The Lepskiĭ balancing principle for conjugate gradient regularization

Peter Mathé

Weierstrass Institute Berlin

Warszawa, 09 lutego 2010

Peter Mathé (Weierstrass Institute Berlin)

Conjugate gradient regularization

E 5 4 E

< 6 k

Peter Mathé (Weierstrass Institute Berlin)

Conjugate gradient regularization

Warszawa, 09 lutego 2010 2 / 13

2

イロト イヨト イヨト イヨト

Krylov minimization

Conjugate gradient regularization (*cg*) is an iterative solver for linear equations in Hilbert space. Here we shall apply this to noisy equations

 $y^{\delta} = Tx + \delta\xi,$

where

- $T: X \rightarrow Y$ has non-closed range (ill-posedness),
- ξ is bounded deterministic noise,
- $\delta > 0$ is the noise level.

イロト イポト イラト イラト

Krylov minimization

Conjugate gradient regularization (*cg*) is an iterative solver for linear equations in Hilbert space. Here we shall apply this to noisy equations

 $y^{\delta} = Tx + \delta\xi,$

where

- $T: X \rightarrow Y$ has non-closed range (ill-posedness),
- ξ is bounded deterministic noise,
- $\delta > 0$ is the noise level.

cg determines at each step k the element x_k^{δ} as minimizer of

$$\delta_k := \| y^{\delta} - T x_k^{\delta} \| = \min \left\{ \| y^{\delta} - T x \|, \quad x \in \mathcal{K}_k(T^* y^{\delta}, T^* T) \right\},$$

where

$$\mathcal{K}_k(T^*y^{\delta}, T^*T) = \operatorname{span}\left\{(T^*T)^{k-1} T^*y^{\delta}, \quad k = 1, \dots, k\right\},$$

denotes the kth Krylov-subspace.

Background

cg has a clear geometric interpretation, as it determines the descent directions such that the consecutive residuals are *TT***-orthogonal*, i.e.,

$$\langle T^*(y^{\delta} - Tx_k^{\delta}), T^*(y^{\delta} - Tx_{k+1}^{\delta}) \rangle = 0.$$

Therefore, it should be called *conjugate residuals*! The resulting algorithmic description is short, and 'easy to compute'.

Remark

- M. R. Hestenes and E. Stiefel [3], 1952, original study,
- J. R. Shewchuk [5], 1994, "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain", the most cited introduction to the subject.

< ロ > < 同 > < 回 > < 回 >

Using cg for regularization

In regularization *cg* is used for the *normal equations*

 $T^*y^{\delta} = T^*Tx + \delta T^*\xi,$

Since x_k^{δ} solves a least-squares problem: If $y^{\delta} \notin \mathcal{R}(T)$ then $||x_k^{\delta}||$ must explode as $k \to \infty$. Therefore regularization (stopping) $k = k(\delta, y^{\delta})$ is necessary.

Remark

- A. Nemirowskiĭ [4], 1986, "Regularizing properties of the conjugate gradient method in ill-posed problems", original study,
- M. Hanke [2], 1995, monograph, polishing the first study,
- Engl, Hanke and Neubauer [1], 1996, chapter of cg, that's where we refer to!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Challenges

We recall that x_k^{δ} solves a minimization problem in a Krylov subspace

$$x_k^\delta = g_k(T^*T)T^*y^\delta, \quad \deg(g_k) \leq k-1.$$

The polynomial $g_k = g_k(y^{\delta})$ depends on the data y^{δ} , therefore *cg* is a *nonlinear iterative method*!

Consequently,

- there is no immediate bias-variance decomposition,
- no control of growth of the noise propagation ,
- no a priori parameter choice, and
- it is hard to check the *qualification* of *cg*.

イロト イポト イラト イラト

Challenges

We recall that x_k^{δ} solves a minimization problem in a Krylov subspace

$$x_k^\delta = g_k(T^*T)T^*y^\delta, \quad \deg(g_k) \leq k-1.$$

The polynomial $g_k = g_k(y^{\delta})$ depends on the data y^{δ} , therefore *cg* is a *nonlinear iterative method*!

Consequently,

- there is no immediate bias-variance decomposition,
- no control of growth of the noise propagation ,
- no a priori parameter choice, and
- it is hard to check the *qualification* of *cg*.

Theorem (Nemirovskiĭ)

If $x \in \mathcal{R}(T^*T)^{\mu}$, and if K_{DP} then is according to the discrepancy principle then

$$\|\boldsymbol{x} - \boldsymbol{x}_{\mathcal{K}_{DP}}^{\delta}\| \leq C\delta^{\mu/(\mu+1/2)}.$$

Goals, achievements

- We want to extend *cg* to statistical ill-posed problems. Therefore, the discrepancy principle causes problems!
- Need other parameter choice.

In our study we achieved

- application of the Lepskii balancing principle for parameter choice,
- to obtain an oracle inequality, and
- to extend cg to (a class of) general smoothness assumptions.

4 3 5 4 3 5

4 A N

Goals, achievements

- We want to extend *cg* to statistical ill-posed problems. Therefore, the discrepancy principle causes problems!
- Need other parameter choice.

In our study we achieved

- application of the Lepskii balancing principle for parameter choice,
- to obtain an oracle inequality, and
- to extend cg to (a class of) general smoothness assumptions.

Definition

An index function ψ is said to be majorized by the power μ if the function $t \mapsto t^{\mu}/\psi(t)$ is an index function. An index function is said to be majorized by a power if it is majorized by the power μ for some $\mu > 0$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Goals, achievements

- We want to extend *cg* to statistical ill-posed problems. Therefore, the discrepancy principle causes problems!
- Need other parameter choice.

In our study we achieved

- application of the Lepskii balancing principle for parameter choice,
- to obtain an oracle inequality, and
- to extend cg to (a class of) general smoothness assumptions.

Definition

An index function ψ is said to be majorized by the power μ if the function $t \mapsto t^{\mu}/\psi(t)$ is an index function. An index function is said to be majorized by a power if it is majorized by the power μ for some $\mu > 0$.

Remark

G. Blanchard, P. Mathé, Conjugate gradient regularization under general smoothness assumptions, 2010.

Peter Mathé (Weierstrass Institute Berlin)

Outline

Peter Mathé (Weierstrass Institute Berlin)

2

イロト イヨト イヨト イヨト

Error decomposition

Theorem

Suppose that ψ is majorized by a power and that $x \in H_{\psi}$. There is a constant *C* such that

$$\|x-x_k^\delta\|\leq C\psi\left(\Theta_\psi^{-1}(d_k)
ight)+3rac{\delta}{\sqrt{lpha_k}},$$

where $\Theta_{\psi}(t) = \sqrt{t}\psi(t)$, and • $d_k := \max \{\delta, \|y^{\delta} - Tx_k^{\delta}\|\}$, and $\alpha_k := |r'_k(0)|^{-1}$, k = 1, 2, ...

4 A N

Error decomposition

Theorem

Suppose that ψ is majorized by a power and that $x \in H_{\psi}$. There is a constant *C* such that

$$\|x - x_k^{\delta}\| \leq C\psi\left(\Theta_{\psi}^{-1}(d_k)\right) + 3rac{\delta}{\sqrt{lpha_k}},$$

where $\Theta_{\psi}(t) = \sqrt{t}\psi(t)$, and

• $d_k := \max \{\delta, \|y^{\delta} - Tx_k^{\delta}\|\}$, and $\alpha_k := |r'_k(0)|^{-1}$, k = 1, 2, ...

Remark

Notice that

• $\alpha_k \searrow 0$ as $k \to \infty$, and $\|y^{\delta} - Tx_k^{\delta}\| \searrow 0$ as $k \to \infty$.

d_k → 0 as *k* → ∞. This reflects that the first summand subsumes non-linearity terms.

• There is no control of increase of $|r'_k(0)|!$

What is $|r'_k(0)|$?

- Recall that $x_k^{\delta} := g_k(T^*T)T^*y^{\delta}$ with polynomial g_k .
- We assign $r_k(\lambda) := 1 \lambda g_k(\lambda)$.
- This is a *polynomial of* deg $(r_k) = k$, $r_k(0) = 1$.
- The polynomials r_k , k = 1, ... are *orthogonal* with respect to $d\mu(\lambda) := \lambda d \|F_{\lambda}y^{\delta}\|^2$.
- The quantity $|r'_k(0)|$ is the (abs. value of) *first derivative*.
- It can be shown that $|r'_k(0)| \nearrow \infty$ as $k \to \infty$.
- The polynomials are easily calculated along with the steps of cg.

cg under the discrepancy principle

Theorem

Suppose that ψ is majorized by a power, and that K_{DP} is according to the discrepancy principle. Then there is a constant $C < \infty$ such that for $x \in H_{\psi}$ we have that

$$\|x - x^{\delta}_{\mathcal{K}_{DP}}\| \leq C\psi\left(\Theta^{-1}_{\psi}(\delta)
ight), \quad \delta o \mathbf{0},$$

provided that $K_{DP} > 1$.

4 3 5 4 3

4 A N

cg under the discrepancy principle

Theorem

Suppose that ψ is majorized by a power, and that K_{DP} is according to the discrepancy principle. Then there is a constant $C < \infty$ such that for $x \in H_{\psi}$ we have that

$$\|x - x^{\delta}_{\mathcal{K}_{DP}}\| \leq C\psi\left(\Theta^{-1}_{\psi}(\delta)
ight), \quad \delta o \mathbf{0},$$

provided that $K_{DP} > 1$.

- This extends the Nemirovskiĭ result.
- Since *qualification* can only be checked for *classical source conditions*, we use the *method of distance functions* as in
 B. Hofmann, P. Mathé, *Analysis of profile functions for general linear regularization methods, SINUM, 2007.*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oracle inequality

Assume $\{x_1, \ldots, x_m\}$ is a finite set in a metric space (M, d), and $x \in M$ ("the truth") satisfies $d(x, x_i) \leq \frac{1}{2} (\Phi(i) + \Psi(i))$, $i = 1, \ldots, m$, where $\Phi : \{1, \ldots, m\} \rightarrow \mathbb{R}^+$ is non-decreasing, and $\Psi : \{1, \ldots, m\} \rightarrow \mathbb{R}^+$ is non-increasing.

Fix any K > 1, and define the set

 $\Delta = \left\{ 1 \le j \le m : d(x_i, x_j) \le K \Psi(i), \text{ for all } i \le j \right\}.$

(I) > (A) > (A) > (A) > (A)

Oracle inequality

Assume $\{x_1, \ldots, x_m\}$ is a finite set in a metric space (M, d), and $x \in M$ ("the truth") satisfies $d(x, x_i) \leq \frac{1}{2} (\Phi(i) + \Psi(i))$, $i = 1, \ldots, m$, where $\Phi : \{1, \ldots, m\} \rightarrow \mathbb{R}^+$ is non-decreasing, and $\Psi : \{1, \ldots, m\} \rightarrow \mathbb{R}^+$ is non-increasing.

Fix any K > 1, and define the set

$$\Delta = \left\{ 1 \le j \le m : d(x_i, x_j) \le K \Psi(i), \text{ for all } i \le j \right\}.$$

Definition

Any integer satisfying $\overline{j} \in \Delta$ and $(\overline{j} + 1) \notin \Delta$ is called Lepskiĭ parameter.

イロト イポト イラト イラト

Oracle inequality

Assume $\{x_1, \ldots, x_m\}$ is a finite set in a metric space (M, d), and $x \in M$ ("the truth") satisfies $d(x, x_i) \leq \frac{1}{2} (\Phi(i) + \Psi(i))$, $i = 1, \ldots, m$, where $\Phi : \{1, \ldots, m\} \rightarrow \mathbb{R}^+$ is non-decreasing, and $\Psi : \{1, \ldots, m\} \rightarrow \mathbb{R}^+$ is non-increasing.

Fix any K > 1, and define the set

$$\Delta = \left\{ 1 \le j \le m : d(x_i, x_j) \le K \Psi(i), \text{ for all } i \le j \right\}.$$

Definition

Any integer satisfying $\overline{j} \in \Delta$ and $(\overline{j} + 1) \notin \Delta$ is called Lepskiĭ parameter.

Proposition (Abstract oracle inequality)

Any Lepskiĭ parameter j̄ satisfies

$$d(x, x_{\overline{j}}) \leq \frac{1}{2} \min_{1 \leq i \leq m} \left\{ \frac{K}{K-1} \Phi(i) + (1+2K) \Psi(i) \right\}.$$

cg under Lepskiĭ parameter choice

Theorem

Suppose that ψ is majorized by a power, and that K_L is the Lepskiĭ parameter choice. Then there is a constant $C < \infty$ such that for $x \in H_{\psi}$ we have that

$$\|\boldsymbol{x} - \boldsymbol{x}_{\mathcal{K}_L}^{\delta}\| \leq C\psi\left(\Theta_{\psi}^{-1}(\delta)
ight), \quad \delta o \mathbf{0},$$

provided that $1 < K_L < k_{max}$.

イロト イポト イラト イラ

cg under Lepskiĭ parameter choice

Theorem

Suppose that ψ is majorized by a power, and that K_L is the Lepskiĭ parameter choice. Then there is a constant $C < \infty$ such that for $x \in H_{\psi}$ we have that

$$\|x-x_{\mathcal{K}_{L}}^{\delta}\|\leq \mathcal{C}\psi\left(\Theta_{\psi}^{-1}(\delta)
ight),\quad\delta
ightarrow\mathbf{0},$$

provided that $1 < K_L < k_{max}$.

Remark

Although the oracle bound holds without any assumptions, the optimal order can be guaranteed only if K_L is internal.

< ロ > < 同 > < 回 > < 回 >

Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications.

Kluwer Academic Publishers Group, Dordrecht, 1996.

Martin Hanke.

Conjugate gradient type methods for ill-posed problems, volume 327 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1995.

Magnus R. Hestenes and Eduard Stiefel.
 Methods of conjugate gradients for solving linear systems.
 J. Research Nat. Bur. Standards, 49:409–436 (1953), 1952.

A. S. Nemirovskiĭ.

Regularizing properties of the conjugate gradient method in ill-posed problems.

Zh. Vychisl. Mat. i Mat. Fiz., 26(3):332-347, 477, 1986.

Jonathan R Shewchuk.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An introduction to the conjugate gradient method without the agonizing pain.

Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

э

イロト 不得 トイヨト イヨト