unknown temperature u  
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For the before mentioned design problem we have 
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The solution of Eq (3) can be expressed in a form of a simple layer potential 
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Then approximate solution (6) can be expressed as  
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On the account of numerical calculation the integral in (7) can be approximated by 

− step function and at division arc Γ  on N part we have  
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 − a parabolic function (on an  isoparametric plain) with a simultaneous approach of the  
Γi,i+1,i+2  ,  which is a parabola as well 
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It is worth noticing that if it is assumed that the sources are placed on Γ  at points, then 
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The dependence (11) is identical in its structure (8). Depending on approximation of the 
function p(ξ, η) we obtain: 
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From relationships (8−10) results that functions ( ) ( ) ( )y,xy,xy,x iii βϕγ  , ,  are linear 
combinations of fundamental solutions.  

 

 

 

 

 

 

 

 

 

− the approximation of function  p(ξ,η) by a Dirac  function 

− the approximation of function  p(ξ,η) by linear function 

− the approximation of function  p(ξ,η) by isoperimetric parabola 



3. THE SOLUTION TO THE INVERSE PROBLEM 

The solution of the equation (3) in a discrete form with consideration of the integration 
method (9) − (12) is as follows 
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The periodicity of the function of density p on the closed arc Γ, is taken into consideration in 
the function αi. For the finite number of nodes Ni-z + Na-z the re-creation of the constant 
function in the area Ω  will be taking place with some approximation, so the solution (13) can 
be developed to: 
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Assuming that M = Ni-z + Na-z + Iadd the dependency (14) in collocation points 
( ) ( )NTNT y,xy,x ,...,11  for the condition (4) and in points ( ) ( )NqNq y,xy,x ,...,11  for the condition 

(5) can be written in a matrix form: 
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or in  compact matrix form: 
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Substituting the equation (16) to (14) we get 
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so for the vector of disturbed data { }GG δ+  disturbed field of temperature is expressed by the 
dependency 
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The solution of the system of equation (16) with ill conditioned matrix [Ainv] can be obtained 
by means of Tichonov regularization, which leads to the minimization of a functional  
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in a least squares sense. The equation (21) can be written in a symbolic form 
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If  [ ] 1<BI  then the series is convergent for α > 0 and any initial vector {p0}. 

 

 

 

 



4. NUMERICAL CALCULATIONS  

For the testing purposes of the numerical properties of the proposed method let’s consider 
an exact solution ( )y,xu  fulfilling the following conditions: 

− on  the outside boundary of the ring 
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− on the inner boundary of the ring 
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For γ = 0 and Ta > T i    the heat flows inwards the ring.  

The solution of equation 0=u∆  with boundary conditions (24) and (25) has a form 
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ENTROPY FUNCTIONALS 

For finding the optimal values of parameters εi and εa we minimize the functional of intensity 
of entropy production or dissipation energy 
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Introducing the dimensionless temperature u  
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For small values of  |u| , σ and ψ can be relaced by functional  ζ 
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Functionals σ, ψ, ζ, I, χ are results of second law of the thermodynamic. 

Functionals for damping of oscillation at the boundary: 

 − functional with first derivative of temperature, along the boundary 
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− functional with first derivative of heat flux, along the boundary 
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− functional with second derivative of temperature, along the boundary 
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Minimization of functionals σ, ψ, ζ, χ, Ts, Tns, Tss due to parameter εi i εa delivere the stavile 
solution of Cauchy problem. 



 

 

 



 

 

 



5. FINAL REMARKS 

- The discussed method of fundamental solution applied to     
     solve the inverse problem is based on the search of the power   

     of sources on the removed boundary in relation to the 

     boundary of the given region.  

 

- The introduction of the removed boundary allows to avoid the integration of the 
singular functions which makes the numerical calculations much faster and easier.  

 

- The distance of removal of the boundaries εa and εi from the boundaries aΓ  and iΓ  
worsens the conditions of the matrix of the inverse problem. As the result the choice 
of the parameters of the boundary removal εi and εa in order to obtain the best 
solutions with regard to the selected criterions remains crucial.  

 

- The problem discussed in this paper is in fact a Cauchy problem for the Laplace 
equation and is particularly sensitive to the errors in data.  

 

- The influence of the disturbances is presented in graphs 6 and 7.  



 

A NEW ALGORITHM OF SOLVING INVERSE PROBLEMS OF HEAT 
CONDUCTION  

1. Formulation of Cauchy problem for a multiply connected region 

Let us consider stationary heat flow in a multiply connected region Ω confined with the 
boundary Γ (Fig.1). 
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Fig.1. 

 

The problem is to be solved iteratively by defining a direct problem for the region in the 
following way:  
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Normal derivative at the Γi boundary is iteratively modified so as to achieve minimal value of 
the functional  
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3. Solution of the inverse problem  

Taking into account arbitrary shape of the Ω region the equation (1) is solved with Finite 
Element Method. Multiplication of the Laplace equation by the test function ϕ, integration at 
the Ω region, and application of the Ostrogradski-Gauss theorem provide:  

0=⋅⋅
∂
∂+⋅⋅

∂
∂+⋅∇⋅∇−=⋅⋅∆ ∫∫∫∫

ΓΓΩΩ inout

ds
n

T
ds

n

T
dxTdxT ϕϕϕϕ .   (6) 

Consideration of (4) gives  

∫∫∫
ΓΓΩ

⋅⋅+⋅⋅=⋅∇⋅∇
inout

dsgdsqdxT out ϕϕϕ .    (7) 

Since the condition at the Γin boundary is subject to changes, solution of the Laplace equation 
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Since we search the changes of heat flux δg at the inner boundary, the boundary integral Γout 
should be transformed into the boundary integral Γin. Hence, let us formulate the following 
equation for this purpose  
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p
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Substitution of p into ϕ in equation (11) and u into ψ  in (14) (this may be done as ϕ and ψ are 
base functions, while p and u are expressed by linear combinations of the base functions) 
gives the following equation:  

( )∫∫
ΓΓ

⋅⋅−=⋅⋅
outin

dsuTgTdsg out)(ϕδ .    (15) 

The above consideration enables formulating an algorithm of the inverse problem solution. 
Knowledge of the flux distribution gn in the n-th iteration at the Γin boundary allows for 
finding the Tn solution of the equation  
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The equation  
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serves for finding the pn function. A new approximation gn of the flux distribution at the Γin 
boundary is obtained from the formula 

nnn pgg η−=+1 ,      (18) 

where η∈(0,1). The interation is terminated when the condition  

ε<−+ nn TT 1 .      (19) 

is met. Value of the parameter η may be optimally chosen in every iteration step. The solution 
in the n+1 iteration step depends on the parameter η, taking the following form: 
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In the next step of iteration the solution is sought in the following form:  

( )nnn puTT ηη −=+1 ,      (21) 

thus allowing for finding the function u:  
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Once the functional is calculated for the next iteration  

[ ] [ ] ( )( )

( ) ( ) ( ) ( )∫∫∫

∫

ΓΓΓ

Γ

+

+−−−=

=−−=−=

outoutout

out

dspudspuTTdsTT

dsTpuTpgJgJ

nn
out

n
out

n

out
nnnnn

222

21

2

1

2

1

2

1

ηη

ηη

, (23) 

it becomes evident that the problem converts itself into calculation of extreme point of the 
quadratic equation:  

02 =++ cba ηη ,     (24) 

where  
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Finally, the optimal value of the parameter η is given by the formula: 
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4. Numerical calculation 

The above described algorithm has been used for solving an inverse problem for a ring of the 
radius r0=0.5 (Fig. 2) with the help of the Felics program. It is a file of numerical procedures 
designed for solving differential equations with Finite Element Method. The program has 
been developed in the Institute of Mathematics of the Munich University of Technology.  

The ring region was divided into 11348 triangle elements. In order to approximate the heat 
flux density the outer boundary of the ring was divided into 312 ranges, while the inner 
boundary into 156 ranges.  

 

Fig. 2. Temperature and heat flux density distributions at the outer boundary of the ring 

 

Temperature and heat flux density patterns at the outer boundary of the ring (Fig. 2) have 
been determined from the analytical solution [8]:  

( ) ( ) ( )∑
∞

=

ϕ


















−⋅+⋅+=ϕ
1m

m
m

c mcos
r

a
ar

m2

1
CrlnCT,rT .   (27) 

Temperature distributions at the inner boundary of the ring for the analytical and numerical 
solutions are shown in Fig. 3.  

 
Fig. 3. Comparison of temperatures at the inner boundary of the ring obtained from analytical (green) and 

numerical (red) solutions 



5. Summary  

The results presented in Fig. 3 show that the functional [6] more quickly converges to the 
minimum (the final value of the functional [6] was of the order of 10-4) than the temperature 
at the inner boundary of the ring to the accurate solution. Hence, it can be admitted that it is a 
sign of ill-conditioning of the inverse problem. What is more important, the solution obtained 
this way is not subject to oscillations as in the paper [5], where the oscillation had to be 
damped with the SVD algorithm.  

Modification of the presented algorithm should be additionally analyzed, with a view to 
reduce the difference shown in Fig. 3.  

The solution presented here may be considered as an example formulation of the problem. 
The aim of the present paper was to test the new algorithm of inverse problems. In the next 
stage the test of a modified algorithm should be made, with consideration of mean-square 
fulfilling of the conditions (3).  

  

The work has been carried out within the framework of the Ministry of Science and Education Grant No. 
3134/B/T02/2007/33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SOLUTION OF CAUCHY PROBLEM TO STATIONARY HEAT 
CONDUCTION EQUATION BY MODYFIED METHOD OF 

ELEMENTARY BALANCES WITH INTERPOLATION OF THE 
SOLUTION IN PHYSICAL PLANE 

 
 
1. Formulation of a modified method of elementary balances (MCVM – 

Modified Control Volume Method) 

    In the modified method of elementary balances the domain Ω is divided into sub-domains 
Ωn. The unknown solution of the differential equation is interpolated in every element of the 
domain with the help of base functions 
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⋅=
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i
ii PTPT

1

ϕ .      (1) 

The base functions ϕi  are determined as follows 
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where the points Pj are interpolation nodes belonging to the Ωn sub-domain. In the case of 
four nodes of a quadrilateral element or six nodes of a triangular one (Fig. 1) the base function 
ϕi is a product of two linear functions [20] 
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CyBxA
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where j1, j2 are the numbers of lines connecting the mesh nodes of the element (Table 1), 
Ajx+Bjy+Cj = 0 being equation of the j-th straight line. More general formulation of the 
interpolation function of such a form in the mesh element is provided by [20]. An important 
property of the base functions (3) lies in their zeroing at the sides opposite to the Pi node that 
in consequence leads to the disappearance of some integrals in the calculation process. 

The control surface ∂Σ, on which the energy is balanced, is created around each of the 
mesh nodes. Figure 2 shows the way of generating the control surface (broken line) for 4-
node and 9-node elements of a quadrilateral mesh. 

For six-node element of a triangular mesh the shape of the control surface (Fig. 3a) 
becomes more complicated, since in this case the control surface coincides with the mesh 
lines. This leads to overlapping of control surfaces around various points (Fig. 3b). 
 



      
Figure 1: Arrangement of 6 mesh nodes of a triangular element or 4 nodes in a quadrilateral one 

Table 1: The numbers j1, j2  of the straight line for the i-th base function 

 

 

 

Figure 2:  Four-node and nine-node elements of a quadrilateral mesh. The solid line denotes an interpolation 
mesh while the broken one is for the balance mesh. 

i 
Triangle tetragon 

j1 j2 j1 j2 
1 1 5 1 2 

2 2 6 2 3 

3 3 4 3 4 

4 1 2 4 1 

5 2 3   

6 3 1   



 
Figure 3:  Six-node element of a triangular mesh. An example of control surface formulation (broken line) – a) 

polygonal region of balancing around node, b) circular region of balancing. 

    For the point P5∈Ω (Fig. 2) the open polygon Q3Q4Q5Q7Q9Q10Q8Q6Q3, is a control surface 
∂Σ5, while for the point P2∈Γ – it  is the open polygon P2Q1Q3Q4Q5Q2P2. In the case of a six-
node element of a triangular mesh the situation is more complex. Four cases are possible: 

- P13∈Ω - the control surface is defined by the open polygon P1 P3 P5 P15 P19 P11 P1, 
- P8∈Ω - the control surface is defined by the open polygon P1 P3 P5 P13 P1, 
- P3∈Γ - the control surface is defined by the open polygon P3 P5 P13 P1 P3, 
- P2∈Γ - the control surface is defined by the open polygon P1 P3 P13 P1. 

    The example shows that the control surfaces built on a triangular mesh are not disjoint. 
    Energy balance on the control surface for stationary heat conduction equation div(∇T)=0 
performed with the use of the Gauss-Ostrogradski theorem around each point Pi∈Ω leads to 
the relationship 
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while for the point Pi∈Γ 
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where ∂Σi is a control surface around the i-th mesh point, Γi is a part of the outer boundary 
that coincides with the control surface around the i-th point. 
    Taking into account that the Kirchhoff substitution 
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transforms the non-linear equation div(∇T)=0 into linear one 0=∆ϑ , we assume λ=1 for 
further consideration. 
    For the point P5∈Ω (Fig. 2) the energy balance is as follows: 
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while in case of P2∈Γ 
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Density of the heat flux q between the points of the Γ boundary is approximated with the help 
of a linear function 
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    The substitution the integrals calculated in the manner, into the equations (6) and (7) 
provides an equation including unknown values of the T(x,y) function in the mesh nodes and 
the heat flux values at  the Γ boundary. The upper index of the base function ϕ  is the number 
of the mesh element. 
    The similar procedure is applied in the case of the triangular mesh. The energy balance 
around each of the nodes provides the system of equations 

ααβαβααα

βββααβ

QBTATA

0TATA

⋅=⋅+⋅

=⋅+⋅
.    (8) 

    Each of the equations of the system (8) is related to energy balance around the mesh node. 
The points are located on inside the Ω domain (the vector T – index β) or at the Γ boundary 
(the vectors T, Q – with indexes α). Denote the numbers of outer and inner mesh nodes as nα, 
nβ, the number of equations with unknown Tα, Qα, Tβ. It amounts to (2nα+nβ) of unknowns. 
Missing Tα, Qα values are determined from boundary conditions. 
    The system of equations (8) allows for eliminating the Tβ  vector 

αβαβββ TAAT 1−−= ,     (9) 

that provides the relationship between temperature and the heat flux at the domain boundary 
known from the Boundary Element Method 

αα BQAT = .      (10) 

    Recapitulating, one can state that in the classical method the balancing is based on 
consistency of the fluxes between the control domains. In a general case considered here the 
balance occurs in mesh around the node, while the control domains may contain each other. 
Therefore, the present approach to the method of elementary balances is distinguished by the 
following characteristic features: 

a) in every mesh element the temperature function is approximated with the help of the 
interpolation functions (3) (without any constraints imposed on the number of the 
element nodes); 

b) a control domain, in which the energy is balanced, is created around each of the mesh 
nodes. 

 The idea of the method is similar to CVFEM (Control Volume Finite Element Method) 
[21], however the work [19] and the present paper indicate important discrepancies between 
both methods. Differences are related to the interpolation of solution of differential equation 
in finite element and the way the physical values are balanced around mesh node. The 
following steps of modified elementary balance method are shown in Fig.4.  



 
Figure 4: Scheme of generation of system of equations in MCVM. 

2. Numerical examples 
    The MCVM is applied here to solving the direct and inverse problems of ring cooling. Both 
problems are formulated identically as in [19]: 

1. The direct problem – the third kind boundary conditions are given on the inner and 
outer ring boundaries (Fig.5), i.e. the heat transfer coefficient α (Biot numbers) are 
known at the ring boundaries  

)(: owoooo TTq −−=Γ α ,    (11) 

)(: iwiiii TTq −−=Γ α ,    (12) 

where the index o is related to physical values referring to the outer boundary and the 
index i to the inner boundary; Two, Twi – temperature distribution at the ring 
boundaries. 

2. The inverse problem is formulated by temperature and heat flux density distributions 
at the outer ring boundary (the Cauchy problem for the Laplace equation). 

 

 

Figure 5: Region Ω: a) circular ring, b) elliptical ring, c) elliptical ring with displaced boundaries. 

 
 

Division of region Ω into finite 
elements of any shape 

Creation of control surfaces around each node of the mesh of finite elements 

Classic approach – balance surfaces touch 
creating a balance mesh (Fig.2). 

Balance surfaces can overlap (Fig.3b) 

 

Energy balance on control surfaces – system of equations (8) 

Interpolation of the solution of the differential equation in 
every element of the mesh with help of base functions (3) 



Example 1     
The analytical solution used to compare the calculations performed with this method is 
expressed by the relationship [1] 
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where Tc=T(1,ϕ), constant C is equal to the amount of heat transferred through the outer 
boundary of the ring: 
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Boundary conditions of a direct problem for the case of C=0.5, a=0.4, Tc=0.9. r₀=0.5 are 
shown in Fig.6a, while for an inverse one in Fig.6b. 

 

Figure 6: Boundary conditions for a) direct problem – coefficient of heat exchange α on the boundary of the 
ring and b) inverse problem – temperature and density of heat flux on the outer boundary of the ring. Example 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 2 
Boundary conditions for the circular ring region  (Fig.5a) are generated from formula 

( ) ( ) ( ) ϕϕ i
io rez,zzlnCzzlnCC,rT =−⋅+−⋅+= 210 ,    (14) 

where C0=0.7. C1=-0.1. C2=0.2. 
221
πi

o e.z ⋅= . πi
i e.z −⋅= 40  (Fig.7). 

 

Figure 7: Boundary conditions for a) direct problem – coefficient of heat exchange α on the boundary of the 
ring and b) inverse problem – temperature and density of heat flux on the outer boundary of the ring. Example 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 3 
Boundary condition for elliptical ring (Fig.5b) boundaries given by equation: 
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are generated from formula (14) for C0=0.7. C1=-0.1. C2=0.2. 
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(Fig.8).  

 

Figure 8: Boundary conditions for a) direct problem – coefficient of heat exchange α on the boundary of the ring 
and b) inverse problem – temperature and density of heat flux on the outer boundary of the ring. Example 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 4 
Boundary conditions for the elliptical ring with variable thickness region (Fig.5c) and 

boundaries given by equations: 
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are generated from formula (14) for C0=0.7. C1=-0.1. C2=0.2. 
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(Fig.9).  

 

Figure 9: Boundary conditions for a) direct problem – coefficient of heat exchange α on the boundary of the 
ring and b) inverse problem – temperature and density of heat flux on the outer boundary of the ring. Example 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The calculation has been carried out for a six-node element of the triangular mesh and a 
four-node element of the quadrilateral mesh (Fig. 1) for the interpolation of Solution an 
element. The parameters of meshes of finite elements used in the particular examples are 
presented in Table2. The energy balance around each of the mesh nodes provided in both 
cases the system of equations (10) that was transformed according to temperature and heat 
flux separation at the outer and inner ring boundaries 
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- and for the inverse problem 
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    The formula (16) for the inverse problem contains a pseudo-inverse matrix, determined 
with the SVD algorithm. 

Table 2: Parameters of meshes of finite elements used in the numerical calculations. The 
number of nodes on the inner boundary of the ring equals the number of nodes on the outer 

boundary. 

Example 

Triangular mesh elements Quadrilateral meshes elements 

Number of 
inner nodes 

Number of 
nodes on the 

boundary 

Number of 
inner nodes 

Number of 
nodes on the 

boundary 

Number of 
inner nodes 

Number of 
nodes on the 

boundary 
1. 700 200 400 800 200 900 
2. 3800 400 2000 3600 400 3800 
3. 1400 400 800 1600 400 1800 
4. 3800 400 2000 3600 400 3800 

 
The results of calculations for the triangular and quadrilateral meshes in case of the inverse 

problem of ring cooling are shown in Figs. 10 – 13. The plots are made for the known 
undisturbed temperature and flux values at the outer ring boundary. 
  

 

 

 

 

 

 



 
Figure 10: Distribution a) temperature and  b) density of heat flux on inner boundary of ring for undisturbed 

data, f=5 – example 1. 

 
Figure 11: Distribution a) temperature and  b) density of heat flux on inner boundary of ring for undisturbed 

data, f=3 – example 2. 

 
Figure 12: Distributions a) temperature  and b) density of heat flux on inner boundary of ring for undisturbed 
data, f=5 for triangular element and  f=3 for quadrilateral element – example 3. 

 
Figure 13: Distribution a) temperature b) density of heat flux on inner boundary of ring for undisturbed data f=3 

– example 4. 

For estimation both grids, the relative norms [19] have been calculated, which expressed 
errors of physical value at ring boundary in comparison with analitycal solution 
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Boundary conditions of both problems are disturbed with the relative error given by the 
formula 

( )1random2max −⋅⋅= εε ,     (18) 

where random is for a pseudo-random number in the range (0,1). 
 
    In order to minimize the errors of heat flux and temperature at the boundary the patterns of 
these values have been smoothed by means of linear combination of trigonometric functions 
[19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Summary 
    The Tables 3 – 10 show that solution of a direct problem with the use of triangular mesh 
based on 6 nodes and quadrilateral mesh based on 4 nodes is highly accurate in the sense of 
the norm (17) with error εmax below 5 per cent, i.e. values of the flux and temperature found in 
result of the calculation are below 5.5 per cent for temperature, while in case of the flux – 
below 15 per cent. 

The analysis of figures 10-13 and results presented in Tables 3-10 for the numerical 
examples 1-4 show a significant conformity of the temperature distribution with the analytical 
solutions for the regularization parameter on algorithm SVD f=3  below 5 % for the error of 
disturbed of data εmax≤1%. The heat flux on the inner boundary of the ring shows strong 
oscillations around the analytical solutions for both types of meshes, which leads to a loss of 
stability of the solution as the maximal error of disturbed data εmax increases. This 
phenomenon is characteristic for the solution of the inverse problem and it is possible to 
demonstrate that for the Cauchy problem for a circular ring it is independent for the numerical 
method of used to solve the problem (an ill-posed problem in Hadamard’s sense).  A small 
disturbance in the temperature T(1,φ) and heat flux q(1,φ) on the boundary Γo, lead to a large 
disturbance of the value of the solution of the Laplace equation on the boundary Γi. Let’s 
assume indeed that the disturbances of functions T(1,φ) and q(1,φ) on the boundary Γo are as 
follows: 
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and we are able to calculate the values of functional of errors of the solution of the Laplace 
equation at the boundaries Γo i Γi: 
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. 
The numerical solution has a form of solution in closed form. By analogy to the above 

result it is possible to make a conclusion that the larger the value of parameter f  and error 
εmax, the larger the value of error of solution.    

The calculation results are stable for the small values of the parameter f, which means that 
the solution of the system of equations (10) was obtained at the border line of the application 
of the SVD algorithm.  This opens the door to the other direction in research where the 
Tichonow regularization is applied to solve that system of equations or it is solved by the 
iterative solution of sequence of direct problems. 

The smoothness of disturbed data has not influence on value of parameter f only less 
improve of solution of Cauchy problem for disturbed data.  

The calculation results obtained for the two different cases of energy balancing don’t differ 
by much. In the case of the quadrilateral element mesh the control area is generated around 
the mesh node where the energy balance is performed in a way similar to that used in classical 



method of elementary balances (finite volumes), while in case of triangular mesh the control 
areas around different nodes may interpenetrate. This makes a significant difference with 
respect to the classical method of elementary balances and CVFEM, as it indicates the way of 
generalization of the method to the meshes of various shapes. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPLICATION OF INVERSE PROBLEM OF THE POISSON EQUATION IN 
THE COOLING PROCESS OF A GAS-TURBINE BLADE 

Formulation of the problem  

A multiply connected region Ω bounded with the boundary Γ=Γout∪Γin shown in Fig. 1 is 
distinguished by a complex geometry. The Cauchy problem for the region may be formulated 
as follows: distribution of temperature and heat flux density at the outer boundary of the gas 
turbine blade (Fig. 1) are given:  
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λ ,  (1) 

the heat flux and temperature distribution are to be found at the inside boundaries Γm (in the 
blade channels) Fig. 1.  

 

 

Fig. 1. Multiply connected region Ω bounded with the boundary Γ=Γout∪Γin 

Such inverse problem formulated this way not always may be solved. Therefore, we look for a 
solution in the means-square sense:  
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The method of solving the inverse problem  

In the multiply connected region Ω (Fig. 1) the Laplace equation is solved as follows 
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where Γ∈+= ηζξ i , Ω∈+= iyxz , and the c(z) function is provided by the formula    
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γ =π for a smooth boundary. 

The paper [4] includes a solution to the inverse problem of cooling of a gas turbine blade 
obtained with the boundary element method. At the Γ boundary N points Nξξξ ,,, 21 K  should 

be selected, approximating the boundary with piecewise linear lines. Integrals occurring in (3) 
are determined by approximation of the boundary heat flux and temperature with a linear 
function. This is described by the equation 
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Substitution of z=ξl∈Γ  into (5) provides a matrix equation reflecting the relationship between the 
temperature T and the heat flux q at the Γ  boundary 
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If the physical values related to the outer (the “out” index) and the inner (the “in”  index) 
boundaries are separated, one obtains: 
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and the solution to the inverse problem in a matrix notation has the following form 
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where Tout , Tin – temperatures of outer and inner gas, respectively. 

Instead of searching the temperature and heat flux at the Γin boundary we can solve the 
Poisson equation in the simply connected region bounded with the Γout boundary. For known 
boundary conditions (2a) or (2b) we shall search the distribution of the source power in the 
Ωin regions.  

Solution of the Poisson equation in the region bounded with the Γout boundary and the heat sources 
located in the Ωin regions is as  

follows: ( ) ( ) ( ) ( ) ( )∫∫∫
ΩΓΓ
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where outi Γ∈+= ηζξ , Ω∈+= 21 ixxz , iniyyy Ω∈+= 21  and the c(z) function is provided by 
the formula (4).  

A procedure similar to the one used in the boundary element method and discretization of the 
Γout boundary and Ωin regions allow to give the equation (10) the following form: 

 ∑∑∑
===

⋅+⋅+⋅=⋅
m

l
ll

n

k
kk

n

k
kk zdqzbTzazTzc

111

)()()()()( ρ .  (11) 

For the points z=ξl∈Γout, l=1,2,…,n the equation (11) may be written in the matrix form 

 ρCBqAT outwout += ,  (12) 

provided that m<n. Unknown distribution of the source power p may be finally determined according 
to the formula 

  ( )outwout
I BqATC −=ρ .  (13) 

Thus, a solution in the mean-square sense is obtained. The solution may be corrected by 
determining temperature of the Γout boundary, considering the boundary conditions (2b): 

  






 +−






 −=
−

ρ
λ
α

λ
α
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1

.  (14) 

Knowing the temperature, the heat flux at the Γout boundary, and the power of the sources one 
is able, by solving the Poisson problem in all the Ωin regions, to determine the temperature at 
the Γin boundaries and, afterwards, the heat fluxes at the Γin boundaries. The solution obtained 
this way belongs to the class of inverse problems since the formula (13) includes a pseudo-
inverse matrix. 



 
Fig. 2. Optimization scheme of the cooling process of gas turbine blades 
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Numerical calculation  

Solution of the inverse problem provides varying value of the heat transfer coefficient in the 
channels. Nevertheless, this result does not reflect actual course of the blade cooling process, as in 
case of its channels a constant values of the heat transfer coefficient α is assumed. In the next 
optimization step an average α value is determined:  

     ( )∫∫
ΓΓ

−=
inin

dsTTdsq inwinsrin α  ,     (20) 

where Twin – temperature of the blade wall; Tin – fluid temperature in the cooling channel. The 
averaged values of the heat transfer coefficient in the channels determined with the boundary 
element method and the method of fictitious sources for various temperature values of the 
outer blade boundary (the optimization criterion) are presented in Table 2.  

Values of the heat transfer coefficient in the channels and the distribution of the heat transfer 
coefficient at the outer blade boundary (Fig. 3) have been used for solving the direct problem 
with the 3-rd kind boundary conditions. Calculation results for the boundary element method 
are presented in Figures 5, 6, 7, while for the method of fictitious sources – in Figures 8, 9, 
10.  

  
Fig. 3. Distribution of the heat transfer coefficient of the C3X blade (left) and temperature distribution of the 

C3X blade (right) at the outer surface of the blade, determined experimentally [2]. (RUN 154) 
 

Each of the figures presents the temperature distribution in the blade region and a comparison 
of the primary temperature distribution at the outer blade surface to the distribution calculated 
in result of the optimization process. A small difference appears between the distribution so 
obtained and the one resulting from the optimization criterion.  

In order to estimate the quality of the optimization process a relative norm has been assumed 
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Values of the norm for both methods of solving the direct and inverse tasks presented in the paper are 
shown in Figure 11. 



  
Fig. 4. Temperature distribution of the C3X blade calculated based on the experimental data [2]. (RUN 154)  

 

  
Fig. 5. Temperature distribution of the C3X blade calculated with the Boundary Element Method for the 

optimization criterion T=600K (left), comparison of temperature distributions at the outer surface of the blade 
(right) 

  
Fig. 6. Temperature distribution of the C3X blade calculated with the Boundary Element Method for the 

optimization criterion T=650K (left), comparison of temperature distributions at the outer surface of the blade 
(right) 

  
Fig. 7. Temperature distribution of the C3X blade calculated with the Boundary Element Method for the 

optimization criterion T=700K (left); comparison of temperature distributions at the outer surface of the blade 
(right) 

 

  



Fig. 8. Temperature distribution of the C3X blade calculated with the method of fictitious sources for the 
optimization criterion T=600K (left); comparison of the temperature distributions at the outer blade surface 

(right) 
 

  
Fig. 9. Temperature distribution of the C3X blade calculated with the method of fictitious sources for the 

optimization criterion T=650K (left); comparison of the temperature distributions at the outer blade surface 
(right) 

 

   
Fig. 10. Temperature distribution of the C3X blade calculated with the method of fictitious sources for the 
optimization criterion T=700K (left); comparison of the temperature distributions at the outer blade surface 

(right) 

 
Fig. 11. Comparison of the norms for the inverse and direct problems: the boundary element method (left) and 

the method of fictitious sources (right).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Comparison of heat transfer coefficient values α determined according to the scheme (Fig. 2) 

Channel 
Primary 

distribution 

Boundary Element Method 
The Method of Fictitious 

Sources (Poisson equation) 

600[K] 650[K] 700[K] 600[K] 650[K] 700[K] 

1 1682 2060 1037 536 2496 1152 570 

2 1776 1459 742 497 1052 544 283 

3 1827 1748 829 304 1419 697 354 

4 1839 1939 857 429 2038 985 497 

5 1773 1413 772 426 1390 755 404 

6 1327 1404 744 401 1880 989 520 

7 1501 2223 1202 650 1434 829 460 

8 2092 3094 1675 866 3659 1896 989 

9 800 3653 1858 944 4017 1961 994 

10 1150 8527 3333 1583 9310 3440 1565 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 



 

 

Summary 
The essence of the computation presented in the paper consists in testing the Method of 
Fictitious Sources for the Poisson equation and comparing the results obtained with this 
method to the ones obtained based on the Boundary Element Method. It should be noticed 
that solving the inverse problem makes only a part of the optimization scheme of the blade 
cooling process. As a measure of correctness of the scheme the values of the norm (21) are 
assumed. It is a relative measure of the distance between the temperature distribution at the 
outer boundary of the blade and the temperature obtained from the optimization criterion.  

Figure 11 shows that the difference between the norm (21) for the direct and inverse problems 
is smaller for the Method of Fictitious Sources than for the Boundary Element Method, 
although the norm values are higher. Nevertheless, more important is the fact that the 
difference in the solution of the inverse problem obtained with the Method of Fictitious 
Sources and the solution of the direct problem is small. The reason of this is shown in Fig. 12. 
Distributions of the heat transfer coefficient values in the channels obtained with the 
Boundary Element Method from the solution of the inverse problem show strong oscillations. 
In case of the solution of the inverse problem with the Method of Fictitious Sources the 
oscillations do not appear.  

It means that in case of solving the inverse problems related to heat transfer in the blades of 
channel geometry that precludes the assumption of constant heat transfer coefficient values α 
the Method of Fictitious Sources described in the present paper directly provides correct 
(oscillation free) solution to the blade cooling problem.  

  
Fig. 12. Distributions of heat transfer coefficient values α in the channels obtained from the inverse problem: 

with the Boundary Element Method (left) and the Method of Fictitious Sources (right). 
 

 

 

 

 

 

 

 

 



INVESTIGATION OF THERMAL LOADING BY SOLUTION OF 
INVERSE PROBLEM  

1. BASIC EQUATIONS 

 

For a one-dimensional transient and linear case the equation of heat conduction is given by: 
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and after introducing the dimensionless parameters 
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The following conditions are assumed: 

− Initial condition 

 ( ) ( ),o0, ηϑ=ηϑ    1,0∈η  (5) 

 

− Boundary condition on the surface η=1 
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spherical shell 

cylindrical shell 

flat plate 



In case of the inverse problem measured temperatures in selected points sternMk _,...,2,1* =η   

in the interior of the body are available instead of boundary conditions on the surface η=0 (r = 

Ri). 

 

Fig.1. Calculation domain 

 

 ( ) ( ) stern_M,...,2,1k,FoFo, *
k

*
k =ϑ=ηϑ     (7) 

 

The temperature trend in the point  η = 0 (r = Ri, inner surface) is required. A problem defined 

this way is called an inverse problem. 
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2. SOLUTION OF THE INVERSE PROBLEM 

 

In this paper an idea is presented to solve the inverse problem based on the ambition to find a 

solution that is a least two times differentiable in space. This attribute offer both the Green 

function method and the solution with spline functions. 

 

 

Fig. 2. Grid for interpolation of spline functions 

 

The solution of equation (3) can be expressed as a linear combination of spline functions 
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For further calculation we introduce the discretization of the first derivative Fo/ ∂ϑ∂  with a 
backward quotient 
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so that equation (3) gets the following form 
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The solution of equation (10) with spline functions (8) for a constant time step ∆Fo is given 
by 
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The unknown coefficients ϑj for each time step are determined by boundary conditions (6), 
measured temperature distribution (7) and the satisfaction of equation (3) at inner points η1, 
η2, ... ηN-1.  

 

The solution of equation (11) at inner points η1,η2,…, ηN-1 gives the following equation 
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Next are obtained from the boundary condition (6) und measured temperature trends (7) 
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Equations (13) to (15) form a system of linear equations that can be expressed in a matrix: 
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or in a compact form 

 

 [ ]{ } [ ]{ } { }FRQq__ +β=ϑϕψ  (17) 

 

[ ] ( ) ( ) [ ] ( ) ( )1Nstern_MNq_dim,1Nstern_MN_dim +∗+=β+∗+=ϕψ     

 

And the solution of equation (17) can be written in a symbolic form: 

 

 { } [ ] [ ]{ } [ ] { }FR_Qq__ II ϕψ+βϕψ=ϑ  (18) 

 

where [ψ_ϕ]
I
 is a  pseudo-inverse matrix (if N + M_stern > N + 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. STABILITY ANALYSIS OF THE INVERSE MATRIX 

 

Stability analysis is based on equation (18). The vector {ϑ} is known for the time Fon and the 

vector {Q} is known for the time Fon-1. With the assumption of ( ) ( )ηϑ=ηϑ n
nFo, , 

( ) ( ) ( )η=ηϑ=ηϑ −
− QFo, 1n
1n  equation (18) can be expressed in the following form 

 { } [ ] { } [ ] { }nI1nn FR_STAB ϕψ+ϑ⋅=ϑ − ,   n = 1,2,3,… (19) 

 

with [ ] [ ] [ ]q__STAB I β⋅ϕψ=  as stability matrix of the inverse problem. The solution of 

equation (3) is stable if the spectral radius ρs([STAB]) satisfies the inequality ρs < 1. The 

spectral radius depends on the time step ∆Fo, the node distribution ηk, k = 0,…, N, (Fig. 2) 

and the number of nodes N. The temperature distribution for the current time step Fon is 

influenced by the measured temperatures *
sternM

*
1 ,..., −ϑϑ  at inner points *

sternM
*
1 ,..., −ηη  which is 

included in the vector {FR
n
}. Assuming that the vector {FR

n
} is disturbed by the term 

{ }nFδ and the vector of initial temperature { }0ϑ  is I disturbed by the term { }0δϑ  the following 

equations can be written for the first three time steps 
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and for arbitrary time steps 
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and for the disturbed data 
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Subtraction equation (21) from equation (20) gives an disturbed vector as a function of the 

interfered initial temperature und and the disturbed measured temperature for every time step 

including the current one. 
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From equation (22) results that damping of measurement errors is increasing with a 

decreasing spectral radius ρs of the stability matrix [STAB] and satisfies the inequation ρs < 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. NUMERICAL CALCULATION 

 

The spectral radius ρs of the stability matrix [STAB] (20) plays a decisive role for the 

convergence of the inverse problem. If ρs < 1 the solution of equation (19) is convergent. 

Figure 3 shows the dependence of the spectral radius from the time step for different values of 

heat transfer coefficient on the outer surface. Higher values of the heat transfer coefficient (at 

the surface aRr = ) correspond to lower spectral radii and the spectral radius decreases with 

increasing time steps. 

 

Fig. 3. Spectral radii as a function of time step for different heat transfer coefficients 

 

To verify the presented method to solve the inverse problem the temperature distribution at 

inner points of the cylindrical wall are generated from the analytical solution (direct problem). 

Figure 4, 5 and 6 show the calculated heat transfer coefficient on the inner surface as solution 

of the inverse problem. The calculation is based on a cylindrical geometry with Ri = 100 mm 

and Ra = 180 mm. Results from the inverse calculation are in good agreement with the given 

values for the direct solution. The error rate of the solution reaches values of approx. 1% for 

the heat transfer coefficient α = 5000 W/m²K and of less that 1% for lower heat transfer 

coefficients. 



 

Fig. 4. Solution of inverse problem with exact data from direct problem with α = 5000 W/m²K 

 

 

 

Fig. 5. Solution of inverse problem with exact data from direct problem with α = 500 W/m²K 



 

Fig. 6. Solution of inverse problem with exact data from direct problem with α = 50 W/m²K 

 

In a second step measured temperatures from a steam turbine casing were used to calculate 

the heat transfer coefficients on the inner surface (steam touched) using the presented inverse 

method. Figure 7 shows the calculated heat transfer coefficient inside of an exhaust steam 

casing. Fluid and wall temperatures are comparatively low due to vacuum conditions. The 

structure is considered as a cylinder with inner radius Ri = 560 mm and outer radius Ra = 582 

mm. Two thermocouples are located 2.2 mm and 11.6 mm from the inner surface. The outer 

surface is in contact with ambient air. Fluid temperature is set to 30°C and the heat transfer 

coefficient to 20 W/m²K. The peak in the calculated heat transfer coefficient at approximately 

250 seconds results from wall condensation that increases the heat transfer drastically.  

 



 

Fig. 7. Solution of inverse problem using measured temperatures taken at exhaust steam casing 

 

Figure 8 shows the calculated heat transfer coefficient inside the inlet section of a steam 

turbine casing. The turbine was operated on a test rig with reduced steam temperatures and 

pressures. This inlet section can be considered as a horizontal pipe with inner radius Ri = 100 

mm and outer radius Ra = 180 mm. Boundary conditions on the outside surface were chosen 

as fluid temperature 30°C and heat transfer coefficient 20 W/m²K. The heat transfer 

coefficient reaches maximal values of 18000 W/m²K which is a result of high velocity steam 

flow and wall condensation. 

In case of the inlet section of the steam turbine the structure is considered as a cylinder 

because the relative wall thickness (Ra – Ri) / Ra = 0.44 is comparatively high. When this 

structure is calculated as a flat plate with identical wall thickness the heat transfer coefficient 

changes considerably, as shown in Figure 9. This clearly reveals that a structure like the inlet 

section should not be considered as a plate. For the exhaust steam casing (Fig. 7) the relative 

wall thickness is only 0.03 and if the cylinder is considered as a flat plate the calculated heat 

transfer coefficients are practically identical. 

 



 

Fig. 8. Solution of inverse problem using measured temperatures taken at inlet of steam turbine casing 

 

Fig. 9. Solution of inverse problem calculated for cylinder and flat plate with identical wall width  



5. FINAL REMARKS  

 

Investigation of thermal loading of elements of thermal machines is necessary for appropriate 
its exploitation (protection before pass of allowable thermal stresses). On account of 
exploitation of thermal machines it is impossible measurement of temperature at inner surface 
of machine but is possible in some distance from this surface. Determination temperature at 
inner surface leads to the inverse problem. For solution of inverse problem authors applied 
discretization of heat conduction equation (1) with respect to time variable and solution with 
respect to space variable was assumed as linear combination of hyperbolic spline functions 
[27] (usually spline functions lead to non-stable solution of inverse problem). Obtained 
solution of inverse problem is stable and very accurate what proves comparison tests for 
different values of heat transfer coefficients. Presented method is appropriate for permanent 
monitoring state of thermal loading in real time. Spline function method will be used by 
authors for case when coefficient of thermal conductivity, density, and specific heat are 
function of temperature what requires solution of non-linear Eq. (17). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INVERSE SOURCE PROBLEM 

 

Solution to the problem „Flow in a cavity” through solution of inverse source problem for 
heat conduction equation  

 

Motion of 2D incopressible viscous flow is described by the equation with stream function Ψ  

 

or by acting with inverse operato ∆-1 , the motion equation is transfrmed into heat condction 
equation with unknown harmonic source function  

the solution of motion equation is equivalent to the solution to the inverse source problem for 
heat conduction equaton 
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