Lavrentiev regularization for nonlinear equation with monotone operator

Lavrentiev regularization for nonlinear equation with monotone operator

Evgeniya Semenova

Institute of Mathematic of NAS, Kiev

at support of Prof. S.V. Pereverzyev

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の・

Statement of problem

X is a Hilbert space Nonlinear equation

$$\mathbf{F}(\mathbf{x}) = \mathbf{f},\tag{1}$$

where $F:D(F)\subset X\to X$ possesses a locally uniformly bounded Frechet-derivative F' $R(F)\neq \overline{R(F)}$

Assumption 1.

Let exist such v, that the relation

$$\mathbf{x}^0 - \mathbf{x}^\dagger = \boldsymbol{\phi}(\mathbf{F}'(\mathbf{x}^\dagger))\mathbf{v} \tag{2}$$

fulfils, where index function ϕ , $\phi(0) = 0$ is continuous non-decreasing function defined on some interval $[0, \sigma]$ containing the spectrum of $F'(x^{\dagger})$.

Statement of problem

Perturbation of the right-hand side:

$$f_{\delta} \in X$$
: $\|f - f_{\delta}\| \leq \delta$.

F is a monotone operator, i.e. for all $x_1,x_2\in D(F)$

$$(F(x_1) - F(x_2), x_1 - x_2) \ge 0 \tag{3}$$

Lipschitz condition is fulfilled, i.e. there is a constant R, such that for all $x_1,x_2\in D(F)$

$$||F(x_1) - F(x_2)|| \le R||x_1 - x_2||.$$
(4)

Proposed method

Lavrentiev regulatization:

$$(\mathbf{F} + \boldsymbol{\alpha} \mathbf{I}) \mathbf{x}_{\boldsymbol{\alpha}}^{\boldsymbol{\delta}} = \mathbf{f}_{\boldsymbol{\delta}} + \boldsymbol{\alpha} \mathbf{x}^{0}, \tag{5}$$

where x^0 is a initial guess, α is a regularization parameter.

Fixed-point method (FPM):

$$\mathbf{x}^{\boldsymbol{\delta}}_{\boldsymbol{\alpha},k+1} = \mathbf{G}_{\boldsymbol{\alpha}}(\mathbf{x}^{\boldsymbol{\delta}}_{\boldsymbol{\alpha},k}), \tag{6}$$

where $G_{\alpha}(x) = (I - \gamma(F + \alpha I))(x) + \alpha \gamma x^{0} + \gamma f_{\delta}, \gamma > 0.$

 $(5)+~(6)-M_{\alpha,\gamma}$

1. A. Bakyshinskiy, A. Smirnova, A posteriori stopping rule for regularized fixed point iterations, Nonlinear Analysis, 64 (2006), pp. 1255–1261.

 $\|\mathrm{F}(\mathrm{x}_{\alpha}^{\delta}) - \mathrm{y}_{\delta}\| \leq \mathrm{b}_2 \delta, \quad \mathrm{b}_2 \text{ is some constant.}$

2. U. Tautenhahn, On the method of Lavrentiev regularization for nonlinear ill-posed problems, Inverse Problems, 18 (2002), pp. 191–207.

$$\| \boldsymbol{\alpha} (\mathbf{F}'(\mathbf{x}_{\boldsymbol{\alpha}}^{\boldsymbol{\delta}}) + \boldsymbol{\alpha} \mathbf{I})^{-1} [\mathbf{F}(\mathbf{x}_{\boldsymbol{\alpha}}^{\boldsymbol{\delta}}) - \mathbf{y}^{\boldsymbol{\delta}}] \| = \mathbf{C} \boldsymbol{\delta}.$$

Balancing principle

S. Pereverzev, E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal., 43 (2005), pp. 2060–2076.

$$D_{M} = \{ \alpha_{i} = \alpha_{0}q^{i}, i = 0, 1, ..., M \}, \quad q > 1,$$

$$\mathbf{i}_{+} = \max\{\mathbf{i} : \boldsymbol{\alpha}_{\mathbf{i}} \in \mathbf{D}_{\mathbf{M}}^{+}\},\tag{7}$$

where

$$\mathrm{D}_{\mathrm{M}}^{+} = \{ \pmb{\alpha}_{i} \in \mathrm{D}_{\mathrm{M}} : \| \mathrm{x}_{i} - \mathrm{x}_{j} \| \leq \frac{4 \delta(\mathrm{c}_{\mathrm{z}} + 1)}{\alpha_{j}}, j = 0, 1, ..., i - 1 \},$$

 $\mathbf{x}_i := \mathbf{x}_{\alpha_i,\mathbf{k}}^{\delta}$, where $\mathbf{x}_{\alpha_i,\mathbf{k}}^{\delta}$ is a approximate solution of Lavrentiev method (5) at α_i that obtained by FPM (6) after k iterations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の�?

Goal of investigation

- ► to prove the optimality of constructed method $M_{\alpha,\gamma}$ with balancing principle;
- ► to find the quantity of necessary iterations by fixed-point method for given accuracy.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の・

Assumptions

Let $\rho(\alpha)$ is qualification of Lavrentiev method

- If $\phi(\lambda) = \lambda^{p}$ then qualification $\rho(\alpha) := \alpha^{q}$, $0 < q \le 1$. So if $0 then the accuracy by the order is <math>O(\delta^{\frac{p}{p+1}})$. If p > 1, than of accuracy by the order is $\delta^{1/2}$.
- ► If $\phi(\lambda) = \ln^{-p}(\lambda)^{-1}$ then $\rho(\alpha) := \ln^{-q}(\alpha)^{-1}$, where $q \ge 1$. A rate of convergence is $O(\ln^{-p}(\delta^{-1}))$ for any p > 1.

Assumptions

Assumption $2.^1$

Let exist $\mathfrak{a} > 0$ such that the relation

$$\mathfrak{a}\frac{\rho(\alpha)}{\phi(\alpha)} \leq \inf_{\alpha \leq \lambda \leq \sigma} \frac{\rho(\lambda)}{\phi(\lambda)}, \quad 0 < \alpha \leq \sigma.$$
(8)

takes place.

Assumption $3.^2$

Let exist a constant $k_0 \ge 0$ such that for all $x \in D(F)$ and $\omega \in X$ there exists some element $k(x, x^{\dagger}, \omega) \in X$ with property

$$[F'(x)-F'(x^\dagger)]\pmb{\omega}=F'(x)k(x,x^\dagger,\pmb{\omega})\quad {\rm and}\quad \|k(x,x^\dagger,\pmb{\omega})\|\leq k_0\|\pmb{\omega}\|.$$

¹P. Mathe, S. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (2003)

²U. Tautenhahn, On the method of Lavrentiev regularization for nonlinear ill-posed problems, Inverse Problems, 18 (2002)

Lavrentiev regularization for nonlinear equation with more

Bound of error

$$\|\mathbf{x}_{i} - \mathbf{x}^{\dagger}\| \le \|\mathbf{x}^{\dagger} - \mathbf{x}_{\alpha}\| + \|\mathbf{x}_{\alpha} - \mathbf{x}_{\alpha}^{\delta}\| + \|\mathbf{x}_{\alpha}^{\delta} - \mathbf{x}_{i}\|$$
(9)

The stability bound on Lavrentiev method

$$\|\mathbf{x}_{\alpha}^{\delta} - \mathbf{x}_{\alpha}\| \le \frac{\delta}{\alpha} \tag{10}$$

The stopping rule for FPM

$$\|\mathbf{x}_{\alpha_{i}}^{\delta} - \mathbf{x}_{i}\| \leq \frac{c_{z}\delta}{\alpha_{i}}$$
(11)

Proposition 1

Let assumptions A1, A2, A3 fulfil. Then for all $\alpha > 0$ the approximation error for Lavrentiev method is

$$\|\mathbf{x}_{\boldsymbol{\alpha}} - \mathbf{x}^{\dagger}\| \le (1 + \mathbf{k}_0) \boldsymbol{a}^{-1} \|\mathbf{v}\| \boldsymbol{\phi}(\boldsymbol{\alpha}).$$
(12)

◆□▶ ◆御▶ ◆理▶ ◆理▶ = 臣 = の��

Theorem about optimality

Theorem 1.

Let operator F of equation (1) is monotone and condition (4) takes place. Assume that, solution x^{\dagger} is such that condition (2) is true. Then at choosing index i_{+} according to (7) the method $M_{\alpha,\gamma}$ is optimal by the order, i.e. the following bound fulfils

$$\|\mathbf{x}^{\dagger} - \mathbf{x}_{i_{+}}\| \le \frac{c\delta}{\alpha_{opt}} = c\phi(\alpha_{opt}), \tag{13}$$

where $\alpha_{opt} = ((c_z + 1)(1 + k_0) a^{-1} \phi(\delta) \delta)^{-1}$, and constant c is independent from δ .

Fixed Point Method

Theorem 2.

Let operator $F + \alpha I$ is strong monotone and Lipschitz condition takes place. Besides assume that $\gamma \alpha < 1$. Then operator G_{α} is contractive with constant $\beta = \sqrt{(1 - \alpha \gamma)^2 + \gamma^2 R^2}$ at $\gamma < \frac{2\alpha}{\alpha^2 + R^2}$ and the following bound takes place

$$\|\mathbf{x}_{\alpha_{i}}^{\delta} - \mathbf{x}_{i}\| \leq \frac{\beta^{k} ||\mathbf{x}_{\alpha_{i},1}^{\delta} - \mathbf{x}_{\alpha_{i},0}^{\delta}||}{1 - \beta}.$$
 (14)

The best value of bound (14) is achieved at $\gamma = \frac{\alpha}{\alpha^2 + R^2}$ and $\beta = \frac{R}{\sqrt{\alpha^2 + R^2}}$.

Corollary The quantity of iterations :

$$N_{iter} = \log_{\beta} \frac{\varepsilon(1-\beta)}{\|x_{\alpha_{i},1}^{\delta} - x_{\alpha_{i},0}^{\delta}\|},$$
(15)

The quantity of remaining iterations that should be checked after each step:

$$N_{iter}^{n} = \log_{\beta} \frac{\varepsilon(1-\beta)}{\|x_{\alpha_{i},n}^{\delta} - x_{\alpha_{i},n-1}^{\delta}\|},$$
(16)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の・

Algorithm of computation

To apply Balancing Principle two strategies are possible:

Test the condition

$$\|x_i - x_j\| \le \frac{4\delta(c_z + 1)}{\alpha_j}, j = 0, 1, ..., i - 1,$$
 (17)

starting from small α_0 and going forward to $\alpha_k = \alpha_0 q^k$;

► Test the condition (17) starting from large value $\alpha_{\rm M}$ and continuing to smaller regularization parameter $\alpha_{\rm M-k} = \alpha_{\rm M} q^{-k}$.

$$\alpha_0 = C\sqrt{\delta},\tag{18}$$

where C is some constant.

$$\mathbf{M} = \log_{\mathbf{q}} \frac{\boldsymbol{\alpha}_{\mathbf{M}}}{\mathbf{C}\sqrt{\boldsymbol{\delta}}}.$$
 (19)

Lavrentiev regularization for nonlinear equation with more

Algorithm of computation

1. Choose sufficiently big α_M and parameter q > 1, C > 0. It allows to define the grid

$$D_{M} = \{ \alpha_{i} = \alpha_{0}q^{i}, i = 0, 1, ..., M \}.$$

2. Compute the approximation x_i

$$\mathbf{x}^{\boldsymbol{\delta}}_{\boldsymbol{\alpha},\mathbf{k}+1} = \mathbf{G}_{\boldsymbol{\alpha}}(\mathbf{x}^{\boldsymbol{\delta}}_{\boldsymbol{\alpha},\mathbf{k}}),\tag{20}$$

where $G_{\alpha}(x) = (I - \gamma(F + \alpha I))(x) + \alpha \gamma x^{0} + \gamma f_{\delta}, \gamma > 0$. with accuracy $c_{z} \delta / \alpha_{i}$ for i = M - 1, ..., 0.

 For i = M, M-1, ..., 1 check the condition (17). As soon as for some i = i₊ this condition carries out, the test is stopped. As approximate solution of equation (20) take the element x_{i+}.

Conclusion

- We have considered a nonlinear equation with monotone operator; for its solving the combination of Lavrentiev method with FPM has been proposed. The regularization parameter has been chosen according to BP;
- The optimality of this method on the set of smooth solutions has been proved;
- ▶ The FPM has been investigated for the problem under consideration; bound for the accuracy has been obtained; the necessary quantity of iterations has been established.