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Krylov minimization
Conjugate gradient regularization (cg) is an iterative solver for linear
equations in Hilbert space. Here we shall apply this to noisy equations

yδ = Tx + δξ,

where
T : X → Y has non-closed range (ill-posedness),
ξ is bounded deterministic noise,
δ > 0 is the noise level.

cg determines at each step k the element xδk as minimizer of

δk := ‖yδ − Txδk‖ = min
{
‖yδ − Tx‖, x ∈ Kk (T ∗yδ,T ∗T )

}
,

where

Kk (T ∗yδ,T ∗T ) = span
{

(T ∗T )k−1 T ∗yδ, k = 1, . . . , k
}
,

denotes the k th Krylov-subspace.
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Background

cg has a clear geometric interpretation, as it determines the descent
directions such that the consecutive residuals are TT ∗-orthogonal, i.e.,

〈T ∗(yδ − Txδk ),T ∗(yδ − Txδk+1)〉 = 0.

Therefore, it should be called conjugate residuals!
The resulting algorithmic description is short, and ’easy to compute’.

Remark
M. R. Hestenes and E. Stiefel [3], 1952, original study,
J. R. Shewchuk [5], 1994, “An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain“, the most cited
introduction to the subject.
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Using cg for regularization

In regularization cg is used for the normal equations

T ∗yδ = T ∗Tx + δT ∗ξ,

Since xδk solves a least-squares problem:
If yδ 6∈ R(T ) then ‖xδk‖ must explode as k →∞. Therefore
regularization (stopping) k = k(δ, yδ) is necessary.

Remark
A. Nemirowskiı̆ [4], 1986, “Regularizing properties of the
conjugate gradient method in ill-posed problems”, original study,
M. Hanke [2], 1995, monograph, polishing the first study,
Engl, Hanke and Neubauer [1], 1996, chapter of cg, that’s where
we refer to!
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Challenges
We recall that xδk solves a minimization problem in a Krylov subspace

xδk = gk (T ∗T )T ∗yδ, deg(gk ) ≤ k − 1.

The polynomial gk = gk (yδ) depends on the data yδ, therefore cg is a
nonlinear iterative method!
Consequently,

there is no immediate bias-variance decomposition,
no control of growth of the noise propagation ,
no a priori parameter choice, and
it is hard to check the qualification of cg.

Theorem (Nemirovskiı̆)
If x ∈ R (T ∗T )µ, and if KDP then is according to the discrepancy
principle then

‖x − xδKDP
‖ ≤ Cδµ/(µ+1/2).

Peter Mathé (Weierstrass Institute Berlin) Conjugate gradient regularization Warszawa, 09 lutego 2010 6 / 13



university-logo

Challenges
We recall that xδk solves a minimization problem in a Krylov subspace

xδk = gk (T ∗T )T ∗yδ, deg(gk ) ≤ k − 1.

The polynomial gk = gk (yδ) depends on the data yδ, therefore cg is a
nonlinear iterative method!
Consequently,

there is no immediate bias-variance decomposition,
no control of growth of the noise propagation ,
no a priori parameter choice, and
it is hard to check the qualification of cg.

Theorem (Nemirovskiı̆)
If x ∈ R (T ∗T )µ, and if KDP then is according to the discrepancy
principle then

‖x − xδKDP
‖ ≤ Cδµ/(µ+1/2).

Peter Mathé (Weierstrass Institute Berlin) Conjugate gradient regularization Warszawa, 09 lutego 2010 6 / 13



university-logo

Goals, achievements
We want to extend cg to statistical ill-posed problems. Therefore,
the discrepancy principle causes problems!
Need other parameter choice.

In our study we achieved
application of the Lepskiı̆ balancing principle for parameter choice,
to obtain an oracle inequality, and
to extend cg to (a class of) general smoothness assumptions.

Definition
An index function ψ is said to be majorized by the power µ if the
function t 7→ tµ/ψ(t) is an index function. An index function is said to
be majorized by a power if it is majorized by the power µ for some
µ > 0.

Remark
G. Blanchard, P. Mathé, Conjugate gradient regularization under
general smoothness assumptions, 2010.
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Error decomposition
Theorem
Suppose that ψ is majorized by a power and that x ∈ Hψ. There is a
constant C such that

‖x − xδk‖ ≤ Cψ
(

Θ−1
ψ (dk )

)
+ 3

δ
√
αk
,

where Θψ(t) =
√

tψ(t), and

dk := max
{
δ, ‖yδ − Txδk‖

}
, and αk :=

∣∣r ′k (0)
∣∣−1, k = 1,2, . . . .

Remark
Notice that

αk ↘ 0 as k →∞, and ‖yδ − Txδk‖ ↘ 0 as k →∞.
dk 6→ 0 as k →∞. This reflects that the first summand subsumes
non-linearity terms.
There is no control of increase of

∣∣r ′k (0)
∣∣!
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What is |r ′k(0)|?

Recall that xδk := gk (T ∗T )T ∗yδ with polynomial gk .
We assign rk (λ) := 1− λgk (λ).
This is a polynomial of deg(rk ) = k , rk (0) = 1.
The polynomials rk , k = 1, . . . are orthogonal with respect to
dµ(λ) := λ d‖Fλyδ‖2.
The quantity

∣∣r ′k (0)
∣∣ is the (abs. value of) first derivative.

It can be shown that
∣∣r ′k (0)

∣∣↗∞ as k →∞.
The polynomials are easily calculated along with the steps of cg.
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cg under the discrepancy principle

Theorem
Suppose that ψ is majorized by a power, and that KDP is according to
the discrepancy principle. Then there is a constant C <∞ such that
for x ∈ Hψ we have that

‖x − xδKDP
‖ ≤ Cψ

(
Θ−1
ψ (δ)

)
, δ → 0,

provided that KDP > 1.

This extends the Nemirovskiı̆ result.
Since qualification can only be checked for classical source
conditions, we use the method of distance functions as in
B. Hofmann, P. Mathé, Analysis of profile functions for general
linear regularization methods, SINUM, 2007.
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Oracle inequality
Assume {x1, . . . , xm} is a finite set in a metric space (M,d), and x ∈ M
(“the truth”) satisfies d(x , xi) ≤ 1

2 (Φ(i) + Ψ(i)) , i = 1, . . . ,m, where
Φ : {1, . . . ,m} → R+ is non-decreasing, and Ψ : {1, . . . ,m} → R+ is
non-increasing.
Fix any K > 1, and define the set

∆ =
{

1 ≤ j ≤ m : d(xi , xj) ≤ K Ψ(i), for all i ≤ j
}
.

Definition
Any integer satisfying j̄ ∈ ∆ and (̄j + 1) 6∈ ∆ is called Lepskiı̆
parameter.

Proposition (Abstract oracle inequality)

Any Lepskiı̆ parameter j̄ satisfies

d(x , x̄j) ≤
1
2

min
1≤i≤m

{
K

K − 1
Φ(i) + (1 + 2K )Ψ(i)

}
.
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cg under Lepskiı̆ parameter choice

Theorem
Suppose that ψ is majorized by a power, and that KL is the Lepskiı̆
parameter choice. Then there is a constant C <∞ such that for
x ∈ Hψ we have that

‖x − xδKL
‖ ≤ Cψ

(
Θ−1
ψ (δ)

)
, δ → 0,

provided that 1 < KL < kmax.

Remark
Although the oracle bound holds without any assumptions, the optimal
order can be guaranteed only if KL is internal.
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