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Two Dimensional Sideways Parabolic Equation

We want to solve the following problem:

ut = (a(x, y)ux)x + (b(x, y)uy)y, 0 < x < 1, 0 < y < 1, 0 ≤ t ≤ 1

u(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
u(1, y, t) = g(t, y), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1
ux(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1
uy(x, 0, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1
u(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1

where u(0, y, t) = f(y, t) is sought from the data at the right
boundary.
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Figure 1: Two dimensional sideways heat problem.
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We want to solve

Kf = g

where f is the solution and K is the operator that maps f to the
data g.
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GMRES

The algorithm GMRES

1. Compute r0 = g − Kx0, β = ‖r0‖2, and v1 = r0/β

2. for j = 1, . . . ,m, (m is a regularization parameters)

Compute w := Kvj

for i = 1, . . . , j do (Gram-Schmidt)

hi,j := wTvi

w := w − hi,jvi

end

Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

end

3. Define Vm := [v1, . . . , vm], H̄m = {hi,j}1≤i≤j+1,1≤j≤m

4. Compute ym = argminy‖βe1 − H̄my‖2 and xm = x0 + Vmym
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The multiplication by the operator,

w = Kvj,

corresponds solving the following well-posed parabolic problem in two
space dimensions.

ut = (a(x, y)ux)x + (b(x, y)uy)y, 0 < x < 1, 0 < y < 1, 0 ≤ t ≤ 1,

u(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
u(0, y, t) = vj(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,
ux(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,
uy(x, 0, t) = 0, u(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

(1)
and evaluating the solution at x = 1 to get w. This can be
done efficiently using any standard method for the solution of a 2D
parabolic equation.
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GMRES dose not work without preconditioner
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Preconditioner

Let M represent a discretization of the 2D sideways heat equation
with constant coefficients, where the constants are chosen as the
mean values of the respective variable coefficients in the original
problem 2D SHE. If the variations of the coefficients a(x, y) and
b(x, y) are moderate then M is close to the operator K, and it is
appropriate to use it as a preconditioner.

KM−1ψ = g, where ψ =Mf.

Instead of M−1 we use the pseudo-inverse M †.
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2D SHE with constant Coefficients

Consider the following equations,

ut = auxx + buyy, 0 < x < 1, 0 < y < 1, 0 ≤ t ≤ 1,
u(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
u(1, y, t) = g(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1
ux(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1
uy(x, 0, t) = 0, u(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.
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Lemma. [Reinhardt:91]The explicit representation of the solution of 2D SHE in

terms of the unknown function f(y, t) is

u(x, y, t) =

∫ t

0

2a
∞
∑

n,j=0

(−1)nνn exp(−(aν2
n+bµ2

j)(t−s))Ψnj(x, y)fj(s)ds,

where

νn = (2n + 1)
π

2
, µj = (2j + 1)

π

2
,

Ψnj(x, y) = cos(νn(1 − x)) cos(µjy),

and

fj(s) = 2

∫ 1

0

f(y, s) cos(µjy)dy, j = 0, 1, · · ·

From Lemma we have for x = 1,

g(y, t) = u(1, y, t)

=

∫ t

0

2a
∞
∑

n,j=0

(−1)nνn exp(−(aν2
n + bµ2

j)(t − s)) cos(µjy)fj(s)ds,
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Expanding g(y, t) in the same cosine series

g(y, t) =
∞∑
j=0

gj(t) cos(µjy),

leads to

gj(t) =

∫ t

0

2a
∞∑

n,j=0

(−1)nνn exp(−(aν2n + bµ2
j)(t− s))fj(s)ds.
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1. Compute the cosine transform of the data function:

gj(t) = 2

∫ 1

0

g(y, t) cos(µjy)dy, j = 0, 1, . . .

2. Solve the Volterra integral equations

gj(t) =

∫ t

0

kj(t − s)fj(s)ds, j = 0, 1, . . .

where the kernel kj is given by

kj(r) = 2a

∞
∑

n=0

(−1)
n
νn exp(−(aν

2
n + bµ

2
j)r)

3. Evaluate the solution f(y, t) by computing the inverse cosine transform:

f(y, t) =

∞
∑

j=0

fj(t) cos(µjy).
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PGMRES

The algorithm GMRES with Right Preconditioning

1. Compute r0 = g − Kx0, β = ‖r0‖2, and v1 = r0/β

2. for j = 1, . . . ,m,

Compute w := KM†vj

for i = 1, . . . , j do

hi,j := wTvi

w := w − hi,jvi

end

Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

end

3. Define Vm := [v1, . . . , vm], H̄m = {hi,j}1≤i≤j+1,1≤j≤m

4. Compute ym = argminy‖βe1 − H̄my‖2 and xm = x0 + M†Vmym
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Implementation

Implementation of the preconditioner M †v:

1. v̂ = DFT(v), v̂ =
(

v̂T
1 · · · v̂T

n

)T

2. for j = 1, p

v̂j = v̂(j, :),

Solve Mjûj = v̂j by Tikhonov regularization

û(j, :) = ûj

3. end

4. û = (ûT
1 , · · · , û

T
p , 0, · · · , 0)

T

5. u = IDFT(û)

Here p is the number of terms in the cosine expansion.
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Numerical Experiments
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Plot of variable coefficients a(x) (left) and b(y) (right).
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Test example 1:
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Example 1. Exact solution f(y, t) (left) and data function with 5%
noise(right)
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Example 1. Approximate solution after 6 iterations of PGMRES for
0 ≤ y ≤ 1 (left) and plot of f and the approximated solution at

y = 1/2(right). λ ∈ (0.05, 0.5) and p = 1
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Example 1. Residuals (left) and relative errors (right) of PGMRES
as functions of iteration index for 5% perturbation in the data.
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Test exapmle 2:
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Example 2. Exact solution f(y, t) and data function gδ(y, t) with
5% noise.
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Example 2. Approximate solution (left), and the exact solution(solid)
and the approximate solution (dashed) at y = 1/2 after 12 iterations
of PGMRES with 5% perturbation in the data, and λ = 0.06 and
p = 2.
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Example 2. Residuals (left) and relative errors (right) of PGMRES
as functions of iteration index.
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Test example 3: 2D SHE with zero boundary values in y-direction,
i.e,

u(x, 0, t) = u(x, 1, t) = 0
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Exact solution f(y, t) (left) and data function with 5% noise(right)
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Approximate solution after 3 iterations of PGMRES for 0 ≤ y ≤ 1
(left) and plot of f and the approximated solution at

y = 1/2(right). λ ∈ (0.05, 0.5) and p = 1
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Residuals (left) and relative errors (right) of PGMRES as functions
of iteration index for 5% perturbation in the data.
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Test example 4:
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Example 4. Exact solution f(y, t) and data function gδ(y, t) with
5% noise.
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Example 4. Approximated solutions(left) and the exact solu-
tion(solid) and the approximate solution at y = 1/2 after 11 it-
erations of PGMRES with 5% perturbation in the data λ = 0.09 and
p = 3.
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Example 4. Residuals (left) and relative errors (right) of PGMRES
as functions of iteration index.

This problem is difficult because, due to the closeness to zero in the
vicinity of 0 and 1, it is not possible to approximate the solution in
terms of a small number of sine functions.
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Summary and future works

• PGMRES: A new method for solving 2D sideways parabolic prob-
lem with variable coefficients which seems to be very efficient.

• Very few iterations

• Preconditioner is close to the original operator: just differ in
coefficients

• Regularization is incorporated in the preconditioner

• Algorithms are computational feasible since we use Discrete Fourier
Transform.

• Numerical analysis is more on experimental side and need to more
study on theoretical parts

30



• Extension to more general form of multidimensional problems
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