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History

- 1926 Erich Trefftz, Ein Gegenstük zum Ritz’schen Verfahren. Proceedings 2nd
International Congres of Applied Mechanics, Zurich, pp.131–137.

- 1978 Herrera I., Sabina F., Connectivity as an alternative to boundary integral

equations: Construction of bases, Appl. Math. Phys. Sc., No. 75/5, 2059–2063.

- Other authors: Kupradze, Jirousek, Leon, Zienkiewicz, Zieliński, Ko lodziej, Qin,
Li, Lu, Hu, Cheng.

Continuous time:

- 1956 P.C.Rosenbloom, D.V. Widder – 1D Heat polynomials,

- 1998–2000 M.J.Cia lkowski, K.Grysa, S.Hożejowska, L.Hożejowski – Direct and
inverse problems for heat conduction (1D–3D, several coordinates systems),

- 2000 M.J.Cia lkowski, A.Fr ↪ackowiak – Trefftz funtions for Laplace’a, Poisson’a,
Helmholtza and 1D wave equations, Trefftz functions as FEM base functions,

- 2002–2005 A.Maci ↪ag, J.Wauer – 2D and 3D wave polynomials,

- 2006– A.Maci ↪ag – Wave polynomials in thermoelasticity problems, T–functions for
beam and plate vibrations problems, several variants of FEMT.
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Main idea

The key idea of the method is to determine functions satisfying a given

differential equation (T–functions) and to fit the linear combination of

them to the governing initial and boundary conditions (usually The Least

Square Method).

Advantages of the method

• Approximate solution (a linear combination of the solving functions)

satisfies the equation identically and depends continuously on all space

variables and time.

• The method is flexible in terms of given boundary and initial conditions

(discrete, missing).

• The usage of T–functions as base functions in FEM allows to use big

time–space elements.

4/25



Wave polynomials

Let us consider a wave equation in Ω̃ = Ω × (0, t), where Ω ⊂ Rn and t

denotes time:

∇2u =
1

v2

∂2u

∂t2
.

For two-dimensional wave equation we take P000 = 1, Q000 = 0. Then

the recurrent formulas for wave polynomials are:

P(n−k)k0 =
1

n
(−xQ(n−k−1)k0−yQ(n−k)(k−1)0−vtQ(n−k−2)k1−vtQ(n−k)(k−2)1),

P(n−k−1)k1 =
1

n
(−xQ(n−k−2)k1 − yQ(n−k−1)(k−1)1 − vtQ(n−k−1)k0),

Q(n−k)k0 =
1

n
(xP(n−k−1)k0+yP(n−k)(k−1)0+vtP(n−k−2)k1+vtP(n−k)(k−2)1),

Q(n−k−1)k1 =
1

n
(xP(n−k−2)k1 + yP(n−k−1)(k−1)1 + vtP(n−k−1)k0).
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e.g.

P000 = 1, Q100 = x, Q010 = y, Q001 = t, P200 = −x
2

2
− t2

2
,

P110 = −xy, P101 = −xt, P011 = −yt, P020 = −y
2

2
− t2

2
, . . . ,

For three-dimensional wave equation:

P(n−k−l)kl0 = −1
n(xQ(n−k−l−1)kl0 + yQ(n−k−l)(k−1)l0 + zQ(n−k−l)k(l−1)0 +

+vtQ(n−k−l−2)kl1 + vtQ(n−k−l)(k−2)l1 + vtQ(n−k−l)k(l−2)1),

P(n−k−l−1)kl1 = −1
n(xQ(n−k−l−2)kl1 + yQ(n−k−l−1)(k−1)l1 +

+zQ(n−k−l−1)k(l−1)1 + vtQ(n−k−l−1)kl0),

Q(n−k−l)kl0 = 1
n(xP(n−k−l−1)kl0 + yP(n−k−l)(k−1)l0 + zP(n−k−l)k(l−1)0 +

+vtP(n−k−l−2)kl1 + vtP(n−k−l)(k−2)l1 + vtP(n−k−l)k(l−2)1),

Q(n−k−l−1)kl1 = 1
n(xP(n−k−l−2)kl1 + yP(n−k−l−1)(k−1)l1 +

+zP(n−k−l−1)k(l−1)1 + vtP(n−k−l−1)kl0).
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T–functions method

As an approximation of the wave equation we take:

u ≈ w =
N∑

n=1

cnVn.

Because all polynomials Vn satisfy the wave equation, the linear combi-

nation w satisfies this equation as well. The coefficients cn are chosen

so that the error of fulfilling given boundary and initial conditions corre-

sponding to the wave equation is minimized.

The method is convergent – more polynomials leads to better approxi-

mation.
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Membrane’s vibrations

Consider the free vibrations of a square membrane described by equation

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
(x, y) ∈ (0,1) × (0,1), t > 0,

and

initial conditions: u(x, y,0) = u0(x, y) = 1
20 sin(x) sin(πy), ∂u(x,y,0)

∂t = 0,

boundary conditions: u(0, y, t) = u(x,0, t) = u(x,1, t) = 0.

For simulation we take a condition on the boundary x = 1:

u(1, y, t) =
1

20
sin(1) sin(πy) cos(t

√
π2 + 1).

We assume that this condition is not known, but we know the internal

responses of a membrane’s deflection in distance ε from border x = 1:

u(1 − ε,0.1 · (k − 1), t) = uk(t), k = 1, . . . ,11.
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Values of uk for k = 1 . . .11 were simulated from exact solution:

u(x, y, t) =
1

20
sin(x) sin(πy) cos(t

√
π2 + 1).

-

6

�

•
•
•
•
•
•
•
•
•
•
•

1 x

1
y

ε

If ε > 0 we have an inverse problem and we search for a solution in the

whole domain but especially u(1, y, t).
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We check the quality of the identification of the boundary condition by

calculating the average relative error in the whole time interval (0,∆t),

which is defined as:

E =

√√√√
∫∆t
0 [u(1,0.5, t) − w(1,0.5, t)]2dt

∫∆t
0 [u(1,0.5, t)]2dt

· 100%.

The values of error E in dependence on the distance ε and order N are

shown in the table:

N\ε 0 0.05 0.1 0.2 0.3 0.4 0.6

3 29.25 28.65 29.00 32.29 39.76 55.18 100.96

5 4.28 4.42 5.00 7.38 12.75 19.79 25.12

7 0.33 0.36 0.38 0.97 2.27 2.50 6.00
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Disturbance and smoothing of data

Now we assume that the internal responses are given in discrete time

points: ukl = u(1 − ε, (k− 1) · 0.1, (l− 1) · 0.1) where k, l = 1, . . . ,11. This

data are disturbed according to the formula:

udkl = ukl(1 + ξkl),

where ξkl are random numbers of normal distribution (N(0,0.01)).

In this case the relative error E has a value from circa 2000% for ε = 0

(direct problem) to circa 180000% for ε = 0.8.

As an approximation of disturbed internal responses we take:

uε(1 − ε, y, t) =
N∑

n=1

cnVn(1 − ε, y, t),

Vn – wave polynomials. To chose coefficients cn we minimize:

11∑

k,l=1

[uε(1 − ε, (k − 1) · 0.1, (l − 1) · 0.1) − udkl]
2.
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Then the values of the relative error E for the smoothed data are shown

in the table:

ε 0 0.05 0.1 0.2 0.3 0.4 0.6

E 1.0 0.54 1.26 1.04 1.26 3.72 23.36

N\ε 0 0.05 0.1 0.2 0.3 0.4 0.6

3 29.25 28.65 29.00 32.29 39.76 55.18 100.96

5 4.28 4.42 5.00 7.38 12.75 19.79 25.12

7 0.33 0.36 0.38 0.97 2.27 2.50 6.00

If we take into account additional information concerning the velocity

of the membrane in the same points (disturbed and smoothed by wave

polynomials) we get:

ε 0 0.05 0.1 0.2 0.3 0.4 0.6

E 0.32 0.31 0.32 0.42 0.5 0.6 3.48
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Thermoelasticity problem

Let us consider thermoelasticity equations:

µ∇2
u + (λ+ µ)grad div u = ρü + γgrad T

where u – displacement vector, ∇ – nabla operator, µ, λ – Lame con-

stants, ρ – mass density, γ = E
1−2να, E – Young’s modulus, ν – Poison’s

ratio, α – coefficient of thermal expansion.

The temperature field is described by the equation:

1

κ

∂T

∂t
= ∇2T,

where κ – coefficient of thermal diffusivity. Equations are completed

by initial and boundary conditions or ”internal responses”. The relation

between displacements and stresses is described by:

σij = 2µεij + λεkkδij − γTδij,

where εij = 1
2(∂ui∂xj

+
∂uj
∂xi

) – strain tensor, δij – Kronecker delta.
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The system of thermoelasticity equations can be simplified by substitu-

tion: u = grad φ+ rot Ψ then we obtain:

(∇2 − 1

v2
1

∂2

∂t2
)φ = mT, (∇2 − 1

v2
2

∂2

∂t2
)ψi = 0, i = 1,2,3

where v2
1 = λ+2µ

ρ , v2
2 = µ

ρ, m = γ
c21ρ

.

We approximate the solution of the first equations by:

φ ≈ φ̂ =
N∑

n=1

c0nV
0
n + φp.

For the second equation we take:

ψi ≈ ψ̂i =
N∑

n=1

cinV
i
n, i = 1,2,3

Here V in, i = 0, . . . ,3 are wave polynomials satisfying corresponding wave

equation and φp is the particular solution.

Coefficients cin are determined by given conditions.
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Particular solution

The particular solution φp for Lφ = mT is calculated as L−1(mT ), where

L = ∇2 − 1
v2

1

∂2

∂t2
.

The temperature distribution can be approximated by linear combination
of heat polynomials (or Taylor series). Therefore, we have to know how
to calculate the inverse operator L−1 for monomials. It is easy to prove
that for two space variables we have three forms of L−1:

L−1
1 (xkyltm) =

1

(k + 2)(k + 1)
(xk+2yltm − l(l− 1)Z(k+2)(l−2)m +

m(m− 1)

v2
1

Z(k+2)l(m−2)),

L−1
2 (xkyltm) =

1

(l + 2)(l + 1)
(xkyl+2tm − k(k − 1)Z(k−2)(l+2)m +

m(m− 1)

v2
1

Zk(l+2)(m−2)),

L−1
3 (xkyltm) =

v2
1

(m+ 2)(m+ 1)
(−xkyltm+2 + k(k − 1)Z(k−2)l(m+2) + l(l− 1)Zk(l−2)(m+2)).
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For three space variables we have four forms of L−1:

Z1(xnykzltm) = 1
(n+2)(n+1)

(xn+2ykzltm + m(m−1)

v2
1

Z(n+2)kl(m−2) −
k(k − 1)Z(n+2)(k−2)lm − l(l− 1)Z(n+2)k(l−2)m),

Z2(xnykzltm) = 1
(k+2)(k+1)

(xnyk+2zltm + m(m−1)

v2
1

Zn(k+2)l(m−2) −
n(n− 1)Z(n−2)(k+2)lm − l(l− 1)Zn(k+2)(l−2)m),

Z3(xnykzltm) = 1
(l+2)(l+1)

(xnykzl+2tm + m(m−1)

v2
1

Znk(l+2)(m−2) −
n(n− 1)Z(n−2)k(l+2)m − k(k − 1)Zn(k−2)(l+2)m),

Z4(xnykzltm) =
v2

1
(m+2)(m+1)

(−xnykzltm+2 + n(n− 1)Z(n−2)kl(m+2) +

k(k − 1)Zn(k−2)l(m+2) + l(l− 1)Znk(l−2)(m+2)].
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Test example

Consider the plane state of strain for (x, y) ∈ (−1,1) × (−1,1) when the

strain tensor εij = εij(x, y, t), (i, j = 1,2) and εi3 = 0, (i = 1,2,3). Then

the system of wave equations has a form:

(∇2 − 1

v2
1

∂2

∂t2
)φ(x, y, t) = mT (x, y, t), (∇2 − 1

v2
2

∂2

∂t2
)ψ(x, y, t) = 0.

Displacements and stresses are given as:

u = [ux(x, y, t), uy(x, y, t)] =

=

[
∂φ(x, y, t)

∂x
+
∂ψ(x, y, t)

∂y
,
∂φ(x, y, t)

∂y
− ∂ψ(x, y, t)

∂x

]
,

σxx = (2µ+ λ)
∂ux

∂x
+ λ

∂uy

∂y
− γT, σxy = µ

(
∂ux

∂y
+
∂uy

∂x

)
,

σyy = λ
∂ux

∂x
+ (2µ+ λ)

∂uy

∂y
− γT, σzz = λ

(
∂ux

∂x
+
∂uy

∂y

)
− γT.
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Temperature and conditions: T (x, y, t) = x2/2 + y2/2 + 2t,

ux(x, y,0) =
mxy2

3
, uy(x, y,0) =

mx2y

3
,

u̇x(x, y,0) =
2mx

3
+

√
2c2

50000
sin(x) cos(y), u̇y(x, y,0) =

2my

3
−

√
2c2

50000
cos(x) sin(y),

ux(−1, y, t) = −m
3

(2t+ y2 − c2
1t

2

2
) ± sin(1)

50000
cos(y)sin(

√
2c2t),

ux(x,−1, t) = ux(x,1, t) =
m

3
(2xt+ x− c2

1xt
2

2
) +

cos(1)

50000
sin(x)sin(

√
2c2t),

uy(−1, y, t) =
m

3
(2yt+ y − c2

1yt
2

2
) − cos(1)

50000
sin(y)sin(

√
2c2t),

uy(x,±1, t) = ±m
3

(2t+ x2 − c2
1t

2

2
) ∓ sin(1)

50000
cos(x)sin(

√
2c2t).

The continuous conditions ux(1, y, t) and uy(1, y, t) are not known. Instead

of that we know the values of them in discrete points (x− ε,−1 + k
5,
l∆t
10 ),

k, l = 0, . . . ,10 (internal responses).
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Internal responses are simulated from the exact solution:

ux =
m

3
(2xt+ xy2 − c2

1xt
2

2
) +

1

50000
sin(x) cos(y)sin(

√
2c2t),

uy =
m

3
(x2y + 2yt− c2

1yt
2

2
) − 1

50000
cos(x) sin(y)sin(

√
2c2t).
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Approximate solution has a form: u ≈ û = grad φ̂+ rot Ψ̂, where

ψ ≈ ψ̂ =
N∑

n=1

c1nV
1
n , φ ≈ φ̂ =

N∑

n=1

c0nV
0
n + φp.

The coefficients cin are chosen so that the error of fulfilling given boundary
and initial conditions is minimized:

I =

∫ 1

−1

∫ 1

−1

{[ûx(x, y,0) − ux(x, y,0)]2 + [ûy(x, y,0) − uy(x, y,0)]2 + . . .︸ ︷︷ ︸
given initial conditions

}dydx

+

∫ 1

−1

∫ ∆t

0

{[ûx(−1, y, t) − ux(−1, y, t)]2 + [ûy(−1, y, t) − uy(−1, y, t)]2}dtdy + . . .

︸ ︷︷ ︸
given boundary conditions

+ ∆t

10∑

k=0

10∑

l=0

{[ûx(1 − ε,−1 +
k

5
,
l∆t

10
) − ux(1 − ε,−1 +

k

5
,
l∆t

10
)]2

︸ ︷︷ ︸
internal responses for ux

}

+ ∆t

10∑

k=0

10∑

l=0

{[ûy(1 − ε,−1 +
k

5
,
l∆t

10
) − uy(1 − ε,−1 +

k

5
,
l∆t

10
)]2

︸ ︷︷ ︸
internal responses for uy

} →Min
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Convergence

Order form 0 to 4
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3e+06
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3.4e+06
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t

ux(1,1, t)

sxx(1,1, t)
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Displacement ux (ε = 0)

Exact
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The relative error for ux(1, y, t) (inverse problem)
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The disturbed internal responses – normal distribution N(0,0.04)
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The mean relative error of approximation of boundary condition ux(1, y, t)

is defined as:

E =

√√√√
∫ 1
−1

∫∆t
0 [ûx(1; y; t) − ux(1; y; t)]2dtdy
∫ 1
−1

∫∆t
0 [ux(1; y; t)]2dtdy

· 100%.

In approximation ûx we take all wave polynomials up to order 7. The

table shows the error E[%] in dependence on the distance ε:

ε Smooth data Noisy data

0 0.022 0.896
0.1 0.044 1.073
0.3 0.108 1.503
0.5 0.133 1.394

For noisy data the error is bigger but still stays very low even for big

distance ε.
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Conclusions

• A new, relatively simple method of solving the direct and inverse

problems for wave equations was proposed.

• Thanks to this method we obtain an analytical solution which satisfies

given equation and depends continuously on all variables in the whole

domain.

• The error of approximation is small.

• Considered example confirms the theoretical result that the wave poly-

nomials method is convergent – more polynomials in approximate so-

lution leads to better results.

• The method is flexible according to initial and boundary conditions

(discrete, missing).

• A new and very effective approach towards smoothing by using Trefftz

functions is proposed here.
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Thank you for your attention!


