Wave polynomials in inverse problems

Artur Maciąg
Kielce University of Technology

WORKSHOP IP-TA 2010, Warsaw February 9-12, 2010

Schedule

* Introduction
* Wave polynomials
* Solving problems by means of Trefftz functions
* Thermoelasticity problems
* Conclusions

History

- 1926 Erich Trefftz, Ein Gegenstük zum Ritz'schen Verfahren. Proceedings 2nd International Congres of Applied Mechanics, Zurich, pp.131-137.
- 1978 Herrera I., Sabina F., Connectivity as an alternative to boundary integral equations: Construction of bases, Appl. Math. Phys. Sc., No. 75/5, 2059-2063.
- Other authors: Kupradze, Jirousek, Leon, Zienkiewicz, Zieliński, Kołodziej, Qin, Li, Lu, Hu, Cheng.

Continuous time:

- 1956 P.C.Rosenbloom, D.V. Widder - 1D Heat polynomials,
- 1998-2000 M.J.Ciałkowski, K.Grysa, S.Hożejowska, L.Hożejowski - Direct and inverse problems for heat conduction (1D-3D, several coordinates systems),
- 2000 M.J.Ciałkowski, A.Frackowiak - Trefftz funtions for Laplace'a, Poisson'a, Helmholtza and 1D wave equations, Trefftz functions as FEM base functions,
- 2002-2005 A.Maciag, J.Wauer - 2D and 3D wave polynomials,
- 2006- A.Maciag - Wave polynomials in thermoelasticity problems, T-functions for beam and plate vibrations problems, several variants of FEMT.

Main idea

The key idea of the method is to determine functions satisfying a given differential equation (T-functions) and to fit the linear combination of them to the governing initial and boundary conditions (usually The Least Square Method).

Advantages of the method

- Approximate solution (a linear combination of the solving functions) satisfies the equation identically and depends continuously on all space variables and time.
- The method is flexible in terms of given boundary and initial conditions (discrete, missing).
- The usage of T-functions as base functions in FEM allows to use big time-space elements.

Wave polynomials

Let us consider a wave equation in $\widetilde{\Omega}=\Omega \times(0, t)$, where $\Omega \subset R^{n}$ and t denotes time:

$$
\nabla^{2} u=\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

For two-dimensional wave equation we take $P_{000}=1, Q_{000}=0$. Then the recurrent formulas for wave polynomials are:

$$
\begin{gathered}
P_{(n-k) k 0}=\frac{1}{n}\left(-x Q_{(n-k-1) k 0}-y Q_{(n-k)(k-1) 0}-v t Q_{(n-k-2) k 1}-v t Q_{(n-k)(k-2) 1}\right), \\
P_{(n-k-1) k 1}=\frac{1}{n}\left(-x Q_{(n-k-2) k 1}-y Q_{(n-k-1)(k-1) 1}-v t Q_{(n-k-1) k 0}\right) \\
Q_{(n-k) k 0}=\frac{1}{n}\left(x P_{(n-k-1) k 0}+y P_{(n-k)(k-1) 0}+v t P_{(n-k-2) k 1}+v t P_{(n-k)(k-2) 1}\right) \\
Q_{(n-k-1) k 1}=\frac{1}{n}\left(x P_{(n-k-2) k 1}+y P_{(n-k-1)(k-1) 1}+v t P_{(n-k-1) k 0}\right)
\end{gathered}
$$

e.g.

$$
\begin{aligned}
& P_{000}=1, \quad Q_{100}=x, \quad Q_{010}=y, \quad Q_{001}=t, P_{200}=-\frac{x^{2}}{2}-\frac{t^{2}}{2} \\
& P_{110}=-x y, \quad P_{101}=-x t, \quad P_{011}=-y t, P_{020}=-\frac{y^{2}}{2}-\frac{t^{2}}{2}, \ldots
\end{aligned}
$$

For three-dimensional wave equation:

$$
\begin{aligned}
& P_{(n-k-l) k l 0}=-\frac{1}{n}\left(x Q_{(n-k-l-1) k l 0}+y Q_{(n-k-l)(k-1) l 0}+z Q_{(n-k-l) k(l-1) 0}+\right. \\
& \left.+v t Q_{(n-k-l-2) k l 1}+v t Q_{(n-k-l)(k-2) l 1}+v t Q_{(n-k-l) k(l-2) 1}\right), \\
& P_{(n-k-l-1) k l 1}=-\frac{1}{n}\left(x Q_{(n-k-l-2) k l 1}+y Q_{(n-k-l-1)(k-1) l 1}+\right. \\
& \left.+z Q_{(n-k-l-1) k(l-1) 1}+v t Q_{(n-k-l-1) k l 0}\right) \text {, } \\
& Q_{(n-k-l) k l 0}=\frac{1}{n}\left(x P_{(n-k-l-1) k l 0}+y P_{(n-k-l)(k-1) l 0}+z P_{(n-k-l) k(l-1) 0}+\right. \\
& \left.+v t P_{(n-k-l-2) k l 1}+v t P_{(n-k-l)(k-2) l 1}+v t P_{(n-k-l) k(l-2) 1}\right) \text {, } \\
& Q_{(n-k-l-1) k l 1}=\frac{1}{n}\left(x P_{(n-k-l-2) k l 1}+y P_{(n-k-l-1)(k-1) l 1}+\right. \\
& \left.+z P_{(n-k-l-1) k(l-1) 1}+v t P_{(n-k-l-1) k l 0}\right) \text {. }
\end{aligned}
$$

T-functions method

As an approximation of the wave equation we take:

$$
u \approx w=\sum_{n=1}^{N} c_{n} V_{n}
$$

Because all polynomials V_{n} satisfy the wave equation, the linear combination w satisfies this equation as well. The coefficients c_{n} are chosen so that the error of fulfilling given boundary and initial conditions corresponding to the wave equation is minimized.

The method is convergent - more polynomials leads to better approximation.

Membrane's vibrations

Consider the free vibrations of a square membrane described by equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \quad(x, y) \in(0,1) \times(0,1), \quad t>0
$$

and
initial conditions: $u(x, y, 0)=u_{0}(x, y)=\frac{1}{20} \sin (x) \sin (\pi y), \quad \frac{\partial u(x, y, 0)}{\partial t}=0$,
boundary conditions: $u(0, y, t)=u(x, 0, t)=u(x, 1, t)=0$.
For simulation we take a condition on the boundary $x=1$:

$$
u(1, y, t)=\frac{1}{20} \sin (1) \sin (\pi y) \cos \left(t \sqrt{\pi^{2}+1}\right)
$$

We assume that this condition is not known, but we know the internal responses of a membrane's deflection in distance ε from border $x=1$:

$$
u(1-\varepsilon, 0.1 \cdot(k-1), t)=u_{k}(t), k=1, \ldots, 11
$$

Values of u_{k} for $k=1 \ldots 11$ were simulated from exact solution:

$$
u(x, y, t)=\frac{1}{20} \sin (x) \sin (\pi y) \cos \left(t \sqrt{\pi^{2}+1}\right)
$$

If $\varepsilon>0$ we have an inverse problem and we search for a solution in the whole domain but especially $u(1, y, t)$.

We check the quality of the identification of the boundary condition by calculating the average relative error in the whole time interval $(0, \Delta t)$, which is defined as:

$$
E=\sqrt{\frac{\int_{0}^{\Delta t}[u(1,0.5, t)-w(1,0.5, t)]^{2} \mathrm{~d} t}{\int_{0}^{\Delta t}[u(1,0.5, t)]^{2} \mathrm{~d} t}} \cdot 100 \%
$$

The values of error E in dependence on the distance ε and order N are shown in the table:

$N \backslash \varepsilon$	0	0.05	0.1	0.2	0.3	0.4	0.6
3	29.25	28.65	29.00	32.29	39.76	55.18	100.96
5	4.28	4.42	5.00	7.38	12.75	19.79	25.12
$\mathbf{7}$	$\mathbf{0 . 3 3}$	$\mathbf{0 . 3 6}$	$\mathbf{0 . 3 8}$	$\mathbf{0 . 9 7}$	$\mathbf{2 . 2 7}$	$\mathbf{2 . 5 0}$	$\mathbf{6 . 0 0}$

Disturbance and smoothing of data

Now we assume that the internal responses are given in discrete time points: $u_{k l}=u(1-\varepsilon,(k-1) \cdot 0.1,(l-1) \cdot 0.1)$ where $k, l=1, \ldots, 11$. This data are disturbed according to the formula:

$$
u_{k l}^{d}=u_{k l}\left(1+\xi_{k l}\right)
$$

where $\xi_{k l}$ are random numbers of normal distribution ($N(0,0.01)$).
In this case the relative error E has a value from circa 2000% for $\varepsilon=0$ (direct problem) to circa 180000% for $\varepsilon=0.8$.

As an approximation of disturbed internal responses we take:

$$
u_{\varepsilon}(1-\varepsilon, y, t)=\sum_{n=1}^{N} c_{n} V_{n}(1-\varepsilon, y, t)
$$

V_{n} - wave polynomials. To chose coefficients c_{n} we minimize:

$$
\sum_{k, l=1}^{11}\left[u_{\varepsilon}(1-\varepsilon,(k-1) \cdot 0.1,(l-1) \cdot 0.1)-u_{k l}^{d}\right]^{2}
$$

Then the values of the relative error E for the smoothed data are shown in the table:

ε	0	0.05	0.1	0.2	0.3	0.4	0.6
E	$\mathbf{1 . 0}$	$\mathbf{0 . 5 4}$	$\mathbf{1 . 2 6}$	$\mathbf{1 . 0 4}$	$\mathbf{1 . 2 6}$	$\mathbf{3 . 7 2}$	$\mathbf{2 3 . 3 6}$

$N \backslash \varepsilon$	0	0.05	0.1	0.2	0.3	0.4	0.6
3	29.25	28.65	29.00	32.29	39.76	55.18	100.96
5	4.28	4.42	5.00	7.38	12.75	19.79	25.12
$\mathbf{7}$	$\mathbf{0 . 3 3}$	$\mathbf{0 . 3 6}$	$\mathbf{0 . 3 8}$	$\mathbf{0 . 9 7}$	$\mathbf{2 . 2 7}$	$\mathbf{2 . 5 0}$	$\mathbf{6 . 0 0}$

If we take into account additional information concerning the velocity of the membrane in the same points (disturbed and smoothed by wave polynomials) we get:

ε	0	0.05	0.1	0.2	0.3	0.4	0.6
E	$\mathbf{0 . 3 2}$	$\mathbf{0 . 3 1}$	$\mathbf{0 . 3 2}$	$\mathbf{0 . 4 2}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{3 . 4 8}$

Thermoelasticity problem

Let us consider thermoelasticity equations:

$$
\mu \nabla^{2} \mathbf{u}+(\lambda+\mu) \text { grad div } \mathbf{u}=\rho \ddot{\mathbf{u}}+\gamma \operatorname{grad} \top
$$

where u-displacement vector, ∇ - nabla operator, μ, λ - Lame constants, ρ - mass density, $\gamma=\frac{E}{1-2 \nu} \alpha$, E - Young's modulus, ν - Poison's ratio, α - coefficient of thermal expansion.
The temperature field is described by the equation:

$$
\frac{1}{\kappa} \frac{\partial T}{\partial t}=\nabla^{2} T
$$

where κ - coefficient of thermal diffusivity. Equations are completed by initial and boundary conditions or "internal responses". The relation between displacements and stresses is described by:

$$
\sigma_{i j}=2 \mu \varepsilon_{i j}+\lambda \varepsilon_{k k} \delta_{i j}-\gamma T \delta_{i j}
$$

where $\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-$ strain tensor, $\delta_{i j}-$ Kronecker delta.

The system of thermoelasticity equations can be simplified by substitution: $\mathbf{u}=\operatorname{grad} \phi+\operatorname{rot} \Psi$ then we obtain:

$$
\left(\nabla^{2}-\frac{1}{v_{1}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi=m T, \quad\left(\nabla^{2}-\frac{1}{v_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi_{i}=0, \quad i=1,2,3
$$

where $v_{1}^{2}=\frac{\lambda+2 \mu}{\rho}, v_{2}^{2}=\frac{\mu}{\rho}, m=\frac{\gamma}{c_{1}^{2} \rho}$.
We approximate the solution of the first equations by:

$$
\phi \approx \widehat{\phi}=\sum_{n=1}^{N} c_{n}^{0} V_{n}^{0}+\phi_{p}
$$

For the second equation we take:

$$
\psi_{i} \approx \widehat{\psi_{i}}=\sum_{n=1}^{N} c_{n}^{i} V_{n}^{i}, \quad i=1,2,3
$$

Here $V_{n}^{i}, i=0, \ldots, 3$ are wave polynomials satisfying corresponding wave equation and ϕ_{p} is the particular solution.
Coefficients c_{n}^{i} are determined by given conditions.

Particular solution

The particular solution ϕ_{p} for $L \phi=m T$ is calculated as $L^{-1}(m T)$, where $L=\nabla^{2}-\frac{1}{v_{1}^{2}} \frac{\partial^{2}}{\partial t^{2}}$.
The temperature distribution can be approximated by linear combination of heat polynomials (or Taylor series). Therefore, we have to know how to calculate the inverse operator L^{-1} for monomials. It is easy to prove that for two space variables we have three forms of L^{-1} :

$$
\begin{aligned}
L_{1}^{-1}\left(x^{k} y^{l} t^{m}\right) & =\frac{1}{(k+2)(k+1)}\left(x^{k+2} y^{l} t^{m}-l(l-1) Z_{(k+2)(l-2) m}+\frac{m(m-1)}{v_{1}^{2}} Z_{(k+2) l(m-2)}\right), \\
L_{2}^{-1}\left(x^{k} y^{l} t^{m}\right) & =\frac{1}{(l+2)(l+1)}\left(x^{k} y^{l+2} t^{m}-k(k-1) Z_{(k-2)(l+2) m}+\frac{m(m-1)}{v_{1}^{2}} Z_{k(l+2)(m-2)}\right), \\
L_{3}^{-1}\left(x^{k} y^{l} t^{m}\right) & =\frac{v_{1}^{2}}{(m+2)(m+1)}\left(-x^{k} y^{l} t^{m+2}+k(k-1) Z_{(k-2) l(m+2)}+l(l-1) Z_{k(l-2)(m+2)}\right) .
\end{aligned}
$$

For three space variables we have four forms of L^{-1} :

$$
\begin{aligned}
& Z_{1}\left(x^{n} y^{k} z^{l} t^{m}\right)= \frac{1}{(n+2)(n+1)}\left(x^{n+2} y^{k} z^{l} t^{m}+\frac{m(m-1)}{v_{1}^{2}} Z_{(n+2) k l(m-2)}-\right. \\
&\left.k(k-1) Z_{(n+2)(k-2) l m}-l(l-1) Z_{(n+2) k(l-2) m}\right), \\
& Z_{2}\left(x^{n} y^{k} z^{l} t^{m}\right)= \frac{1}{(k+2)(k+1)}\left(x^{n} y^{k+2} z^{l} t^{m}+\frac{m(m-1)}{v_{1}^{2}} Z_{n(k+2) l(m-2)}-\right. \\
&\left.n(n-1) Z_{(n-2)(k+2) l m}-l(l-1) Z_{n(k+2)(l-2) m}\right), \\
& Z_{3}\left(x^{n} y^{k} z^{l} t^{m}\right)= \frac{1}{(l+2)(l+1)}\left(x^{n} y^{k} z^{l+2} t^{m}+\frac{m(m-1)}{v_{1}^{2}} Z_{n k(l+2)(m-2)}-\right. \\
&\left.n(n-1) Z_{(n-2) k(l+2) m}-k(k-1) Z_{n(k-2)(l+2) m}\right), \\
& Z_{4}\left(x^{n} y^{k} z^{l} t^{m}\right)= \frac{v_{1}^{2}}{(m+2)(m+1)}\left(-x^{n} y^{k} z^{l} t^{m+2}+n(n-1) Z_{(n-2) k l(m+2)}+\right. \\
&\left.k(k-1) Z_{n(k-2) l(m+2)}+l(l-1) Z_{n k(l-2)(m+2)}\right] .
\end{aligned}
$$

Test example

Consider the plane state of strain for $(x, y) \in(-1,1) \times(-1,1)$ when the strain tensor $\varepsilon_{i j}=\varepsilon_{i j}(x, y, t),(i, j=1,2)$ and $\varepsilon_{i 3}=0,(i=1,2,3)$. Then the system of wave equations has a form:

$$
\left(\nabla^{2}-\frac{1}{v_{1}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi(x, y, t)=m T(x, y, t), \quad\left(\nabla^{2}-\frac{1}{v_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi(x, y, t)=0
$$

Displacements and stresses are given as:

$$
\begin{aligned}
\mathbf{u} & =\left[u_{x}(x, y, t), u_{y}(x, y, t)\right]= \\
& =\left[\frac{\partial \phi(x, y, t)}{\partial x}+\frac{\partial \psi(x, y, t)}{\partial y}, \frac{\partial \phi(x, y, t)}{\partial y}-\frac{\partial \psi(x, y, t)}{\partial x}\right] \\
\sigma_{x x} & =(2 \mu+\lambda) \frac{\partial u_{x}}{\partial x}+\lambda \frac{\partial u_{y}}{\partial y}-\gamma T, \sigma_{x y}=\mu\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \\
\sigma_{y y} & =\lambda \frac{\partial u_{x}}{\partial x}+(2 \mu+\lambda) \frac{\partial u_{y}}{\partial y}-\gamma T, \sigma_{z z}=\lambda\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)-\gamma T .
\end{aligned}
$$

Temperature and conditions: $T(x, y, t)=x^{2} / 2+y^{2} / 2+2 t$,

$$
\begin{gathered}
u_{x}(x, y, 0)=\frac{m x y^{2}}{3}, \quad u_{y}(x, y, 0)=\frac{m x^{2} y}{3} \\
\dot{u}_{x}(x, y, 0)=\frac{2 m x}{3}+\frac{\sqrt{2} c_{2}}{50000} \sin (x) \cos (y), \dot{u}_{y}(x, y, 0)=\frac{2 m y}{3}-\frac{\sqrt{2} c_{2}}{50000} \cos (x) \sin (y), \\
u_{x}(-1, y, t)=-\frac{m}{3}\left(2 t+y^{2}-\frac{c_{1}^{2} t^{2}}{2}\right) \pm \frac{\sin (1)}{50000} \cos (y) \sin \left(\sqrt{2} c_{2} t\right), \\
u_{x}(x,-1, t)=u_{x}(x, 1, t)=\frac{m}{3}\left(2 x t+x-\frac{c_{1}^{2} x t^{2}}{2}\right)+\frac{\cos (1)}{50000} \sin (x) \sin \left(\sqrt{2} c_{2} t\right), \\
u_{y}(-1, y, t)=\frac{m}{3}\left(2 y t+y-\frac{c_{1}^{2} y t^{2}}{2}\right)-\frac{\cos (1)}{50000} \sin (y) \sin \left(\sqrt{2} c_{2} t\right) \\
u_{y}(x, \pm 1, t)= \pm \frac{m}{3}\left(2 t+x^{2}-\frac{c_{1}^{2} t^{2}}{2}\right) \mp \frac{\sin (1)}{50000} \cos (x) \sin \left(\sqrt{2} c_{2} t\right) .
\end{gathered}
$$

The continuous conditions $u_{x}(1, y, t)$ and $u_{y}(1, y, t)$ are not known. Instead of that we know the values of them in discrete points $\left(x-\varepsilon,-1+\frac{k}{5}, \frac{l \Delta t}{10}\right)$, $k, l=0, \ldots, 10$ (internal responses).

Internal responses are simulated from the exact solution:

$$
\begin{aligned}
& u_{x}=\frac{m}{3}\left(2 x t+x y^{2}-\frac{c_{1}^{2} x t^{2}}{2}\right)+\frac{1}{50000} \sin (x) \cos (y) \sin \left(\sqrt{2} c_{2} t\right) \\
& u_{y}=\frac{m}{3}\left(x^{2} y+2 y t-\frac{c_{1}^{2} y t^{2}}{2}\right)-\frac{1}{50000} \cos (x) \sin (y) \sin \left(\sqrt{2} c_{2} t\right)
\end{aligned}
$$

Approximate solution has a form: $\mathbf{u} \approx \widehat{\mathbf{u}}=\operatorname{grad} \widehat{\phi}+\operatorname{rot} \widehat{\Psi}$, where

$$
\psi \approx \widehat{\psi}=\sum_{n=1}^{N} c_{n}^{1} V_{n}^{1}, \phi \approx \widehat{\phi}=\sum_{n=1}^{N} c_{n}^{0} V_{n}^{0}+\phi_{p}
$$

The coefficients c_{n}^{i} are chosen so that the error of fulfilling given boundary and initial conditions is minimized:

$$
\begin{aligned}
I & =\int_{-1}^{1} \int_{-1}^{1}\{\underbrace{\left.\widehat{u}_{x}(x, y, 0)-u_{x}(x, y, 0)\right]^{2}+\left[\widehat{u}_{y}(x, y, 0)-u_{y}(x, y, 0)\right]^{2}+\ldots}_{\text {given initial conditions }}\} \mathrm{d} y \mathrm{~d} x \\
& +\underbrace{\int_{-1}^{1} \int_{0}^{\Delta t}\left\{\left[\widehat{u}_{x}(-1, y, t)-u_{x}(-1, y, t)\right]^{2}+\left[\widehat{u}_{y}(-1, y, t)-u_{y}(-1, y, t)\right]^{2}\right\} \mathrm{d} t \mathrm{~d} y+\ldots}_{\text {given boundary conditions }} \\
& +\Delta t \sum_{k=0}^{10} \sum_{l=0}^{10}\{[\underbrace{\left.\widehat{u}_{x}\left(1-\varepsilon,-1+\frac{k}{5}, \frac{l \Delta t}{10}\right)-u_{x}\left(1-\varepsilon,-1+\frac{k}{5}, \frac{l \Delta t}{10}\right)\right]^{2}}_{\text {internal responses for } u_{x}}\} \\
& +\Delta t \sum_{k=0}^{10} \sum_{l=0}^{10}\{[\underbrace{\left.\widehat{u}_{y}\left(1-\varepsilon,-1+\frac{k}{5}, \frac{l \Delta t}{10}\right)-u_{y}\left(1-\varepsilon,-1+\frac{k}{5}, \frac{l \Delta t}{10}\right)\right]^{2}}_{\text {internal responses for } u_{y}}\} \rightarrow \text { Min }
\end{aligned}
$$

Convergence

Order form 0 to 4 Order form 0 to 5
Order form 0 to 7

Displacement $u_{x}(\varepsilon=0)$

Exact

Approximation

Relative error [\%]

The relative error for $u_{x}(1, y, t)$ (inverse problem)

The disturbed internal responses - normal distribution $\mathbf{N}(0,0.04)$

$\varepsilon=0.1$

$\varepsilon=0.3$

$\varepsilon=0.5$
23/25

The mean relative error of approximation of boundary condition $u_{x}(1, y, t)$ is defined as:

$$
\mathrm{E}=\sqrt{\frac{\int_{-1}^{1} \int_{0}^{\Delta t}\left[\hat{u}_{x}(1 ; y ; t)-u_{x}(1 ; y ; t)\right]^{2} \mathrm{~d} t \mathrm{~d} y}{\int_{-1}^{1} \int_{0}^{\Delta t}\left[u_{x}(1 ; y ; t)\right]^{2} \mathrm{~d} t \mathrm{~d} y}} \cdot 100 \% .
$$

In approximation \widehat{u}_{x} we take all wave polynomials up to order 7 . The table shows the error $\mathrm{E}[\%]$ in dependence on the distance ε :

ε	Smooth data	Noisy data
0	0.022	0.896
0.1	0.044	1.073
0.3	0.108	1.503
0.5	0.133	1.394

For noisy data the error is bigger but still stays very low even for big distance ε.

Conclusions

- A new, relatively simple method of solving the direct and inverse problems for wave equations was proposed.
- Thanks to this method we obtain an analytical solution which satisfies given equation and depends continuously on all variables in the whole domain.
- The error of approximation is small.
- Considered example confirms the theoretical result that the wave polynomials method is convergent - more polynomials in approximate solution leads to better results.
- The method is flexible according to initial and boundary conditions (discrete, missing).
- A new and very effective approach towards smoothing by using Trefftz functions is proposed here.

Thank you for your attention!

